Filter Bases and j-ω-Perfect Mappings

G. S. Ashaea, Y. Y. Yousif

Department of Mathematics, College of Education for Pure Sciences, Ibn Al-Haitham, University of Baghdad

gaidaasadoon@gmail.com, yoyayousif@yahoo.com

Article history: Received 25 March 2019, Accepted 26 May 2019, Publish September 2019

Doi:10.30526/32.3.2289

Abstract

This paper consist some new generalizations of some definitions such: j-ω-closure converge to a point, j-ω-closure directed toward a set, almost j-ω-converges to a set, almost j-ω-cluster point, a set j-ω-H-closed relative, j-ω-closure continuous mappings, j-ω-weakly continuous mappings, j-ω-compact mappings, j-ω-rigid a set, almost j-ω-closed mappings and j-ω-perfect mappings. Also, we prove several results concerning it, where $j \in \{\theta, \delta, \alpha, pre, b, \beta\}$.

Keywords: Filter base, j-ω-closure converge, almost j-ω-converges, almost j-ω-cluster, j-ω-rigid a set, j-ω-perfect mappings.

Math Subject Classification 2010: 54C05, 54C08, 54C10.

1. Introduction

The notion "filter" first commence in Riesz [1] and the setting of convergence in terms of filters sketched by Cartan in [2, 3]. And was sophisticatedly by Bourbaki in [4]. Whyburn in [5]. Introduces the notion directed toward a set and the generalization of this notion studied in Section 2. Dickman and Porter in [6]. Introduce the notion almost convergence, Porter and Thomas in [7]. introduce the notion of quasi-H-closed and the analogues of this notions are studied in Section 3. Levine in [8]. Introduce the notion θ-continuous functions, Andrew and Whittlesy in [9]. Introduce the notion weakly θ-continuous functions, in Dickman [6]. Introduce the notions θ-compact functions, θ-rigid a set, almost closed functions and the analogues of this notions are studied in Section 4. In [5]. The researcher introduces the notion of θ-perfect functions but the analogue of this notion studied in Section 5. The neighborhood denoted by nbd. The closure (resp. interior) of a subset K of a space G denoted by $\text{cl} (K)$ (resp., $\text{int}(K)$). A point g in G is said to be condensation point of $K \subseteq G$ if every S in τ with $g \in S$, the set $K \cap S$ is uncountable [10]. In 1982 the ω-closed set was first exhibiting by Hdeib in [10]. and he know it a subset $K \subseteq G$ is called ω-closed if it incorporates each its condensation points and the ω-open set is the complement of the ω-closed set [12]. The ω-interior of the set $K \subseteq G$ defined as the union of all ω-open sets contain in K and is denoted by $\text{int}_{\omega}(K)$. A point $g \in G$ is said to θ-cluster points of $K \subseteq G$ if $\text{cl}(S) \cap K \neq \emptyset$ for each open set S. 165
of G containment g. The set of each θ-cluster points of K is called the θ-closure of K and is denoted by $\text{cl}(K)$. A subset $K \subseteq G$ is said to be \theta-closed [11], if $K = \text{cl}(K)$. The complement of \theta-closed set said to be \theta-open. A point $g \in G$ said to θ-o-cluster points of $K \subseteq G$ if $\omega \text{cl}(S) \cap K \neq \emptyset$ for each ω-open set S of G containment g. The set of each θ-o-cluster points of K is called the θ-o-closure of K and is denoted by $\omega \text{cl}(K)$. A subset $K \subseteq G$ is said to be θ-o-closed [11], if $K = \omega \text{cl}(K)$. The complement of θ-o-closed set said to be θ-o-open, δ-closed [12], if $K = \text{cl}(K) = \{g \in G : \text{int}(\text{cl}(S)) \cap K \neq \emptyset, S \in \tau \text{ and } g \in S\}$. The complement of δ-closed said δ-open set, δ-o-closed if $K = \omega \text{cl}(K) = \{g \in G : \text{int}(\text{cl}(S)) \cap K \neq \emptyset, S \in \tau \text{ and } g \in S\}$. The complement of δ-o-closed said δ-o-open.

2. Filter

In this section we introduce definition of filter, filter base, nbd filter, finer ultrafilter and some other related concepts.

Definition 1 [4].

A nonempty family \mathcal{J} of nonempty subsets of G called filter if it satisfies the following conditions:

(a) If $M_1, M_2 \in \mathcal{J}$, then $M_1 \cap M_2 \in \mathcal{J}$.

(b) If $M \in \mathcal{J}$ and $M \subseteq M^* \subseteq G$, then $M^* \in \mathcal{J}$.

Definition 2 [4].

A nonempty family \mathcal{J} of nonempty subsets of G is called filter base if $M_1, M_2 \in \mathcal{J}$ then $M_3 \subseteq M_1 \cap M_2$ for some $M_3 \in \mathcal{J}$.

The filter generated by a filter base \mathcal{J} consists of all supersets of elements of \mathcal{J}. An open filter base on a space G is a filter base with open members. The set \mathcal{N}_g of all nbds of $g \in G$ is a filter on G, and any nbd base at g is a filter base for \mathcal{N}_g. This filter called the nbd filter at g.

Definition 3 [4].

Let \mathcal{J} and \mathcal{Y} be filter bases on G. Then \mathcal{Y} is called finer than \mathcal{J} (written as $\mathcal{J} < \mathcal{Y}$) if for all $M \in \mathcal{J}$, there is $G \in \mathcal{Y}$ such that $G \subseteq M$ and that \mathcal{J} meets G if $M \cap G \neq \emptyset$ for all $M \in \mathcal{J}$ and $G \in \mathcal{Y}$. Notice, $\mathcal{J} \rightarrow g$ iff $\mathcal{N}_g < \mathcal{J}$.

Definition 4 [4].

A filter \mathcal{J} is called an ultrafilter if there is no strictly finer filter \mathcal{Y} than \mathcal{J}. The ultrafilter is the maximal filter.

Definition 5 [13].

A subset K of a space G called:

(a) α-o-open if $K \subseteq \text{int}_G(\text{int}_G(K))$.

