Abstract

The objective of this paper is, first, study a new collection of sets such as δ–field and we discuss the properties of this collection. Second, introduce a new concepts related to the δ–field such as measure on δ–field, outer measure on δ–field and we obtain some important results deals with these concepts. Third, introduce the concept of null-additive on δ–field as a generalization of the concept of measure on δ–field. Furthermore, we establish new concept related to δ- field noted by weakly null-additive on δ–field as a generalizations of the concepts of measure on and null-additive. Finally, we introduce the restriction of a set function Ψ on δ–field and many of its properties and characterizations are given.

Keywords: σ–field, measure on σ–field, monotone measure, null-additive.

1. Introduction

The theory of measure is an important subject in mathematics. In 1972, Robret [1], discusses many details about measure and proves some important results in measure theory. The notion of σ–field was studied by Robret and Dietmar, where \mathbb{K} be a nonempty set. A collection \mathcal{G} is said to σ–field iff $\mathbb{K}\in\mathcal{G}$ and \mathcal{G} is closed under complementation and countable union [1, 2]. Zhenyuan and George in 2009 and Junhi, Radko and Endre in 2014 are used the concept of null-additive on σ–field, where \mathcal{G} be a σ–field, then a set function $\Psi:\mathcal{G}\to[-\infty,\infty]$ is called null-additive on \mathcal{G} if A, B are disjoint sets in \mathcal{G} and $\Psi(B) = 0$, then $\Psi(A\cup B) = \Psi(A)$ [3,4]. In 2016, Juha used the concept of σ–field to define measure, where \mathcal{G} be a σ–field, then a measure on \mathcal{G} is a set function $\Psi:\mathcal{G}\to[0,\infty]$ such that $\Psi(\emptyset) = 0$ and if A_1, A_2, \ldots form a finite or countably infinite collection of disjoint sets in \mathcal{G}, then $\Psi(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \Psi(A_n)$ [5]. and also used power set to define outer measure, where \mathbb{K} be a non-empty set, then a set function $\Psi:\mathcal{P}(\mathbb{K})\to[0,\infty]$ is called outer measure, if $\Psi(\emptyset) = 0$ and if $A, B \subseteq \mathbb{K}$ such that $A \subset B$, then $\Psi(A) \leq \Psi(B)$ and if A_1, A_2, \ldots are subsets of \mathbb{K}, then $\Psi(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \Psi(A_n)$ [5]. The concept of monotone measure was studied by Peipe, Minhao and Jun in 2018, where \mathcal{G} be a σ–field, then a set function $\Psi:\mathcal{G}\to[0,\infty]$ is called monotone measure, if $\Psi(\emptyset) = 0$ and if $A, B\in\mathcal{G}$ such that $A \subset B$, then $\Psi(A) \leq \Psi(B)$ [6].
The main aim of this paper is to introduce and study new concepts such as δ–field, measure on δ–field, outer measure on δ–field and null-additive on δ–field and we give basic properties, characterizations and examples of these concepts.

2. The Main Results

Let \mathcal{X} be a nonempty set. Then a collection of all subsets of a set \mathcal{X}, denoted by $\mathcal{P}(\mathcal{X})$, and it’s called a power set of \mathcal{X}.

Definition 1

Let \mathcal{X} be a nonempty set. A collection $\mathcal{F} \subseteq \mathcal{P}(\mathcal{X})$ is said to be δ–field of a set \mathcal{X} if the following conditions are satisfied:

1. $\Phi \in \mathcal{F}$.
2. If A is a nonempty set in \mathcal{F} and $A \subset B \subseteq \mathcal{X}$, then $B \in \mathcal{F}$.
3. If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

Proposition 2

For any δ–field \mathcal{F} of a set \mathcal{X}, the following hold:

1. $\mathcal{X} \in \mathcal{F}$.
2. If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
3. If $A_1, A_2, \ldots, A_n \in \mathcal{F}$, then $\bigcap_{i=1}^{n} A_i \in \mathcal{F}$.
4. If $A_1, A_2, \ldots, A_n \in \mathcal{F}$, then $\bigcup_{i=1}^{n} A_i \in \mathcal{F}$.
5. If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Proof

It is easy, so we omitted.

Example 3

Let $\mathcal{X} = \{1, 2, 3, 4\}$ and $\mathcal{F} = \{\Phi, \{1,2\}, \{1,2,3\}, \{1,2,4\}, \mathcal{X}\}$. Then \mathcal{F} is a δ–field of a set \mathcal{X}.

Definition 4

Let \mathcal{X} be a nonempty set and \mathcal{F} is a δ–field of a set \mathcal{X}. Then a pair $(\mathcal{X}, \mathcal{F})$ is called measurable space and any member of \mathcal{F} is called a measurable set.

Proposition 5

Let $(\mathcal{F}_i)_{i \in I}$ be a sequence of δ–field of a set \mathcal{X}. Then $\bigcap_{i \in I} \mathcal{F}_i$ is a δ–field of a set \mathcal{X}.

