WN-2-Absorbing Submodules and WNS-2-Absorbing Submodules

Wissam A. Hussain
Department of Mathematics, College of Education for Pure science, Tikrit University, Iraq

Haibt K. Mohammad ali
Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Iraq

Article history: Received 30 July 2018, Accepted 3 September 2018, Published December 2018

Abstract
In this article, we study the concept of WN-2-Absorbing submodules and WNS-2-Absorbing submodules as generalization of weakly 2-absorbing and weakly semi 2-absorbing submodules respectively. We investigate some of basic properties, examples and characterizations of them. Also, prove, the class of WN-2-Absorbing submodules is contained in the class of WNS-2-Absorbing submodules. Moreover, many interesting results about these concepts, were proven.

Keywords: WN-2-Absorbing submodules, WNS-2-Absorbing submodules, Weakly 2-Absorbing submodules, Weakly Semi-2-Absorbing submodules.

1. Introduction
Weakly 2-absorbing submodules was introduced by Darani and Soheilinia, in 2011, where a proper submodule B of an R-module Y is called weakly 2-absorbing submodule, if whenever $0 \neq aby \in B$, with $a, b \in R, y \in Y$, implies that either $ay \in B$ or $by \in B$ or $ab \in [B:Y]$ [1]. And the concept of a weakly semi 2-absorbing submodule was introduce by Haibt and Khalaf in 2018, where a proper submodule B of an R-module Y is called a weakly semi 2-absorbing submodule, if whenever $0 \neq a^2y \in B$, with $a \in R, y \in Y$, implies that either $ay \in B$ or $a^2 \in [B:Y]$ [2].

These two concepts are generalized in this article, to WN-2-Absorbing submodules and WNS-2-Absorbing submodules, we prove that the class of WN-2-Absorbing submodules is contained in the class of WNS-2-Absorbing submodules while the converse is not true see example (3.14). Recall that a submodule A of an R-module Y is called small if for any submodule B of Y, $Y = A + B$, implies that $A = Y$ [3]. Recall that an R-epimorphism $f : Y \to Y$ is called small if Kerf is a small submodule of Y, and $f(j(M)) = j(M') = j(f(M))$ and $j(M) = f^{-1}(j(M))$ [3]. A ring R is a good ring if $j(R)Y = j(Y)$, where Y is an R-module equivalently R is a good ring if $j(Y) \cap A = (A)$ for every submodule A of Y [3]. If Y is an R-module and A, B, C are submodules of Y with $B \subseteq C$. Then $(A + B) \cap C = (A \cap C) + (B \cap C) = (A \cap C) + B$ [3].

Recall that an R-module Y is regular if $R/ann(x)$ is regular ring [4]. Recall that a subset S of a ring R is called multiplicatively closed subset of R if $1 \in S$ and $ab \in S$ for all $a, b \in S$ [5]. This note consists of two parts in the first part, we introduced the concept of WN-2-Absorbing submodule, and in the second part we introduced the concept of WNS-2-Absorbing submodule.
2. WN-2-Absorbing Submodules and Related Concept

In this part of the research, we introduce and studied the concept of WN-2-Absorbing submodules as a generalization of weakly 2-absorbing submodules.

Definition 1
A proper submodule B of an R-module Y is said to be WN-2-Absorbing submodules if whenever $0 \neq aby \in B$, where $a, b \in R, y \in Y$, implies that either $ay \in B + J(Y)$ or $by \in B + J(Y)$ or $ab \in [B + J(Y):Y]$, where $J(Y)$ is the Jacobsen radical of Y. An ideal I of a ring R is said to be WN-2-Absorbing ideal of R, if I is a WN-2-Absorbing submodules of an R-module R.

Remark 2
Every weakly 2-absorbing submodule of an R-module Y is WN-2-Absorbing submodules, while the converse is not true.

Proof
Clear. For the converse consider the following example : let $Y = \mathbb{Z}_{16}, R = \mathbb{Z}$ and $B = \langle 8 \rangle$ it is clear that B is a WN-2-Absorbing submodules of Y since $B + J(Y) = \langle 8 \rangle + \langle 2 \rangle = \langle 2 \rangle$. But B is not weakly 2-absorbing submodule of Y since, $0 \neq 2.2 \in B$, but $2.2 \notin B$ and $2.2 \notin [B:Y] = 8\mathbb{Z}$.