(b) β-o-open if $K \subseteq \text{int}_G(\text{cl}(K))$.

(c) β-o-closed if $K \subseteq \text{cl}(\text{int}_G(K)) \cup \text{int}_G(\text{cl}(K))$.

(d) β-o-closed if $K \subseteq \text{cl}(\text{int}_G(\text{cl}(K)))$.

The complement of an (resp. α-o-open, β-o-open, β-o-closed, β-o-closed) called (resp. α-o-closed, β-o-closed, β-o-closed, β-o-closed).

The j-o-closure of $K \subseteq G$ is denoted by $\text{cl}_j(K)$ and defined by $\text{cl}_j(K) = \bigcap\{M \subseteq G; G$ is j-o-closed and $K \subseteq M\}$, where $j \in \{\emptyset, \delta, \alpha, \beta, \emptyset, \delta, \alpha, \beta\}$. Several characterizations of ω-closed sets were provided in [11, 13-16]. Furthermore, we built some results about δ-o-closed and δ-o-open depending on the results in [17-19].
3. Filter Bases and j-ω-Closure Directed toward a Set

In this section we defined filter bases and j-ω-closure directed toward a set and the some theorems concerning of them.

Lemma 6 [15].

Let $\lambda : (G, \tau) \rightarrow (H, \sigma)$ be an injective mapping.

(a) If $\mathfrak{F} = \{M : M \subseteq G\}$ is a filter base in G, then $\lambda(\mathfrak{F}) = \{\lambda(M) : M \in \mathfrak{F}\}$ is a filter base in H.

(b) If $\varnothing = \{G ; G \subseteq \lambda(G)\}$ is a filter base in $\lambda(G)$, then $\lambda^{-1}(\varnothing) : G \in \varnothing$ is a filter base in G.

For each $\phi \neq K \subseteq G$ and any filter base \varnothing in $\lambda(K)$, then $\{K \cap \lambda^{-1}(\varnothing) : G \in \varnothing\}$ is a filter base in K.

(c) If $\mathfrak{F} = \{M : M \subseteq G\}$ is a filter base in G, $\varnothing = \{\lambda(M) : M \in \mathfrak{F}\}$, G^\ast is finer than G, and $\mathfrak{F}^\ast = \{\lambda^{-1}(G^\ast) : G^\ast \in \varnothing\}$, then the collection of sets $\mathfrak{F}^{\ast\ast} = \{M \cap M^\ast \text{ for all } M \in \mathfrak{F} \text{ and } M^\ast \in \mathfrak{F}^{\ast}\}$ is finer than both of \mathfrak{F} and \mathfrak{F}^{\ast}.

Definition 7 [4].

Let \mathfrak{F} be a filter base on a space G. We say that \mathfrak{F} converges to $g \in G$ (written as $\mathfrak{F} \rightarrow g$) iff each open set S about g contains some element $M \in \mathfrak{F}$. We say \mathfrak{F} has g as a cluster point (or \mathfrak{F} cluster at g) iff each open set S about g meets all element $M \in \mathfrak{F}$. Clear that if $\mathfrak{F} \rightarrow g$, then \mathfrak{F} cluster at g.

Definition 8 [15].

Let \mathfrak{F} be a filter base on a space G. We say that \mathfrak{F} directed toward (shortly, dir-τ) $G\cap h$ if and only if \mathfrak{F} is finer than \mathfrak{F} has a cluster point in K. (Note: Any filter base can't be dir-τ the empty set).

Now, we will generalizations Definitions 7 and 8 as follows.

Definition 9

Let \mathfrak{F} be a filter base on a space G. We say that \mathfrak{F} closure converges to $g \in G$ (written as $\mathfrak{F} \rightarrow g$) iff all open set S about g the $\text{cl}(S)$ contains some element $M \in \mathfrak{F}$. We say \mathfrak{F} has g as a closure cluster point (or \mathfrak{F} closure cluster at g) iff all open set S about g the $\text{cl}(S)$ meets all element $M \in \mathfrak{F}$.

Clear that if $\mathfrak{F} \rightarrow g$, then \mathfrak{F} closure cluster at g. $\text{cl}(\mathfrak{F}_g)$ used to denote the filter base $\{\text{cl}(S) : S \in \mathfrak{F}_g\}$. Notice, $\mathfrak{F} \rightarrow g$ if and only if $\text{cl}(\mathfrak{F}_g) \rightarrow \mathfrak{F}$. [10].

Definition 10

Let \mathfrak{F} be a filter base on a space G. We say that \mathfrak{F} closure directed toward (shortly, cl $\text{dir-} \tau$) $G\cap h$ if and only if \mathfrak{F} has a closure cluster point in K.

Theorem 11

Let \mathfrak{F} be a filter base on a space G. $\mathfrak{F} \rightarrow g \in G$ if and only if \mathfrak{F} is cl $\text{dir-} \tau$ g.

Proof: (\Rightarrow) Assume $\mathfrak{F} \rightarrow g$, all open set S about g, cl(S) contains an element of \mathfrak{F} and thus contains an element of every filter base $\mathfrak{F}^\ast < \mathfrak{F}$, therefore \mathfrak{F}^\ast actually closure converges to g.

(\Leftarrow) Assume \mathfrak{F} is cl $\text{dir-} \tau$ g, it must $\mathfrak{F} \rightarrow g$. For if not, yond is an open set S in G about g such that $\text{cl}(S)$ don't contains an element of \mathfrak{F}. Denote by \mathfrak{F}^\ast the collection of sets $M^\ast = M \cap (G - \text{cl}(S))$ for $M \in \mathfrak{F}$, then the sets M^\ast are nonempty. And \mathfrak{F}^\ast is a filter base and indeed $\mathfrak{F}^\ast < \mathfrak{F}$, because result in $M_1^\ast = M_1 \cap (G - \text{cl}(S))$ and $M_2^\ast = M_2 \cap (G - \text{cl}(S))$, so there is an $M_3 \subseteq M_1 \cap M_2$ and this perform to

$$M_3^\ast = M_3 \cap (G - \text{cl}(S)) \subseteq M_1 \cap M_2 \cap (G - \text{cl}(S))$$

$$= M_1 \cap (G - \text{cl}(S)) \cap M_2 \cap (G - \text{cl}(S)).$$
By construction, \(g \) is not a closure cluster point of \(\mathfrak{Z}^* \). This contradiction crops that, \(\mathfrak{Z} \sim \sim g \).