Proof

Since \mathcal{F}_i is δ–field $\forall i \in I$, then $\Phi, \mathcal{X} \in \mathcal{F}_i \forall i \in I$, hence $\mathcal{F}_i \neq \Phi \forall i \in I$ and $\bigcap_{i \in I} \mathcal{F}_i \neq \Phi$, therefore $\Phi, \mathcal{X} \in \bigcap_{i \in I} \mathcal{F}_i$. Let $A \in \bigcap_{i \in I} \mathcal{F}_i$ such that $\Phi \neq A \subset B \subset \mathcal{X}$, then $A \in \mathcal{F}_i \forall i \in I$, but $A \subset B$. So, we get $B \in \mathcal{F}_i \forall i \in I$, hence $B \in \bigcap_{i \in I} \mathcal{F}_i$. Let $A_1, A_2, \ldots \in \bigcap_{i \in I} \mathcal{F}_i$. Then $A_1, A_2, \ldots \in \mathcal{F}_i$, $\forall i \in I$ and $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}_i$, $\forall i \in I$ which is implies that $\bigcap_{i=1}^{\infty} A_i \in \bigcap_{i \in I} \mathcal{F}_i$. Hence $\bigcap_{i \in I} \mathcal{F}_i$ is a δ–field.

Definition 6

Let \mathcal{F} be a δ–field of a set \mathcal{X} and let K be a non-empty subset of \mathcal{X}. Then the restriction of \mathcal{F} on K is denoted by $\mathcal{F}|K$ and define as:

$\mathcal{F}|K = \{B: B = A \cap K, \text{ for some } A \in \mathcal{F}\}$.

Proposition 7

Let \mathcal{F} be a δ–field of a set \mathcal{X} and K be a non-empty subset of \mathcal{X} such that $K \in \mathcal{F}$. Then $\mathcal{F}|K = \{A \subseteq K: A \in \mathcal{F}\}$.

63
Proof

Let \(B \in \mathcal{A} \mid K \). Then \(B = A \cap K \), for some \(A \in \mathcal{A} \), hence \(B \in \mathcal{A} \). Therefore \(B \in \{ A \subseteq K : A \in \mathcal{A} \} \) and \(\mathcal{A} \mid K \subseteq \{ A \subseteq K : A \in \mathcal{A} \} \). Let \(C \in \{ A \subseteq K : A \in \mathcal{A} \} \). Then \(C \subseteq K \) and \(C \in \mathcal{A} \), hence \(C = C \cap K \), but \(\mathcal{A} \mid K \), then \(C \in \mathcal{A} \) which implies that \(\{ A \subseteq K : A \in \mathcal{A} \} \in \mathcal{A} \mid K \), therefore \(\mathcal{A} \mid K = \{ A \subseteq K : A \in \mathcal{A} \} \).

Corollary 8

Let \(\mathcal{A} \) be a \(\delta \)–field of a set \(\mathcal{K} \) and \(K \) a non-empty subset of \(\mathcal{K} \) such that \(K \in \mathcal{A} \). Then \(\mathcal{A} \mid K \subseteq \mathcal{A} \).

Proof

From Proposition 7, we have \(\mathcal{A} \mid K = \{ A \subseteq K : A \in \mathcal{A} \} \). Now, for any \(B \in \mathcal{A} \mid K \), then \(B \in \{ A \subseteq K : A \in \mathcal{A} \} \). Hence \(B \subseteq K \) and \(B \in \mathcal{A} \), therefore \(\mathcal{A} \mid K \subseteq \mathcal{A} \).

Proposition 9

Let \(\mathcal{A} \) be a \(\delta \)–field of a set \(\mathcal{K} \) and let \(K \) be a non-empty subset of \(\mathcal{K} \) such that \(K \in \mathcal{A} \). Then \(\mathcal{A} \mid K \) is a \(\delta \)–field of a set \(K \).

Proof

Since \(\mathcal{A} \) is a \(\delta \)–field of \(\mathcal{K} \), then \(\Phi \subseteq \mathcal{K} \). Since \(K \subseteq \mathcal{K} \), then \(\mathcal{A} = \mathcal{K} \cap \Phi \) and \(\mathcal{A} \mid K \subseteq \mathcal{A} \). Since \(\mathcal{A} = \Phi \cap K \), then \(\Phi \subseteq \mathcal{A} \mid K \). Let \(B \in \mathcal{A} \mid K \) such that \(\Phi \not\subseteq B \subseteq D \subseteq K \) Then \(B \in \mathcal{A} \). But \(B \subseteq D \subseteq K \subseteq \mathcal{K} \) and \(\mathcal{A} \) is a \(\delta \)–field of a set \(\mathcal{K} \), then \(D \in \mathcal{A} \). Now, \(D \subseteq K \) and \(D \in \mathcal{A} \), then \(D \in \mathcal{A} \mid K \). Let \(B_1, B_2, \ldots, \epsilon \mathcal{A} \mid K \). Then there exist \(A_1, A_2, \ldots, \epsilon \mathcal{A} \) such that \(B_1 = A_1 \cap K \) where \(i = 1, 2, \ldots \), now \(\bigcap_{i=1}^{\infty} B_i = (\bigcap_{i=1}^{\infty} A_i) \cap K \). But, \(\mathcal{A} \) is a \(\delta \)–field, then \(\bigcap_{i=1}^{\infty} A_i \in \mathcal{A} \). Hence \(\bigcap_{i=1}^{\infty} B_i \epsilon \mathcal{A} \mid K \). Therefore \(\mathcal{A} \mid K \) is a \(\delta \)–field of a set \(K \).