Proposition 3
Let Y be an R-module, and B a proper submodule of Y with $J(Y) \subseteq B$ then B is a weakly 2-absorbing submodule of Y if and only if B is a WN-2-Absorbing submodule of Y.

Proof
(\Rightarrow) By remark (2.2).

(\Leftarrow) since $J(Y) \subseteq B$ then $B + J(Y) = B$, hence proof is direct.

Proposition 4
Let Y be an R-module, and B a proper submodule of Y with $A \subseteq B$. If A is a WN-2-Absorbing submodule of Y and $J(Y) \subseteq j(B)$, then A is a WN-2-Absorbing submodule of B.

Proof
Let $0 \neq aby \in A$, where $a, b \in R, y \in B$, since A is a WN-2-Absorbing submodule of Y then either $ay \in A + J(Y)$ or $by \in A + J(Y)$ or $ab \in [A + J(Y):Y]$, but $J(Y) \subseteq j(B)$, so either $ay \in A + j(B)$ or $by \in A + j(B)$ or $ab \in [A + J(Y):Y] \subseteq [A + J(B):Y] \subseteq [A + j(B):B]$ since B is a submodule of Y. Hence A a WN-2-Absorbing submodule of B.

Proposition 5
Let Y be an R-module, and B a proper submodule of Y, if $B + J(Y)$ is a WN-2-Absorbing submodule of Y, then B is a WN-2-Absorbing submodule of Y.

Proof
Since $B \subseteq B + J(Y)$, hence proof is clearly.
Remark 6

The intersection of two is a WN-2-Absorbing submodules of an R-module Y need not to be is a WN-2-Absorbing submodule. The following example explain that:
Let \(Y = \mathbb{Z}, R = \mathbb{Z}, A = 6\mathbb{Z}, B = 7\mathbb{Z}. \) Clearly A, B is a WN-2-Absorbing submodules since they are weakly 2-absorbing submodules of \(Y \) but \(A \cap B = 42\mathbb{Z} \) is not WN-2-Absorbing submodule of \(Y \) since, if \(0 \neq 2.3.7 \in A \cap B \), but \(2.7 \notin A \cap j(Y) \) and \(3.7 \notin A \cap j(Y) \) and \(2.3 \notin [A \cap j(Y) : Y] = 42\mathbb{Z}. \)

Proposition 7

Let \(Y \) be an R-module, and A, B are WN-2-Absorbing submodules of \(Y \) with \(A \subseteq j(Y) \) and \(B \subseteq j(Y) \), then \(A \cap B \) is WN-2-Absorbing submodules of \(Y \).

Proof

Let \(0 \neq aby \in A \cap B \), with \(a, b \in R, y \in Y \), implies that \(0 \neq aby \in A \) and \(0 \neq aby \in B \). it follows that either \(ay \in A \) or \(by \in B \) or \(ab \in [A + j(Y) : Y] \), and either \(ay \in B \) or \(by \in A \) or \(ab \in [B + j(Y) : Y] \). But \(A \subseteq j(Y) \) and \(B \subseteq j(Y) \), then \(A + j(Y) = j(Y) \) and \(B + j(Y) = j(Y) \). Hence \(ay \in j(Y) \) or \(by \in j(Y) \) or \(ab \in \{ j(Y) : Y \} \). Thus \(A \cap B \subseteq \{ j(Y) : Y \} \), implies that \(A \cap B + j(Y) = j(Y) \) thus, we have \(ay \in A \cap j(Y) \) or \(by \in A \cap j(Y) \) or \(ab \in [A \cap B + j(Y) : Y] \). So, \(A \cap B \) is a WN-2-Absorbing submodule of \(Y \).

Proposition 8

Let \(Y \) be an R-module, over a good ring and \(A, B \) are submodules of \(Y \), \(A \nsubseteq B \) and \(j(Y) \nsubseteq A \), if \(B \) is WN-2-Absorbing submodules of \(Y \), then \(A \cap B \) is WN-2-Absorbing submodules of \(A \).