Theorem 12

Let \(\lambda : (G, \tau) \to (H, \sigma) \) be an injective mapping and given \(L \subseteq H \). If for each filter base \(\wp \) in \(\lambda(G) \) cl dir. - tow \(a \) point \(h \in L \), the inverse filter \(\mathcal{M} = \{ \lambda^{-1}(G) : G \in \wp \} \) is cl dir. - tow \(\lambda^{-1}(h) \), then for any filter base \(\mathfrak{Z} \) in \(\lambda(G) \) cl dir. - tow a set \(L \), \(\mathcal{E} = \{ \lambda^{-1}(M) : M \in \mathfrak{Z} \} \) is cl dir. - tow \(K = \lambda^{-1}(L) \).

Proof: Suppose that the hypothesis is true and any \(h \in L \) is a closure cluster point of a filter base finer than \(\mathfrak{Z} \) must be in \(\lambda(G) \). Thus \(L \cap \lambda(G) \neq \emptyset \), and \(\mathfrak{Z} \) is cl dir. - tow \(L \cap \lambda(G) \). So we may assume \(L \subseteq \lambda(G) \). Let \(\mathcal{M} \) be a filter base finer than \(\mathcal{E} \). Then \(\wp = \{ (\lambda(m) : m \in \mathcal{M} \} \) finer than \(\mathfrak{Z} \) by Lemma (6, a). So \(\wp \) has a closure cluster point \(l \) in \(L \) and a filter base \(\wp^* \) finer than \(\wp \) closure converges to \(l \) and so is cl dir. - tow \(l \). By supposition \(\mathcal{M}^* = \{ \lambda^{-1}(G^*) : G^* \in \wp^* \} \) is cl dir. - tow \(\lambda^{-1}(l) \). In addition, by Lemma (6, c), \(\mathcal{M} \) and \(\mathcal{M}^* \) have a common filter base \(\mathcal{M}^* \) finer than \(\mathfrak{Z} \). So \(\mathcal{M}^* \) has a closure cluster point \(g \) in \(\lambda^{-1}(l) \). Since \(g \) is a closure cluster point of \(\mathcal{M} \) and \(g \in \lambda^{-1}(l) \subseteq K \), obtain result follows.

Theorem 13

Let \(\lambda : G \to H \) be closed mapping and \(\lambda^{-1}(h) \) compact for every \(h \in H \) iff for every filter base \(\mathfrak{Z} \) in \(\lambda(G) \) cl dir. - tow a set \(L \subseteq H \), the collection \(\mathcal{E} = \{ \lambda^{-1}(M) : M \in \mathfrak{Z} \} \) is cl dir. - tow \(\lambda^{-1}(L) \).

Proof: \((\Rightarrow) \) Suppose that \(\lambda \) is closed mapping and \(\lambda^{-1}(h) \) compact for every \(h \in H \). Then by Theorem 11 and 12 it suffices to prove that if \(\wp \) is a filter base in \(\lambda(G) \) j-\(\omega \)-closure converging to \(h \in L \), then \(\mathcal{M} = \{ \lambda^{-1}(G) : G \in \wp \} \) is cl dir. - tow \(\lambda^{-1}(h) \). In order to if not, yond is a filter base \(\mathcal{M}^* \) finer than \(\mathcal{M} \), no point of \(\lambda^{-1}(h) \) is a j-\(\omega \)-closure cluster point of \(\mathcal{M}^* \). For all \(g \in \lambda^{-1}(h) \), by supposition yond is an open set \(S_g \) about \(g \) and \(\mathcal{M}_g^* \subseteq \mathcal{M}^* \) with \(\mathcal{M}_g^* \cap S_g \neq \emptyset \). Since \(\lambda^{-1}(h) \) is compact, yond are a finite numbers of open sets \(S_g \) such that \(\lambda^{-1}(h) \subseteq S = \cup S_g \), suppose \(m^* \subseteq \mathcal{M}^* \) such that \(m^* \subseteq \cap m_e^* \) and let \(T = H - \lambda(G - S) \) be the open set. Then \(\lambda(m^*) \cap T = \emptyset \) because of \(m^* \subseteq G - \text{cl}(S) \). So since \(\lambda(m^*) \in \wp^* \), \(\wp^* \) cannot have \(h \) as a closure cluster point.

\((\Leftarrow) \) Suppose that the hypothesis is true and \(\lambda \) is not closed. Let \(K \subseteq G \) be a closed set and for some \(h \in H - \lambda(K) \) is a closure cluster point of \(\lambda(K) \). Suppose \(\wp \) be a filter base of sets \(\lambda(K) \cap T \) for every open sets \(T \subseteq H \) such that \(h \in T \), then \(\wp \) is a filter base in \(\lambda(G) \) and \(\wp \sim \sim h \). Let \(\mathcal{M} = \{ \lambda^{-1}(G) : G \in \wp \} \) and \(\mathcal{M}^* = \{ K \cap m : m \in \mathcal{M} \} \). It apparent that \(\mathcal{M}^* \ll \mathcal{M} \).

Nevertheless, \(G - K \) is open and \(\lambda^{-1}(h) \subseteq G - K \), \(\mathcal{M}^* \) has no closure cluster point in \(\lambda^{-1}(h) \). The contradiction crops that \(\lambda \) is a closed mapping. Finally, to prove \(\lambda^{-1}(h) \) is compact, this is easy for \(h \in H - \lambda(G) \). And for \(h \in \lambda(G) \), \(\{ h \} \) is a filter base in \(\lambda(G) \) cl dir. - tow \(h \). By supposition, \(\{ \lambda^{-1}(h) \} \) cl dir. - tow \(\lambda^{-1}(h) \). This means that every filter base in \(\lambda^{-1}(h) \) has a closure cluster point in \(\lambda^{-1}(h) \), so that \(\lambda^{-1}(h) \) is compact.