If we take Example 3 and if we assume that \(K = \{1, 2, 4\} \), then \(\mathcal{A} \mid K = \{ \Phi, \{1, 2\}, K \} \) is a \(\delta \)–field of a set \(K \) and \(\mathcal{A} \mid K \subseteq \mathcal{A} \).

Definition 10

Let \(\mathcal{A} \) be a \(\delta \)–field of a set \(\mathcal{K} \). A measure on \(\mathcal{A} \) is a set function \(\Psi : \mathcal{A} \rightarrow [0, \infty] \) such that \(\Psi(\Phi) = 0 \) and if \(C_1, C_2, \ldots \) form a finite or countably infinite collection of disjoint sets in \(\mathcal{A} \), then \(\Psi(\bigcup_{n=1}^{\infty} C_n) = \sum_{n=1}^{\infty} \Psi(C_n) \).

Example 11

Let \(\mathcal{A} \) be a \(\delta \)–field of a set \(\mathcal{K} \) and define \(\Psi : \mathcal{A} \rightarrow [0, \infty] \) by \(\Psi(C) = 0 \), for all \(C \in \mathcal{A} \). Then \(\Psi \) is a measure on \(\mathcal{A} \).

A measure space is a triple \((\mathcal{K}, \mathcal{A}, \Psi) \) where \(\mathcal{K} \) is a nonempty set and \(\mathcal{A} \) is a \(\delta \)–field of a set \(\mathcal{K} \) and \(\Psi \) is a measure on \(\mathcal{A} \).

Definition 12

Let \(\mathcal{A} \) be a \(\delta \)–field of a set \(\mathcal{K} \). A countably subadditive on \(\mathcal{A} \) is a set function \(\Psi : \mathcal{A} \rightarrow [0, \infty] \) such that \(\Psi(\Phi) = 0 \) and if \(C_1, C_2, \ldots \) are disjoint sets in \(\mathcal{A} \), then \(\Psi(\bigcup_{n=1}^{\infty} C_n) \leq \sum_{n=1}^{\infty} \Psi(C_n) \). If this requirement holds only for finite collection of disjoint sets in \(\mathcal{A} \), then \(\Psi \) is said to be finitely subadditive on a \(\delta \)–field \(\mathcal{A} \).

Definition 13

Let \(\mathcal{A} \) be a \(\delta \)–field of a set \(\mathcal{K} \). Then a set function \(\Psi : \mathcal{A} \rightarrow [0, \infty] \) is said to be monotone measure, if it satisfies the following requirements:

1. \(\Psi(\Phi) = 0 \).
2. If \(B \in \mathcal{A} \) and \(B \subseteq D \subseteq \mathcal{K} \), then \(\Psi(B) \leq \Psi(D) \).
Definition 14
Let \mathcal{F} be a δ–field of a set \mathfrak{X}. Then a set function $\Psi: \mathcal{F} \to [0, \infty]$ is called outer measure, if it satisfies the following requirements:

1- $\Psi(\Phi) = 0$.

2- If $B \in \mathcal{F}$ and $B \subseteq D \subseteq \mathfrak{X}$, then $\Psi(B) \leq \Psi(D)$.

3- If $C_1, C_2, \ldots \in \mathcal{F}$, then $\Psi(\bigcup_{n=1}^{\infty} C_n) \leq \sum_{n=1}^{\infty} \Psi(C_n)$.

Lemma 15
Let Ψ be an outer measure on δ–field \mathcal{F} of a set \mathfrak{X} and $t \in [0, \infty)$. If $t\Psi: \mathcal{F} \to [0, \infty]$ is defined by

\[(t\Psi)(A) = t \cdot \Psi(A) \quad \forall A \in \mathcal{F}, \]

then $(t\Psi)$ is an outer measure on \mathcal{F}.

Proof
Since Ψ is an outer measure on \mathcal{F} and $\Phi \in \mathcal{F}$, then $\Psi(\Phi) = 0$ and $(t\Psi)(\Phi) = 0$.

Let $B \in \mathcal{F}$ and $B \subseteq D \subseteq \mathfrak{X}$, then $D \in \mathcal{F}$ and $\Psi(D) \leq \Psi(D)$. Since

\[(t\Psi)(B) = t \cdot \Psi(B) \leq t \cdot \Psi(D) = (t\Psi)(D) \]

Let $C_1, C_2, \ldots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} C_n \in \mathcal{F}$.

So, we have

\[t \cdot \sum_{n=1}^{\infty} \Psi(C_n) = t \cdot \Psi(\bigcup_{n=1}^{\infty} C_n) \leq t \cdot \sum_{n=1}^{\infty} \Psi(C_n) \]

But, $t \cdot \sum_{n=1}^{\infty} \Psi(C_n) = \sum_{n=1}^{\infty} t \cdot \Psi(C_n) = \sum_{n=1}^{\infty} (t\Psi)(C_n)$. Therefore $t\Psi$ is an outer measure on \mathcal{F}.