Proof

Since \(A \nsubseteq B \), then \(A \cap B \) is a proper submodule of \(A \), let \(0 \neq aby \in A \cap B \), with \(a, b \in R, y \in Y \), then \(0 \neq aby \in A \) and \(0 \neq aby \in B \). Since \(B \) WN-2-Absorbing submodules of \(Y \), then either \(ay \in B + j(Y) \) or \(by \in B + j(Y) \) or \(ab \in [B + j(Y) : Y] \). That is either either \(ay \in (B + j(Y)) \cap A \) or \(by \in (B + j(Y)) \cap A \) or \(ab \in (B + j(Y)) \cap A \), hence by moduler law we have either \(ay \in A \cap B + j(A) \) or \(by \in A \cap B + j(A) \) or \(ab \in [A \cap B + j(A) : Y] \nsubseteq [A \cap B + j(A) : A] \), thus \(A \cap B \) is WN-2-Absorbing submodules of \(A \).

As a direct consequence of proposition 2.8, we get the following corollary

Corollary 9

Let \(Y \) be an R-module, over a good ring and \(A, B \) are submodules of \(Y \), \(A \nsubseteq B \) and \(A \) is a maximal submodule of \(Y \), if \(B \) is WN-2-Absorbing submodules of \(Y \), then \(A \cap B \) is WN-2-Absorbing submodules of \(A \).

Proposition 10

Let \(Y \) be an R-module, and \(A \) proper submodule of \(Y \). Then \(A \) is WN-2-Absorbing submodules of \(Y \) if and only if for each submodule \(B \) of \(Y \) with \([A : Y] \subseteq [A : B] \) and for each \(a, b \in R \) with \(0 \neq abB \subseteq A \), implies that either \(aB \subseteq A + j(Y) \) or \(bB \subseteq A + j(Y) \) or \(ab \in [A + j(Y) : Y] \).
Proof
Suppose that $0 \neq abB \subseteq A$ for each submodule B of Y and $a, b \in R$. then $0 \neq aby \in A$ for each submodule B of Y. It follows that either $ab \in A + j(Y)$ or $b \in A + j(Y)$ or $ab \in [A + j(Y), Y]$. That is either $ab \in A + j(Y)$ or $b \in A + j(Y)$ or $ab \in [A + j(Y), Y]$. Thus A is WN-2-Absorbing submodules of Y.

Conversely:

Proposition 11
Let Y be an R-module and A is a proper submodule of Y. If A is WN-2-Absorbing submodules of Y, then $S^{-1}A$ is WN-2-Absorbing submodules of an $S^{-1}R$-module $S^{-1}Y$, where S is a multiplicatively closed subset of R.

Proof
Let $0 \neq \frac{r_1}{s_1} \frac{r_2}{s_2} \frac{Y}{s_3} \in S^{-1}_A$, where $\frac{r_1}{s_1}, \frac{r_2}{s_2} \in S^{-1}_R$ and $\frac{Y}{s_3} \in S^{-1}Y$ with $r_1, r_2 \in R$, $s_1, s_2, s_3 \in S$, $y \in Y$. Then $0 \neq \frac{r_1 r_2 y}{t} \in S^{-1}_A$, where $t = s_1 s_2 s_3 \in S$, then there exists $t_1 \in S$ such that $0 \neq t_1 r_1 r_2 y \in A$. But A is WN-2-Absorbing submodules of Y, then either $t_1 r_1 y \in A + j(Y)$ or $t_1 r_2 y \in A + j(Y)$ or $t_1 r_1 r_2 \in [A + j(Y), Y]$. implies that $\frac{t_1 r_1 r_2 y}{t_1 s_1 s_2 s_3} \in S^{-1}_A + j(S^{-1}Y)$ or $\frac{t_1 r_2 y}{t_1 s_2 s_3} \in S^{-1} - A + j(S^{-1}Y)$. Thus either $\frac{r_1 y}{s_1} \in S^{-1}_A + j(S^{-1}Y)$ or $\frac{r_2 y}{s_2 s_3} \in S^{-1}_A + j(S^{-1}Y)$ or $\frac{r_1 r_2 y}{s_1 s_2 s_3} \in S^{-1}_A + j(S^{-1}Y) : Y$. Hence S^{-1}_A is WN-2-Absorbing submodules of an S^{-1}_R-module $S^{-1}Y$.