Corollary 14

Let \(\lambda : G \to H \) be closed mapping and \(\lambda^{-1}(h) \) compact for every \(h \in H \) if and only if each filter base in \(\lambda(G) \sim h \in H \) has pre-image filter base cl dir. - tow \(\lambda^{-1}(h) \).
Corollary 15
Let \(\lambda : G \rightarrow H \) be closed mapping and \(\lambda^{-1}(h) \) compact for every \(h \in Y \), for every compact set \(W \subseteq H, \lambda^{-1}(W) \) is compact.

Proof. Let \(W \subseteq H \) be a compact set and \(\mathcal{F} \) is a filter base in \(\lambda^{-1}(W) \), \(\mathcal{W} = \{ \lambda(M) : M \in \mathcal{F} \} \), is a filter base in \(W \) and in \(\lambda(G) \) and is cl dir. tow \(W \). So \(\mathcal{F}^* = \{ \lambda^{-1}(G) : G \in \mathcal{W} \} \) is cl dir. tow \(\lambda^{-1}(W) \), so that \(\mathcal{F}^* \prec \mathcal{F} \) and \(\mathcal{F}^* \) has a closure cluster point in \(\lambda^{-1}(W) \).

4. Filter Bases and Almost \(j_{\omega} \)-Convergence
In this section, we defined filter bases, almost \(j_{\omega} \)-closure, and the some theorems about them. We now introduce the definition of almost \(j_{\omega} \)-closure, where \(j \in \{ \theta, \delta, \alpha, \pre, b, \beta \} \).

Definition 16
Let \(\mathcal{F} \) be a filter base on a space \(G \). We say \(\mathcal{F} \) almost \(j_{\omega} \)-converges to a subset \(K \subseteq G \) (written as \(\mathcal{F}_{j_{\omega}} \sim K \)) if for each cover \(\mathcal{K} \) of \(K \) by subsets open in \(G \), there is a finite subfamily \(\mathcal{L} \subseteq \mathcal{K} \) and \(M \in \mathcal{F} \) such that \(M \subseteq \cup \{ \text{cl}(L) : L \in \mathcal{L} \} \). We say \(\mathcal{F} \) almost \(j_{\omega} \)-converges to \(g \in G \) (written as \(\mathcal{F}_{j_{\omega}} \sim g \)) if \(\mathcal{F}_{j_{\omega}} \sim \{ g \} \). Now, \(\text{cl}(\mathcal{N}_g) \sim g \), while, \(j_{\omega} \text{ cl}(\mathcal{N}_g) j_{\omega} \sim g \), where \(j \in \{ \theta, \delta, \alpha, \pre, b, \beta \} \).

Also, we introduce the definitions of almost \(j_{\omega} \)-cluster point, and quasi \(j_{\omega} \)-H-closed set where \(j \in \{ \theta, \delta, \alpha, \pre, b, \beta \} \).

Definition 17
A point \(g \in G \) is called an almost \(j_{\omega} \)-cluster point of a filter base \(\mathcal{F} \) (written as \(g \in (\alpha j_{\omega}c_{(g)}\mathcal{F}) \)) if \(\mathcal{F} \) meets \(\text{cl} j_{\omega}(\mathcal{N}_g) \), where \(j \in \{ \theta, \delta, \alpha, \pre, b, \beta \} \).

For a set \(K \subseteq G \), the almost \(j_{\omega} \)-closure of \(K \), denoted as \((\alpha j_{\omega}\text{ cl}(K)) \) is \(\alpha j_{\omega}c_{(g)} \{ K \} \) if \(K \neq \phi \) i.e. \(\{ g \in G : \text{every j}_{\omega}-\text{closed nbd of g meets K} \} \) and is \(\phi \) if \(K = \phi \); \(K \) is almost \(j_{\omega} \)-closed if \(K = (\alpha j_{\omega}\text{ cl}(K)) \). Correspondingly, the almost \(j_{\omega} \)-interior of \(K \), denoted as \((\alpha j_{\omega}\text{-int}(K)) \), is \(\{ g \in G : \text{cl} j_{\omega}(S) \subseteq K \text{ for some open set S containing g} \} \); \(K \) is almost \(j_{\omega} \)-interior if \(K = (\alpha j_{\omega}\text{-int}(K)) \), where \(j \in \{ \theta, \delta, \alpha, \pre, b, \beta \} \).

Theorem 18
Let \(\mathcal{F} \) and \(\varnothing \) be filter bases on a space \(G, K \subseteq G \) and \(g \in G \).

(a) If \(\mathcal{F}_{j_{\omega}} \sim k \), then \(\text{cl} j_{\omega}(\mathcal{N}_k) < \mathcal{F} \).

(b) If \(\mathcal{F}_{j_{\omega}} \sim g \), iff \(\text{cl} j_{\omega}(\mathcal{N}_g) < \mathcal{F} \).

(c) If \(\mathcal{F} < \varnothing \), then \((\alpha j_{\omega}c_{(g)}\varnothing) < (\alpha j_{\omega}c_{(g)}\mathcal{F}) \).

(d) If \(\mathcal{F} < \varnothing \) and \(\mathcal{F}_{j_{\omega}} \sim K \), then \(\varnothing j_{\omega} < K \).

(e) \((\alpha j_{\omega}c_{(g)}\mathcal{F}) = \cap \{ \text{cl} j_{\omega}(M) : M \in \mathcal{F} \} \).

(f) If \(\mathcal{F}_{j_{\omega}} \sim g \) and \(g \in K \), then \(\mathcal{F}_{j_{\omega}} \sim K \).

(g) If \(\mathcal{F}_{j_{\omega}} \sim K \) iff \(\mathcal{F}_{j_{\omega}} \sim K \cap (\alpha j_{\omega}c_{(g)}\mathcal{F}) \).

(h) If \(\mathcal{F}_{j_{\omega}} \sim K \), then \(K \cap (\alpha j_{\omega}c_{(g)}\mathcal{F}) \neq \varnothing \).