Lemma 16
Let Ψ_1 and Ψ_2 be two outer measures on a δ–field \mathcal{F} of a set \mathfrak{X}. If $\Psi_1 + \Psi_2: \mathcal{F} \to [0, \infty]$ is defined by

\[(\Psi_1 + \Psi_2)(C) = \Psi_1(C) + \Psi_2(C), \forall C \in \mathcal{F}, \]

then $\Psi_1 + \Psi_2$ is an outer measure on \mathcal{F}.

Proof
Since Ψ_1 and Ψ_2 are outer measure on δ–field \mathcal{F} and $\Phi \in \mathcal{F}$, then $\Psi_1(\Phi) = \Psi_2(\Phi) = 0$ and

\[(\Psi_1 + \Psi_2)(\Phi) = 0. \]

Let $B \in \mathcal{F}$ and $B \subseteq D \subseteq \mathfrak{X}$, then $D \in \mathcal{F}$ and $\Psi_1(D) \leq \Psi_1(D)$ and $\Psi_2(D) \leq \Psi_2(D)$. So we have,

\[(\Psi_1 + \Psi_2)(B) = \Psi_1(B) + \Psi_2(B) \leq \Psi_1(D) + \Psi_2(D) = \Psi_1(D) + \Psi_2(D) = \Psi_1(D) + \Psi_2(D) \]

Let $C_1, C_2, \ldots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} C_n \in \mathcal{F}$. So, we have

\[\sum_{n=1}^{\infty} (\Psi_1 + \Psi_2)(C_n) = \sum_{n=1}^{\infty} \Psi_1(C_n) + \sum_{n=1}^{\infty} \Psi_2(C_n) \]

\[= \sum_{n=1}^{\infty} \Psi_1(C_n) + \sum_{n=1}^{\infty} \Psi_2(C_n) = \sum_{n=1}^{\infty} [\Psi_1(C_n) + \Psi_2(C_n)] \]

Therefore $\Psi_1 + \Psi_2$ is an outer measure on \mathcal{F}.

The proof of the following proposition consequence from Lemma (15 and 16) with mathematical induction.

Proposition 17
Let $\Psi_1, \Psi_2, \ldots, \Psi_n$ be outer measure on a δ–field \mathcal{F} of a set \mathfrak{X} and $t_i \in [0, \infty)$ for all $i = 1, 2, \ldots, n$. If a set function $\sum_{i=1}^{n} t_i \Psi_i: \mathcal{F} \to [0, \infty]$ is defined by

\[(\sum_{i=1}^{n} t_i \Psi_i)(C) = \sum_{i=1}^{n} t_i \Psi_i(C), \forall C \in \mathcal{F}, \]

then $\sum_{i=1}^{n} t_i \Psi_i$ is an outer measure on δ–field \mathcal{F}.

Proof
Since $t_i \in [0, \infty)$ and Ψ_i is an outer measure on a δ–field \mathcal{F} for all $i = 1, 2, \ldots, n$. Then by Lemma15 we get $t_i \Psi_i$ is an outer measure on a δ–field \mathcal{F}.
Let $\psi_i = t_i \psi_i \ \forall i = 1,2,\ldots,n$. Then we prove that $(\sum_{i=1}^{n} \psi_i)$ is an outer measure on \mathcal{F} by mathematical induction. If $n = 2$, then $\psi_1 + \psi_2$ is an outer measure on \mathcal{F} by Lemma 16. Suppose that $(\sum_{i=1}^{k} \psi_i)$ is an outer measure on \mathcal{F}, then we must prove that $(\sum_{i=1}^{k+1} \psi_i)$ is an outer measure on \mathcal{F}, whenever ψ_i is an outer measure on \mathcal{F} for all $i = 1,2,\ldots,k,k+1$. $(\sum_{i=1}^{k+1} \psi_i)(\Phi) = (\sum_{i=1}^{k} \psi_i + \psi_{k+1})(\Phi) = (\sum_{i=1}^{k} \psi_i)(\Phi) + \psi_{k+1}(\Phi)$

Let $B, D \in \mathcal{F}$ and $B \subset D$. Then $(\sum_{i=1}^{k} \psi_i)(B) \leq (\sum_{i=1}^{k} \psi_i)(D)$ and $\psi_{k+1}(B) \leq \psi_{k+1}(D)$.

$(\sum_{i=1}^{k+1} \psi_i)(B) = (\sum_{i=1}^{k} \psi_i)(B) + \psi_{k+1}(B) \leq (\sum_{i=1}^{k} \psi_i)(D) + \psi_{k+1}(D)$ since $(\sum_{i=1}^{k} \psi_i)$ and ψ_{k+1} are outer measure $= (\sum_{i=1}^{k} \psi_i + \psi_{k+1})(D) = (\sum_{i=1}^{k} \psi_i)(D) + \psi_{k+1}(D)$.

Therefore, $\sum_{i=1}^{k+1} t_i \psi_i$ is an outer measure on \mathcal{F}.