Proposition 12
Let $h : Y \to Y'$ be a small R-epimorphism and A is WN-2-Absorbing submodules of Y. If A is WN-2-Absorbing submodules of Y, then $h^{-1}(A)$ is WN-2-Absorbing submodules of Y.

Proof
It is clear that $h(A)$ is a proper submodule of Y', let $aby \in h(A)$, where $a, b \in R, y \in Y'$, then $h(y) = y$. for some $y \in Y$. thus $0 \neq abh(y) \in h(A)$, then $h(aby) = h(n)$ for some non-zero $n \in A$, since Ker A it follows that $0 \neq aby \in A$, but A is WN-2-Absorbing submodules of Y, then either $ay \in A + j(Y)$ or $by \in A + j(Y)$ or $ab \in [A + j(Y), Y]$. Thus either $ah(y) \in h(A) + h(j(Y))$ or $bh(y) \in h(A) + h(j(Y))$ or $abh(y) \subseteq h(A) + h(j(Y))$. hence $h(A)$ is WN-2-Absorbing submodules of of Y'.

Proposition 13
Let $h : Y \to Y'$ be a small R-epimorphism and A is WN-2-Absorbing submodules of Y, then $h^{-1}(A)$ is WN-2-Absorbing submodules of Y.

Proof
Let $0 \neq aby \in h^{-1}(A)$, where $a, b \in R, y \in Y$, with $ay \notin h^{-1}(A) + j(Y)$ and by $\notin h^{-1}(A) + j(Y)$. It follows that $ah(y) \notin h(h^{-1}(A) + j(Y)) = A + j(Y')$ and $bh(y) \notin h(h^{-1}(A) + j(Y)) = A + j(Y')$. Hence $h(A)$ is WN-2-Absorbing submodules of of Y'. Mathematics
+ j(Y) because h is a small epimorphism. We have \(0 \neq aby \in h^{-1}(A) \), implies that \(0 \neq abh(y) \in A \), but A is WN-2-Absorbing submodules of \(Y \), then \(ab \in [A + j(Y) : Y] \) that is \(abY \subseteq A + j(Y) \), implies that \(abh(y) \subseteq A + j(Y) \), hence \(abY \subseteq h^{-1}(A + j(Y)) \subseteq h^{-1}(A) + j(Y) \). Thus \(ab \in [h^{-1}(A) + j(Y) : Y] \).

3. WNS-2-Absorbing Submodules and Related Concept

This section devoted to introduce and study the concept of WNS -2-Absorbing submodules as a generalization of a weakly semi 2-absorbing submodule.

Definition 14

A proper submodule \(B \) of an \(R \)-module \(Y \) is said to be a WNS-2-Absorbing submodule of \(Y \), if whenever \(0 \neq a^2y \in B \), where \(a \in R \), \(y \in Y \), implies that either \(ay \in B + j(Y) \) or \(a^2 \in [B + j(Y) : Y] \). An ideal \(I \) of a ring \(R \) is called a WNS-2-Absorbing ideal if \(I \) is a WNS-2-Absorbing \(R \)-submodule of an \(R \)-module \(R \).