(i) If \(S \subseteq G \) is open, then \((\alpha j_{\omega}\text{cl}(S)) = \text{cl}(S) \).

(j) If \(\mathcal{F} \) is an open filter base, then \((\alpha j_{\omega}\text{cl}\mathcal{F}) = (\alpha j_{\omega}c_{(g)}\mathcal{F}) \).

If \(S \) is an open ultrafilter on \(G \). Then \(S \sim g \) if and only if \(S_{j_{\omega}} \sim g \), where \(j \in \{ \theta, \delta, \alpha, \pre, b, \beta \} \).

Proof: The proof is easy, so it omitted.
Definition 19
The subset K of a space G is said to be quasi j-ω-H-closed relative to G if every cover \mathcal{K} of K by open subsets of G contains a finite subfamily $L \subseteq K$ such that $K \subseteq \cup \{j\text{-}\omega\text{-}(L) : L \in \mathcal{B}\}$. If G is Hausdorff, we say that K is j-ω-H-closed relative to G. If G is quasi- j-ω-H-closed relative to itself, then G is said to be quasi- j-ω-H-closed (resp. j-ω-H-closed), where $j \in \{\emptyset, \delta, \alpha, \text{pre}, b, \beta\}$.

Theorem 20
The following are equivalent for a subset $K \subseteq G$:
(a) K is quasi-j-ω-H-closed relative to G.
(b) For every filter base \mathfrak{F} on K, $\mathfrak{F}_{j\omega} \leadsto K$.
(c) For all filter base \mathfrak{F} on K, $(al$- j-ω-$c_{\mathfrak{F}}) \cap K \neq \emptyset$. Where $j \in \{\emptyset, \delta, \alpha, \text{pre}, b, \beta\}$.

Proof: Clearly (a) \Rightarrow (b), and by Theorem (18, h), (b) \Rightarrow (c). To show (c) \Rightarrow (a), let \mathcal{K} be a cover of K by open subsets of G such that the j-ω-closed of the union of any finite subfamily of \mathcal{K} is not cover K. Then $\mathfrak{F} = \{K - \text{cl}_{j\omega}(\cup \mathfrak{F}_{j\omega}) : k \text{ is finite subfamily of } \mathcal{K}\}$ is a filter base on K and $(al$- j-ω-$c_{\mathfrak{F}}) \cap K = \emptyset$. This contradiction crop s that K is quasi- j-ω-H-closed relative to G, where $j \in \{\emptyset, \delta, \alpha, \text{pre}, b, \beta\}$.
By concepts of closure directed toward a set, almost j-ω-convergence characterized and related in the next result.

Theorem 21
Let \mathfrak{F} be a filter base on a space G and $K \subseteq G$. Then:
(a) \mathfrak{F} is cl-dir-tow K iff for each cover \mathcal{K} of K by open subsets of G, there is a finite subfamily $L \subseteq K$ and an $M \in \mathfrak{F}$ such that $M \subseteq \cup \{\text{cl}_{\text{j-}\omega\text{-}(L)} : L \in \mathcal{B}\}$, where $j \in \{\emptyset, \delta, \alpha, \text{pre}, b, \beta\}$.
(b) For every filter base \varnothing, $\mathfrak{F} \prec \varnothing$ implies (al- j-ω-$c_{\mathfrak{F}}) \cap K \neq \emptyset$ if $\mathfrak{F}_{j\omega} \leadsto K$, where $j \in \{\emptyset, \delta, \alpha, \text{pre}, b, \beta\}$.

Proof: The proofs of the two facts are similar; so, we will only prove the fact (b):

(\Rightarrow) Suppose for every filter base \varnothing, $\mathfrak{F} \prec \varnothing$ implies (al- j-ω-$c_{\mathfrak{F}}) \cap K \neq \emptyset$. If $\mathfrak{F}_{j\omega} \leadsto g$ for some $g \in K$, then by Theorem (3.3, f), $\mathfrak{F}_{j\omega} \leadsto K$. So, assume that for each $g \in K$, \mathfrak{F} does not $j\omega \leadsto g$. Let \mathcal{K} be a cover of K by subsets open in G. For every $g \in K$, yond is an open set S_{g} containing g and $T_{g} \in \mathcal{K}$ such that $S_{g} \subseteq T_{g}$ and $M - \text{cl}_{j\omega}(S_{g}) \neq \emptyset$ for every $M \in \mathfrak{F}$. So, $\varnothing = \{M - \text{cl}_{j\omega}(S_{g}) : M \in \mathfrak{F}\}$ is a filter base on G and $\mathfrak{F} \prec \varnothing$. Now, $g \notin (al$- j-ω-$c_{\mathfrak{F}})\varnothing$.

Assume that $\cup(A_{g} : g \in K)$ forms a filter sub base with \varnothing denoting the generated filter. Then $\mathfrak{F} \prec \varnothing$ and (al- j-ω-$c_{\mathfrak{F}}) \cap K = \emptyset$. This contradiction implies yond is a finite subset $L \subseteq K$ and $M_{g} \in \mathfrak{F}$ for $g \in L$ such that $\emptyset = \cap \{M_{g} - \text{cl}_{j\omega}(S_{g}) : g \in L\}$. There is $M \in \mathfrak{F}$ such that $M \subseteq \cap \{M_{g} : g \in L\}$. It easily follows that $\emptyset = \cap \{M - \text{cl}_{j\omega}(S_{g}) : g \in L\}$ and $M \subseteq \cup \{\text{cl}_{j\omega}(T_{g}) : g \in L\}$. Thus $\mathfrak{F}_{j\omega} \leadsto K$.

(\Leftarrow) Suppose $\mathfrak{F}_{j\omega} \leadsto K$ and \varnothing is a filter base such that $\mathfrak{F} \prec \varnothing$. By Theorem (18, d), $\varnothing_{j\omega} \leadsto K$, and Theorem (18, h), (al- j-ω-$c_{\mathfrak{F}}) \cap K \neq \emptyset$.