Definition 18

Let \mathcal{F} be a δ–field of a set \mathcal{K}. Then a set function $\Psi: \mathcal{F} \to [0,\infty]$ is called null-additive on \mathcal{F} iff C, D are disjoint sets in \mathcal{F} and $\Psi(D) = 0$, then $\Psi(C \cup D) = \Psi(C)$.

Example 19

Let $\mathcal{K} = \{1,2\}$ and $\mathcal{F} = \{ \Phi, \{1\}, \{2\}, \mathcal{K} \}$ and define $\Psi: \mathcal{F} \to [0,\infty]$ by:

$\Psi(C) = \begin{cases} 0 & \text{if } C = \Phi \\ 1 & \text{if } C \neq \Phi \end{cases}$. Then Ψ is a null-additive.

Proposition 20

Let \mathcal{F} be a δ–field of a set \mathcal{K}. Then every measure is null-additive.

Proof

Let Ψ be a measure on δ–field \mathcal{F} and let C, D are disjoint sets in \mathcal{F} and $\Psi(D) = 0$. Then $\Psi(C \cup D) = \Psi(C) + \Psi(D) = \Psi(C)$. Hence Ψ is a null-additive.

While the converse is not true and Example 19 indicate that Ψ is null-additive but not measure, because $\{1\}, \{2\}$ are disjoint sets in \mathcal{F} but $\Psi(\{1\} \cup \{2\}) \neq \Psi(\{1\}) + \Psi(\{2\})$.

Lemma 21

Let Ψ be a null-additive on a δ–field \mathcal{F} of a set \mathcal{K} and $t \in (0,\infty)$. If $t \Psi: \mathcal{F} \to [0,\infty]$ is defined by:

$(t \Psi)(C) = t \cdot \Psi(C) \ \forall C \in \mathcal{F}$, then $(t \Psi)$ is a null-additive on \mathcal{F}.

Proof

Let C, D be disjoint sets in \mathcal{F} such that $(t \Psi)(D) = 0$. Then $t \cdot \Psi(D) = 0$ and hence $\Psi(D) = 0$ since $t > 0$. Now, $(t \Psi)(C) = t \cdot \Psi(C)$

Therefore, $t \Psi$ is a null-additive on \mathcal{F}.
Lemma 22
Let Ψ_1 and Ψ_2 be two null-additives on a δ-field \mathcal{G} of a set \mathcal{X}. If $\Psi_1 + \Psi_2: \mathcal{G} \rightarrow [0, \infty]$ is defined by:
$$(\Psi_1 + \Psi_2)(C) = \Psi_1(C) + \Psi_2(C) \quad \forall C \in \mathcal{G},$$
then $\Psi_1 + \Psi_2$ is a null-additive on \mathcal{G}.

Proof
Let C, D be disjoint sets in \mathcal{G} such that $(\Psi_1 + \Psi_2)(D) = 0$. Then $\Psi_1(D) + \Psi_2(D) = 0$, hence $\Psi_1(D) = \Psi_2(D) = 0$ since Ψ_1 and Ψ_2 are null-additive on \mathcal{G}.

Now, $(\Psi_1 + \Psi_2)(C \cup D) = \Psi_1(C \cup D) + \Psi_2(C \cup D)$
$$= \Psi_1(C) + \Psi_2(C)$$
$$= (\Psi_1 + \Psi_2)(C).$$
Therefore, $\Psi_1 + \Psi_2$ is a null-additive on \mathcal{G}.

Proposition 23
Let $\Psi_1, \Psi_2, \ldots, \Psi_n$ be a null-additive on a δ-field \mathcal{G} of a set \mathcal{X} and $t_i \in (0, \infty)$ for all $k = 1, 2, \ldots, n$. If a set function $\sum_{k=1}^n t_k \Psi_k: \mathcal{G} \rightarrow [0, \infty]$ is defined by:
$$(\sum_{k=1}^n t_k \Psi_k)(C) = \sum_{k=1}^n t_k \Psi_k(C) \quad \forall C \in \mathcal{G},$$
then $\sum_{k=1}^n t_k \Psi_k$ is a null-additive on \mathcal{G}.

Proof
Since $t_k \in (0, \infty)$ and Ψ_k is null-additive on \mathcal{G} for all $k = 1, 2, \ldots, n$, then by Lemma 21, we get $t_k \Psi_k$ is null-additive on \mathcal{G} for all $k = 1, 2, \ldots, n$. Let $\Psi_k = t_k \Psi_k$

If $n = 2$, then $\Psi_1 + \Psi_2$ is a null-additive on \mathcal{G} by Lemma 22. Let C, D are disjoint sets in \mathcal{G} such that $(\sum_{k=1}^n \Psi_k)(D) = 0$. Then $\Psi_k(D) = 0$ for all $k = 1, 2, \ldots, n$.

$$(\sum_{k=1}^n \Psi_k)(C \cup D) = \sum_{k=1}^n \Psi_k(C \cup D)$$
$$= \Psi_1(C) + \cdots + \Psi_n(C)$$ since Ψ_k is a null-additive and $\Psi_k(D) = 0$, $\forall k$
$$= (\sum_{k=1}^n \Psi_k)(C).$$ Hence $\sum_{k=1}^n t_k \Psi_k$ is a null-additive on \mathcal{G}.