Remarks and Examples 15

1. It is clear that every weakly semi 2-absorbing submodule of an \(R \)-module \(Y \) is a WNS-2-Absorbing submodule of \(Y \) while the converse is not true.
2. In the \(Z \)-module \(Z_{16} \), the submodule \(B = \langle \bar{8} \rangle \) is a WNS-2-Absorbing submodule of \(Y \), but not weakly semi 2-absorbing since \(0 \neq 2^2 \bar{2} \in B \), but \(2, \bar{2} \not\in B \) and \(2 \not\in [B : Y] \).
3. If \(Y \) be an \(R \)-module, with \(j(Y) = 0 \), then a WNS-2-Absorbing submodule of \(Y \), equivalent with a weakly semi 2-absorbing submodule of \(Y \).
4. If \(Y \) is semi simple (regular) \(R \)-module, then a WNS-2-Absorbing submodule of \(Y \) and weakly semi 2-absorbing submodule of \(Y \) are equivalent.
5. If \(Y \) is a \(R \)-module, and \(B \) a proper submodule of \(Y \), with \(j(Y) \subseteq B \). Then \(B \) is a WNS-2-Absorbing submodule of \(Y \) if and only if \(B \) is a weakly semi 2-absorbing submodule of \(Y \).
6. If \(B \) is a proper submodule of \(Y \), with \(B + j(Y) \) is a WNS-2-Absorbing submodule of \(Y \), then \(B \) is a WNS-2-Absorbing submodule of \(Y \).

Proposition 16

Let \(Y \) be an \(R \)-module and \(B \) be a proper submodule of \(Y \). Then \(B + j(Y) \) is a WNS-2-Absorbing submodule of \(Y \) if and only if for each non-zero \(a \in R [B + j(Y) : a^2y] = [B + j(Y) : ay] \) or \(a^2 \in [B + j(Y) : Y] \).

Proof

\(\Rightarrow \) Suppose that \(a^2 \notin [B + j(Y) : Y] \), and let \(c \in [B + j(Y) : a^2y] \), implies that \(0 = a^2cy \in B + j(Y) \), but \(B + j(Y) \) is a WNS-2-Absorbing submodule of \(Y \) and \(a^2 \notin [B + j(Y) : Y] \), then \(acy \in B + j(Y) \), implies that \(c \in [B + j(Y) : ay] \). Thus \([B + j(Y) : a^2y] \subseteq [B + j(Y) : ay] \). Clearly \([B + j(Y) : ay] \subseteq [B + j(Y) : a^2y] \). Hence \([B + j(Y) : a^2y] = [B + j(Y) : ay] \).

\(\Leftarrow \) let \(0 \neq a^2y \in B + j(Y) \), where \(a \in R \), \(y \in Y \). By hypothesis, if \([B + j(Y) : a^2y] = [B + j(Y) : ay] \) and \(0 \neq a^2y \in B + j(Y) \), implies that \([B + j(Y) : a^2y] = R \) implies that \([B + j(Y) : ay] = R \), hence \(ay \in B + j(Y) \).
Proposition 17
Let Y be an R-module and A, B are submodules of Y, with A is a subset of B. If A is a WNS-2-Absorbing submodule of Y and $j(Y) \subseteq (B)$, then A is a WNS-2-Absorbing submodule of B.

Proof
Similarly as in proposition 2.4

Proposition 18
Let Y be an R-module over a good ring R and A, B are proper submodules of Y. If A is a WNS-2-Absorbing submodule of Y then A is a WNS-2-Absorbing submodule of B.

Proof
Let $0 \neq b^2y \in B$, for $b \in R$, $y \in B \subseteq Y$, it follows that either $by \in A + j(Y)$ or $b^2y \in (A + j(Y)) \cap B$, implies that by $by \in (A + j(Y)) \cap B$ or $b^2y \in (A + j(Y)) \cap B$ for each $y \in B$. Thus by modular law, by $by \in (A \cap B) + (j(Y) \cap B)$. But R is a good ring, then $j(Y) \cap B = j(B)$ and $A \cap B$ is a proper subset of A, hence either by $by \in A + j(B)$ or $b^2y \in A + (B)$ for each $y \in B$. Thus either by $by \in A + (B)$ or $b^2y \in [A + (B):B]$. Hence A is a WNS-2-Absorbing submodule of B.

Remark 19
The intersection of two WNS-2-Absorbing submodules of an R-module Y is not necessary WNS-2-Absorbing submodules of Y.
The following example explain that:

Proposition 20
Let Y be an R-module, and A, B are proper submodules of Y with $j(Y) \subseteq A$, or $j(Y) \subseteq B$, if A and B are WNS-2-Absorbing submodules of Y, then $A \cap B$ is a WNS-2-Absorbing submodule of Y.