170
5. Filter Bases and j-ω-Rigidity

In the section, we defined filter bases, j-ω-rigidity, and the some theorems concerning of them.

Definition 22

A mapping $\lambda : G \rightarrow H$ is said to be j-ω-closure continuous (resp. j-ω-weakly continuous) if for every $g \in G$ and every nbd T of $\lambda(g)$, there exists a nbd S of g in G such that $\lambda(\text{cl} j$-ω $(S)) \subseteq \text{cl} j$-$\omega$ (T) (resp. $\lambda(S) \subseteq \text{cl} j$-$\omega$ (T)).

Clearly, every continuous mapping is j-ω-closure continuous, where $j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \}$.

The notions of almost j-ω-convergence and almost j-ω-cluster can used to characterize j-ω-closure continuous.

Theorem 23

Let $\lambda : G \rightarrow H$ be a mapping. The following are equivalent:

(a) λ is j-ω-closure continuous.

(b) For all filter base \mathfrak{F} on G, $\mathfrak{F} \rightarrow g$ implies $\lambda (\mathfrak{F}) \rightarrow \lambda (g)$.

For all filter base \mathfrak{F} on G, let $\lambda (\text{al} j$-ω $c \mathfrak{F}) \subseteq (\text{al} j$-$\omega$ $c \lambda (\mathfrak{F}))$. For all open $S \subseteq H$, $\lambda^{-1}(S) \subseteq (\text{al} j$-$\omega$ $\text{int} \lambda^{-1}(\text{al} j$-$\omega$ $\text{cl})(S))$, where $j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \}$.

Proof: The proof of the equivalence of (a), (b) and (d) is straightforward.

(a) \Rightarrow (c) Suppose \mathfrak{F} is a filter base on G, $g \in (\text{al} j$-ω $c \mathfrak{F})$, $M \in \mathfrak{F}$ and T is a nbd of $\lambda (g)$, yond is a nbd S of g such that $\lambda (\text{cl} j$-ω $(S)) \subseteq \text{cl} j$-$\omega$ (T). Since $\text{cl} j$-ω $(S) \cap M \neq \emptyset$, then $\text{cl} j$-ω $(T) \cap \lambda (M) \neq \emptyset$. So, $\lambda (g) \in (\text{al} j$-$\omega$ $c \lambda (\mathfrak{F}))$. This shows that $\lambda (\text{al} j$-ω $c \mathfrak{F}) \subseteq (\text{al} j$-$\omega$ $c \lambda (\mathfrak{F}))$.

(c) \Rightarrow (a) Let S be an ultrafilter containing $\lambda (\text{cl} j$-ω $\mathcal{N}_g)$). Now, $\lambda^{-1}(S)$ is a filter base since $\lambda (G) \in S$ and $\lambda^{-1}(S)$ meets $\text{cl} j$-ω $\mathcal{N}_g)$. So, $\lambda^{-1}(S) \cup \text{cl} j$-$\omega$ $\mathcal{N}_g)$ contained in some ultrafilter T. Now $\lambda \lambda^{-1}(S)$ is an ultrafilter base that generates S. Since $\lambda \lambda^{-1}(S) < \lambda (T)$, then $\lambda (T)$ also generates S, hence $(\text{al} j$-ω $c \lambda (T)) = (\text{al} j$-$\omega$ $c S)$. Since $g \in (\text{al} j$-ω $c (T))$, then $\lambda (g) \in \lambda (\text{al} j$-$\omega$ $c T) \subseteq (\text{al} j$-$\omega$ $c \lambda (T)) = (\text{al} j$-$\omega$ $c S)$. So, S meets $\text{cl} j$-ω $(\mathcal{N}_{\lambda(g)})$ and $\text{cl} j$-ω $(\mathcal{N}_{\lambda(g)}) \subseteq \bigcap \{ S : S \text{ ultrafilter}, S \supseteq \lambda (\text{cl} j$-$\omega$ $(\mathcal{N}_g)))$, (denote this intersection by φ). Nevertheless, φ is the filter generated by $(\text{cl} j$-ω $\mathcal{N}_g)$ (see [4]. Proposition I.6.6), so $\lambda (\text{cl} j$-ω $(\mathcal{N}_{\lambda(g)}) < \lambda (\text{cl} j$-$\omega$ (\mathcal{N}_g)). Hence λ is j-ω-closure continuous, where $j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \}$.

Corollary 24

If $\lambda : G \rightarrow H$ is j-ω-closure continuous and $K \subseteq G$, then $\lambda (\text{al} j$-ω $\text{cl}(K)) \subseteq (\text{al} j$-$\omega$ $\text{cl}(\lambda(K)))$, where $j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \}$.

Here are some similarly proven facts about j-ω-weakly continuous mapping.

Theorem 25

Let $\lambda : G \rightarrow H$ be a mapping. The following are equivalent:

(a) λ is j-ω-weakly continuous.

(b) For all filter base \mathfrak{F} on G, $\mathfrak{F} \rightarrow g$ implies $\lambda (\mathfrak{F}) \rightarrow \lambda (g)$.

(c) For all filter base \mathfrak{F} on G, $\lambda (\text{al} j$-ω $c \mathfrak{F}) \subseteq (\text{al} j$-$\omega$ $c \lambda (\mathfrak{F}))$.

(d) For all open $S \subseteq H$, $\lambda^{-1}(S) \subseteq \text{int} \lambda^{-1}(\text{cl} j$-$\omega$ $(S))$. Where $j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \}$.
Theorem 26
If \(\lambda : G \to H \) is \(j-\omega \)-weakly continuous mapping, then
(a) For all \(K \subseteq G \), \(\lambda(\text{cl } j-\omega(K)) \subseteq (\text{al- } j-\omega-\text{cl } \lambda(K)) \).
(b) For all \(L \subseteq H \), \(\lambda(\text{cl } j-\omega(\text{int}(\text{cl } j-\omega-\lambda^{-1}(L)))) \subseteq \text{cl } j-\omega(L) \).
(c) For all open \(S \subseteq H \), \(\lambda(\text{cl } j-\omega(S)) \subseteq \text{cl } j-\omega-\lambda(S) \). Where \(j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \} \).