Definition 24
Let \mathcal{G} be a δ-field of a set \mathcal{X} and let $\Psi: \mathcal{G} \rightarrow [0, \infty]$ be a set function and $B \in \mathcal{G}$. If $\Psi_B: \mathcal{G} \rightarrow [0, \infty]$ is define by $\Psi_B(C) = \Psi(C \cap B)$ for all $C \in \mathcal{G}$, then Ψ_B is called B-restriction of Ψ.

Proposition 25
Let \mathcal{G} be a δ-field of a set \mathcal{X} and $B \in \mathcal{G}$. If Ψ is a measure on \mathcal{G}, then:

1. Ψ_B is a measure on \mathcal{G}.
2. $\Psi_B(C) = \Psi(C)$, whenever $C \subseteq B$.
3. $\Psi_B(C) = 0$, whenever C, B are disjoint sets in \mathcal{G}.

Proof

1. Since \mathcal{G} is a δ-field, then $\Phi \in \mathcal{G}$ and $\Psi(\Phi) = 0$. From definition of Ψ_B we get, $\Psi_B(\Phi) = \Psi(\Phi \cap B) = \Psi(\Phi) = 0$. Let C_1, C_2, \ldots are disjoint sets in \mathcal{G}, then $\cup_{n=1}^\infty C_n \in \mathcal{G}$. Since $B, C_n \in \mathcal{G} \quad \forall \quad n = 1, 2, \ldots$, then $C_n \cap B \in \mathcal{G}$ and hence $\cup_{n=1}^\infty (C_n \cap B) \in \mathcal{G}$. So, we have $\Psi_B(\bigcup_{n=1}^\infty C_n) = \sum_{n=1}^\infty \Psi((C_n \cap B))$
$$= \sum_{n=1}^\infty \Psi(C_n \cap B)$$
$$= \sum_{n=1}^\infty \Psi_B(C_n).$$ Therefore, Ψ_B is a measure on \mathcal{G}.

2. Since $C \subseteq B$, then $C \cap B = C$. So, we have $\Psi_B(C) = \Psi(C \cap B) = \Psi(C)$.

3. Since C, B are disjoint sets in \mathcal{G}, then $C \cap B = \Phi$ and $\Psi_B(C) = \Psi(C \cap B) = \Psi(\Phi) = 0$.

Proposition 26
Let \mathcal{G} be a δ–field of a set \mathcal{K} and $B \in \mathcal{G}$. If Ψ is an outer measure on \mathcal{G}, then Ψ_B is an outer measure on \mathcal{G}.

Proof
Since \mathcal{G} is a δ–field, then $\Phi \in \mathcal{G}$ and $\Psi(\Phi) = 0$. From definition of Ψ_B we get, $\Psi_B(\Phi) = \Psi(\Phi \cap B) = \Psi(\Phi) = 0$. Let $A \in \mathcal{G}$ and $A \subseteq C \subseteq \mathcal{K}$, then $A \cap B \subseteq C \cap B$ and each of C, $A \cap B$, $C \cap B \in \mathcal{G}$. Since Ψ is an outer measure on \mathcal{G}, then $\Psi(A \cap B) \leq \Psi(C \cap B)$. So, we have $\Psi_B(A) \leq \Psi_B(C)$. Let $C_1, C_2, \ldots \in \mathcal{G}$. Then $\bigcup_{n=1}^{\infty} C_n \in \mathcal{G}$ and $C_n \cap B \in \mathcal{G}$ for all $n=1, 2, \ldots$, hence $\bigcup_{n=1}^{\infty} (C_n \cap B) \in \mathcal{G}$. So, we have,

$$\Psi_B\left(\bigcup_{n=1}^{\infty} C_n \cap B \right) = \Psi\left(\bigcup_{n=1}^{\infty} (C_n \cap B) \right) \leq \sum_{n=1}^{\infty} \Psi(C_n \cap B) = \sum_{n=1}^{\infty} \Psi_B(C_n).$$

Therefore, Ψ_B is an outer measure on \mathcal{G}.

From Proposition 26, we conclude that if Ψ is a monotone measure on \mathcal{G}, then Ψ_B is a monotone measure on \mathcal{G}, where \mathcal{G} is a δ–field of a set \mathcal{K} and $B \in \mathcal{G}$.

Proposition 27
Let \mathcal{G} be a δ–field of \mathcal{K} and $B \in \mathcal{G}$. If Ψ is a null-additive on \mathcal{G}, then Ψ_B is a null-additive on \mathcal{G}.

Proof
Let A, C be disjoint sets in \mathcal{G} and $\Psi_B(C) = 0$. Then $\Psi(C \cap B) = 0$.

Now, $\Psi_B(A \cup C) = \Psi\left((A \cup C) \cap B \right) = \Psi\left((A \cap B) \cup (C \cap B) \right) = \Psi(A \cap B)$ since Ψ is a null-additive on \mathcal{G}

Hence, Ψ_B is a null-additive on \mathcal{G}.

Proposition 28
Let \mathcal{G} be a δ–field of \mathcal{K} and $B \in \mathcal{G}$. If Ψ is a measure on \mathcal{G}, then Ψ_B is a null-additive on \mathcal{G}.