Proof
Let $0 \neq r^2y \in A \cap B$, where $r \in R$, $y \in Y$, then $0 \neq r^2y \in A$ and $0 \neq r^2y \in B$, but both A and B are WNS-2-Absorbing submodules of Y then either $ry \in A + j(Y)$ or $r^2y \in (A + j(Y)) \cap B$, implies that $ry \in A + j(Y) \cap B$ or $r^2y \in (A + j(Y)) \cap B$, it follows that either $ry \in A \cap B + j(Y)$ or $r^2y \in (A \cap B + j(Y)) \cap B$, that is $ry \in A \cap B + j(Y)$ or $r^2y \in (A \cap B + j(Y)) : Y$. Hence $A \cap B$ is a WNS-2-Absorbing submodule of Y. Similarly if $j(Y) \subseteq A$, we get $A \cap B$ is a WNS-2-Absorbing submodule of Y.

Proposition 21
Let Y be an R-module, and A is a proper submodule of Y with $j(Y) \subseteq A$, if A is a WNS-2-Absorbing submodules of Y, then $[A : Y]$ is a WNS-2-Absorbing deal of R.
Proof
Since \(A \) is a WNS-2-Absorbing submodules of \(Y \), and \(j(Y) \subseteq A \), then by remarks and examples 15 (5), \(A \) a weakly semi 2-absorbing submodule of \(Y \), then by [2,prop. 4], [\(A:Y \)] is a weakly semi 2- absorbing ideal of \(R \), so by (1) [\(A:Y \)] is a WNS-2- Absorbing ideal of \(R \).

Proposition 22
Let \(Y \) be a cyclic \(R \)- module ,and \(A \) is a proper submodule of \(Y \) if [\(A:Y \)] is a WNS -2- Absorbing ideal of \(R \) with \(j(R) \subseteq [A:Y] \), then \(A \) is a WNS-2-Absorbing submodules of \(Y \).

Proof
Follows by remarks and examples 15(5)(1) and corollary [2, coro. 2.5].

Proposition 23
Let \(g:Y \rightarrow Y' \) be small \(R \)-epimorphism and \(A \) proper submodules of \(Y \), with \(\text{Ker}g \subseteq A \). If \(A \) is a WNS-2- Absorbing submodules of \(Y \), then \(g(A) \) is a WNS- 2- Absorbing submodules of \(Y' \).

Proof
Similarly, as in proposition 2.12.

Proposition 24
Let \(g:Y \rightarrow Y' \) be small \(R \)-epimorphism and \(A \) proper submodules of \(Y' \). If \(A' \) is a WNS-2 - Absorbing submodules of \(Y' \), then \(g^{-1}(A') \) is a WNS- 2- Absorbing submodules of \(Y \).

Proof
Similarly, as in proposition 2.13.

Proposition 25
Let \(Y \) be an \(R \)- module , and \(A \) is a proper submodule of \(Y \) if \(A \) is a WNS-2- Absorbing submodules of \(Y \), then \(S^{-1}A \) is is a WNS-2-Absorbing submodules of \(S^{-1}R \)- module \(S^{-1}Y \).

Proof
Similarly as in proposition 2.11

Proposition 26
Let \(Y \) be an \(R \)- module and \(A \) is a WN-2- Absorbing submodules of \(Y \),then \(A \) is a WNS- 2- Absorbing submodules of \(Y \).

Proof
Let \(0 \neq a^2y \in A \), where \(a \in R \), \(y \in Y \) that is \(0 \neq a,a y \in A \). Since \(A \) is a WN-2-Absorbing. Then either \(ay \in A + j(Y) \) or \(a^2 \in [A + j(Y):Y] \). Thus \(A \) is WNS-2-Absorbing submodules of \(Y \).

The converse of proposition 3.13 is not true. In general as the following examples shows that:
Example 27
Let $Y = Z \oplus Z$, $R = R$, $A = 15Z \oplus (0)$, A is WNS-2-Absorbing submodules of Y, but not is WN-2-Absorbing. Since $0 \neq 3.5(1,0) \in A$, but $3(1,0) \notin A + j(Y)$ and $5(1,0) \notin A + j(Y)$ and $3.5 \notin [A + j(Y) : Y] = (0)$.

References