Now, We introduce the definitions of \(j-\omega \)-compact, \(j-\omega \)-rigid set, almost \(j-\omega \)-closed, and \(j-\omega \)-urysohn space as follows.

Definition 27
A mapping \(\lambda : G \to H \) is said to be \(j-\omega \)-compact if for every subset \(C \) quasi- \(j-\omega \)-H-closed relative to \(H \), \(\lambda^{-1}(C) \) is quasi- \(j-\omega \)-H-closed relative to \(G \), where \(j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \} \).

Definition 28
A subset \(K \) of a space \(G \) is said to be \(j-\omega \)-rigid provided whenever \(\mathfrak{F} \) is a filter base on \(G \) and \(K \cap (\text{al- } j-\omega-c_\mathfrak{F}) = \phi \), there is an open \(S \) containing \(K \) and \(M \in \mathfrak{F} \) such that \(\text{cl } j-\omega(S) \cap M = \phi \), where \(j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \} \).

Definition 29
A mapping \(\lambda : G \to H \) is said to be almost \(j-\omega \)-closed if for any set \(K \subseteq G \), \(\lambda(\text{al- } j-\omega-\text{cl}(K)) = (\text{al- } j-\omega-\text{cl } \lambda(K)) \), where \(j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \} \).

Definition 30
A space \(G \) is said to be \(j-\omega \)-Urysohn if every pair of distinct points are contained in disjoint \(j-\omega \)-closed nbds, where \(j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \} \).

Before characterizing \(j-\omega \)-rigidity, we can show that a \(j-\omega \)-closure continuous, \(j-\omega \)-compact mapping into a \(j-\omega \)-Urysohn space with a certain property (the “\(j-\omega \)-closure” and “quasi- \(j-\omega \)-H-closed relative” analogue of property \(\alpha \) in [15].) is almost \(j-\omega \)-closed.

Theorem 31
Suppose \(\lambda : G \to H \) is a \(j-\omega \)-closure continuous mapping and \(j-\omega \)-compact and \(H \) is \(j-\omega \)-Urysohn with this property: For each \(L \subseteq H \) and \(h \in (\text{al- } j-\omega-\text{cl}(L)) \), there is a subset \(C \) quasi-\(j-\omega \)-H-closed relative to \(H \) such that \(h \in (\text{al- } j-\omega-\text{cl}(C \cap L)) \). Then \(\lambda \) is almost \(j-\omega \)-closed, where \(j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \} \).

Proof: Let \(K \subseteq H \). By corollary (24), \(\lambda(\text{al- } j-\omega-\text{cl } (K)) \subseteq (\text{al- } j-\omega-\text{cl } \lambda(K)) \). Suppose \(h \in (\text{al- } j-\omega-\text{cl } \lambda(K)) \). Yond is a subset \(C \) quasi- \(j-\omega \)-H-closed relative to \(H \) such that \(h \in (\text{al- } j-\omega-\text{cl}(C \cap \lambda(K)) \). Then \(\mathfrak{F} = \{ \text{cl } j-\omega(S) \cap C \cap \lambda(K) \mid S \in \mathcal{N}_h \} \), is a filter base on \(H \) such that \(\mathcal{F}_{j-\omega} \hookrightarrow h \). Now, \(\varnothing = \{ K \cap \lambda^{-1}(M) \mid M \in \mathcal{F} \} \) is a filter base on \(K \cap \lambda^{-1}(C) \). Since \(\lambda^{-1}(C) \) is quasi- \(j-\omega \)-H-closed relative to \(H \), then there is \(g \in (\text{al- } j-\omega-c_\mathfrak{F}(\varnothing) \cap \lambda^{-1}(C) \). By theorem 23, \(\lambda(g) \in (\text{al- } j-\omega-\text{cl } \lambda(\varnothing)) \subseteq (\text{al- } j-\omega-c_h \mathcal{F}_h) \). Since \(\mathcal{F}_{j-\omega} \hookrightarrow h \) and \(H \) is \(j-\omega \)-Urysohn, \((\text{al- } j-\omega-c_h \mathcal{F}_h) = \{ h \} \). So, \(h \in \lambda(\text{al- } j-\omega-\text{cl } (K)) \), where \(j \in \{ \theta, \delta, \alpha, \text{pre}, b, \beta \} \).

Theorem 32
Let \(K \) be a subset of a space \(G \). The following are equivalent:
(a) \(K \) is \(j-\omega \)-rigid in \(G \).
(b) For all filter base \mathcal{F} on G, if $K \cap (\text{al- } j\omega-c_{\mathcal{F}}) = \emptyset$, then for some $M \in \mathcal{F}$, $K \cap (\text{al- } j\omega-\text{cl}(M)) = \emptyset$.

(c) For all cover \mathcal{K} of K by open subsets of G, there is a finite subfamily $\mathcal{B} \subseteq \mathcal{K}$ such that $K \subseteq \text{int cl } j\omega-(\cup \mathcal{B})$. Where $j \in \{\theta, \delta, \alpha, \text{pre}, b, \beta\}$.

Proof: The proof that (a) \implies (b) is straightforward. (b) \implies (c) Let \mathcal{K} be a cover of K by open subsets of G and $\mathcal{F} = \{\bigcap_{g \in \mathcal{B}}(G - \text{cl } j\omega-(S)) : \mathcal{B} \text{ is a finite subset of } \mathcal{K}\}$. If \mathcal{F} is not a filter base, then for some finite subfamily $\mathcal{B} \subseteq \mathcal{K}$, $G \subseteq \cup\{\text{cl } j\omega-(S) : S \in \mathcal{B}\}$; thus, $K \subseteq G \subseteq \text{int cl } j\omega-(\cup \mathcal{B})$ which completes the proof in the case that \mathcal{F} is not a filter base. So, suppose \mathcal{F} is a filter base. Then $K \cap (\text{al- } j\omega-c\mathcal{F}) = \emptyset$ and there is an $M \in \mathcal{F}$ such that $K \cap (\text{al- } j\omega-\text{cl}(M)) = \emptyset$. For each $x \in K$, yond is open T_g of g such that $\text{cl } j\omega-(T_g) \cap M = \emptyset$. Let $T = \cup\{T_g : g \in K\}$. Now, $T \cap M = \emptyset$. Since $M \in \mathcal{F}$, then for some finite subfamily $\mathcal{B} \subseteq \mathcal{K}$, $M = \cap\{G - \text{cl } j\omega-(S) : S \in \mathcal{B}\}$. It follows that $T \subseteq \text{cl } j\omega-(\cup \mathcal{B})$ and hence, $K \subseteq \text{int cl } j\omega-(\cup \mathcal{B})$, where $j \in \{\theta, \delta, \alpha, \text{pre}, b, \beta\}$.