Proof
It is easy, so we omitted.

Definition 29
Let \mathcal{G} be a δ–field of a set \mathcal{K} and $\Psi: \mathcal{G} \rightarrow [0, \infty]$ be a set function and \mathcal{K} be a non-empty subsets of \mathcal{G} such that $K \in \mathcal{G}$. If $\Psi|K: \mathcal{G}|K \rightarrow [0, \infty]$ is define by:

$$\Psi|K(A) = \Psi(A)$$

for all $A \in \mathcal{G}|K$, then $\Psi|K$ is called the restriction of Ψ on $\mathcal{G}|K$

Proposition 30
Let Ψ be a measure on δ–field \mathcal{G} of a set \mathcal{K} and $\Phi \neq K \subseteq \mathcal{K}$ such that $K \in \mathcal{G}$. Then $\Psi|K$ is a measure on a δ–field $\mathcal{G}|K$ of a set K.

Proof
Since \mathcal{G} is a δ–field of a set \mathcal{K}, then $\Phi \in \mathcal{G}$ and $\Psi(\Phi) = 0$. Since $\Phi \in \mathcal{G}|K$, then by definition of $\Psi|K$, we get $\Psi|K(\Phi) = \Psi(\Phi) = 0$. Let C_1, C_2, \ldots be disjoint sets in $\mathcal{G}|K$. Then $C_n \subseteq K$ and $C_n \in \mathcal{G}$ for all $n=1, 2, \ldots$, hence $\bigcup_{n=1}^{\infty} C_n \in \mathcal{G}|K$. So, we have

$$\Psi|K\left(\bigcup_{n=1}^{\infty} C_n \right) = \Psi\left(\bigcup_{n=1}^{\infty} C_n \right) = \sum_{n=1}^{\infty} \Psi(C_n)$$

since Ψ is a measure on \mathcal{G}

$$=\sum_{n=1}^{\infty} \Psi|K(C_n)$$

Therefore, $\Psi|K$ is a measure on a δ–field $\mathcal{G}|K$ of a set K. 68
If Ψ is an outer measure on δ–field \mathcal{Q} of a set \mathcal{K}, then we need the following two facts to prove that $\Psi|\mathcal{K}$ is an outer measure on a δ–field $\mathcal{Q}|\mathcal{K}$ of a set \mathcal{K}.

Lemma 31

Let Ψ be a monotone measure on δ–field \mathcal{Q} of a set \mathcal{K} and $\Phi \neq K \subseteq K$ such that $K \in \mathcal{Q}$. Then $\Psi|\mathcal{K}$ is a monotone measure on a δ–field $\mathcal{Q}|\mathcal{K}$ of a set \mathcal{K}.

Proof

Let Ψ be a monotone measure on \mathcal{Q}, then $\Psi(\Phi) = 0$. Since $\mathcal{Q}|\mathcal{K}$ is a δ–field, then $\Phi \in \mathcal{Q}|\mathcal{K}$. From definition of $\Psi|\mathcal{K}$, we get $\Psi|\mathcal{K}(\Phi) = \Psi(\Phi) = 0$.

Let $B \subseteq \mathcal{Q}|\mathcal{K}$ such that $B \subseteq C \subseteq K$, then $B \subseteq \mathcal{Q}$ and $B \subseteq C \subseteq K$. Since Ψ is a monotone measure on \mathcal{Q}, then $\Psi(B) \leq \Psi(C)$. But $B, C \in \mathcal{Q}|\mathcal{K}$, then $\Psi|\mathcal{K}(B) = \Psi(B)$ and $\Psi|\mathcal{K}(C) = \Psi(C)$, hence $\Psi|\mathcal{K}(B) \leq \Psi|\mathcal{K}(C)$ and $\Psi|\mathcal{K}$ is monotone measure on $\mathcal{Q}|\mathcal{K}$ of \mathcal{K}.

Lemma 32

Let Ψ be a countably subadditive on δ–field \mathcal{Q} of a set \mathcal{K} and $\Phi \neq K \subseteq K$ such that $K \in \mathcal{Q}$, then $\Psi|\mathcal{K}$ is a countably subadditive on a δ–field $\mathcal{Q}|\mathcal{K}$ of a set \mathcal{K}.

Proof

Let $C_1, C_2, \ldots \in \mathcal{Q}|\mathcal{K}$ and $C = \bigcup_{n=1}^{\infty} C_n$, then $C_1, C_2, \ldots \in \mathcal{Q}$ and $C \in \mathcal{Q}$. Since Ψ is a countably subadditive on \mathcal{Q}, then $\Psi(C) \leq \sum_{n=1}^{\infty} \Psi(C_n)$, but $C, C_1, C_2, \ldots \in \mathcal{Q}|\mathcal{K}$. So, we have $\Psi(C) = \Psi|\mathcal{K}(C)$ and $\Psi(C_n) = \Psi|\mathcal{K}(C_n)$ for all $n=1,2,\ldots$, hence $\Psi|\mathcal{K}(C) \leq \sum_{n=1}^{\infty} \Psi|\mathcal{K}(C_n)$ and $\Psi|\mathcal{K}$ is a countably subadditive on $\mathcal{Q}|\mathcal{K}$ of \mathcal{K}.

Proposition 33

Let Ψ be an outer measure on δ–field \mathcal{Q} of a set \mathcal{K} and $\Phi \neq K \subseteq K$ such that $K \in \mathcal{Q}$. Then $\Psi|\mathcal{K}$ is an outer measure on a δ–field $\mathcal{Q}|\mathcal{K}$ of a set \mathcal{K}.

Proof

Since Ψ is an outer measure on \mathcal{Q}, then Ψ is a monotone measure and countably subadditive. By Lemma 31 and Lemma 32 we have $\Psi|\mathcal{K}$ is a monotone measure and countably subadditive on $\mathcal{Q}|\mathcal{K}$ of \mathcal{K}. Therefore $\Psi|\mathcal{K}$ is an outer measure on $\mathcal{Q}|\mathcal{K}$ of \mathcal{K}.

Proposition 34

Let Ψ be a null-additive on δ–field \mathcal{Q} of a set \mathcal{K} and $\Phi \neq K \subseteq K$ such that $K \in \mathcal{Q}$. Then $\Psi|\mathcal{K}$ is a null-additive on δ–field $\mathcal{Q}|\mathcal{K}$.

Proof:

Let C, D be disjoint sets in $\mathcal{Q}|\mathcal{K}$ and $\Psi|\mathcal{K}(D) = 0$. Then $\Psi(D) = 0$.

Now, $\Psi|\mathcal{K}(C \cup D) = \Psi((C \cup D))$

$= \Psi(C)$ since Ψ is a null-additive on \mathcal{Q}

$= \Psi|\mathcal{K}(C)$ by definition of $\Psi|\mathcal{K}$.

Hence, $\Psi|\mathcal{K}$ is a null-additive on \mathcal{Q}.

3. Conclusions

The main results of this paper are the following:

1. Let \mathcal{K} be a nonempty set. A collection $\mathcal{Q} \subseteq P(\mathcal{K})$ is said to be δ–field of a set \mathcal{K} if the following conditions are satisfied:
 1. $\Phi \in \mathcal{Q}$.
 2. If A is a nonempty set in \mathcal{Q} and $A \subseteq B \subseteq K$, then $B \in \mathcal{Q}$.
 3. If $A_1, A_2, \ldots \in \mathcal{Q}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{Q}$.

2. Let $\{\mathcal{Q}_i\}_{i \in I}$ be a sequence of δ–field of a set \mathcal{K}. Then $\bigcap_{i \in I} \mathcal{Q}_i$ is a δ–field of a set \mathcal{K}.
(3) Let \mathcal{G} be a δ–field of a set \mathcal{X} and let K be a non-empty subset of \mathcal{X}. Then the restriction of \mathcal{G} on K is denoted by $\mathcal{G}|K$ and $\mathcal{G}|K = \{B: B= A \cap K, \text{ for some } A \in \mathcal{G}\}$.

(4) Let \mathcal{G} be a δ–field of a set \mathcal{X}. Then every measure is null-additive.

(5) Let $\Psi_1, \Psi_2, \ldots, \Psi_n$ be null-additive on a δ–field \mathcal{G} of a set \mathcal{X} and $t_i \in (0, \infty)$ for all $k = 1,2, \ldots, n$. If a set function $\sum_{k=1}^{n} t_k \Psi_k: \mathcal{G} \to [0, \infty]$ is defined by:

$$\left(\sum_{k=1}^{n} t_k \Psi_k\right)(C) = \sum_{k=1}^{n} t_k \Psi_k(C) \quad \forall C \in \mathcal{G},$$

then $\sum_{k=1}^{n} t_k \Psi_k$ is a null-additive on \mathcal{G}.

(6) Let \mathcal{G} be a δ–field of a set \mathcal{X} and $B \in \mathcal{G}$. If Ψ is a measure on \mathcal{G}, then:

1. Ψ_B is a measure on \mathcal{G}.
2. $\Psi_B(C) = \Psi(C)$, whenever $C \subseteq B$.
3. $\Psi_B(C) = 0$, whenever C, B are disjoint sets in \mathcal{G}.

(7) Let \mathcal{G} be a δ–field of a set \mathcal{X} and $B \in \mathcal{G}$. If Ψ is an outer measure on \mathcal{G}, then Ψ_B is an outer measure on \mathcal{G}.

(8) Let \mathcal{G} be a δ–field of \mathcal{X} and $B \in \mathcal{G}$. If Ψ is a null-additive on \mathcal{G}, then Ψ_B is a null-additive on \mathcal{G}.

(9) Let Ψ be a measure on δ–field \mathcal{G} of a set \mathcal{X} and $\Phi \neq K \subseteq \mathcal{X}$ such that $K \in \mathcal{G}$. Then $\Psi|K$ is a measure on a δ–field $\mathcal{G}|K$ of a set K.

(10) Let Ψ be a monotone measure on δ–field \mathcal{G} of a set \mathcal{X} and $\Phi \neq K \subseteq \mathcal{X}$ such that $K \in \mathcal{G}$. Then $\Psi|K$ is a monotone measure on a δ–field $\mathcal{G}|K$ of a set K.

References