(c) \implies (a) Let \mathcal{F} be a filter base on G such that $K \cap (\text{al- } j\omega-c\mathcal{F}) = \emptyset$. For all $g \in K$ yond is open T_g of g and $M_g \in \mathcal{F}$ such that $\text{cl } j\omega-(T_g) \cap M_g = \emptyset$. Now $\{T_g : g \in K\}$ is a cover of K by open subsets of G; so, there is finite subset $L \subseteq K$ such that $K \subseteq \text{int cl } j\omega-(T_g : g \in T))$. Let $S = \text{int cl } j\omega-(\cup\{T_g : g \in L\})$. Yond is $M \in \mathcal{F}$ such that $M \subseteq \cap\{M_g : g \in L\}$. Since $\text{cl } j\omega-(S) = \cup\{\text{cl } j\omega-(T_g) : g \in L\}$, then $\text{cl } j\omega-(S) \cap M = \emptyset$. So K is $j\omega$-rigid in G, where $j \in \{\theta, \delta, \alpha, \text{pre}, b, \beta\}$.

6. Filter Bases and $j\omega$-Perfect Mappings

In the section, we defined filter bases, $j\omega$-perfect mappings, and the some theorems about them.

In Corollary 14, we show that a mapping $\lambda : G \to H$ is perfect (i.e. closed and $\lambda^{-1}(y)$ compact for each $h \in H$) iff for all filter base \mathcal{F} on $\lambda(G)$, $\exists h \in H$, implies $\lambda^{-1}(\mathcal{F})$ is (cl-dir-tow) $\lambda^{-1}(y)$ and in Corollary 15, proved that a perfect mapping is compact (i.e. inverse image of compact sets are compact). In view Theorem 21, we say that a mapping $\lambda : G \to H$ is $j\omega$-perfect if for every filter base \mathcal{F} on $\lambda(G)$, $\exists j\omega h \in H$ implies $\lambda^{-1}(\mathcal{F})$ $j\omega \lambda^{-1}(h)$, where $j \in \{\theta, \delta, \alpha, \text{pre}, b, \beta\}$.

Theorem 33

Let $\lambda : G \to H$ be a mapping. The following are equivalent:

(a) λ is $j\omega$-perfect.

(b) For all filter base \mathcal{F} on G, $(\text{al- } j\omega-(c \lambda(\mathcal{F}))) \subseteq (\lambda(\text{al- } j\omega-(c\mathcal{F})))$.

(c) For all filter base \mathcal{F} on $\lambda(G)$, $\lambda^{-1}(L) \subseteq H$, implies $\lambda^{-1}(\mathcal{F})$ $j\omega \lambda^{-1}(L)$. Where $j \in \{\theta, \delta, \alpha, \text{pre}, b, \beta\}$.

Proof: (a) \implies (b) Assume \mathcal{F} is a filter base on G and $h \in (\text{al- } j\omega-c \lambda(\mathcal{F}))$. For if not. Assume that $\lambda^{-1}(h) \cap (\text{al- } j\omega-c(\lambda(\mathcal{F}))) = \emptyset$. For each $g \in \lambda^{-1}(h)$, yond is open S_g of g and $M_g \in \mathcal{F}$ such that $\text{cl } j\omega-(S_g) \cap M_g = \emptyset$. Since $\lambda^{-1}(\text{cl } j\omega-(N_h)) \subseteq \lambda^{-1}(y)$ and $\{S_g : g \in \lambda^{-1}(h))\}$ is an open cover of $\lambda^{-1}(y)$, yond is a $V \in N_h$ and a finite subset $B \subseteq \lambda^{-1}(y)$ such that $\lambda^{-1}(\text{cl } j\omega-(T)) \subseteq \cup\{\text{cl } j\omega-(T_g) : g \in L\}$. Yond is an $M \in \mathcal{F}$ such that $M \subseteq \cap\{M_g : g \in L\}$. Thus, $M \cap \lambda^{-1}(\text{cl } j$-
ω(−T) = ϕ implying clj−ω−(T) ∩ λ(M) = ϕ, a contradiction as h ∈ (al− j−ω−c λ(3)). This shows that h ∈ λ(al− j−ω−c 3), Where j ∈ {pre , b , α , β}.

(b) ⇒ (c) Assume 3 is a filter base on λ(G) and 3_j−ω ∋ L ⊆ H. Let ϕ be a filter base on G such that λ_−1(3) < ϕ. Then 3 < λ(ϕ) and (al− j−ω−c λ(ϕ)) ∩ L ≠ ϕ. Therefore λ(al− j−ω−c ϕ) ∩ L ≠ ϕ and (al− j−ω−c ϕ) ∩ λ_−1(L) ≠ ϕ. By Theorem (3.6, b), λ_−1(3) j−ω ∋ λ_−1(L), where j ∈ {θ, δ, α, pre, b, β}.

(c) ⇒ (a) Clearly.

Corollary 34

If λ : G → H is j-ω-perfect mapping, then:

(a) For all K ⊆ G, (al− j−ω−cl λ(K)) ≤ λ(al− j−ω−cl (K)).

(b) For all almost j-ω-closed K ⊆ G, λ(K) is almost j-ω-closed.

(c) λ is j-ω-compact. Where j ∈ {θ, δ, α, pre, b, β}.

Proof: (a) is an immediate consequence of Theorem 33, and (b) follows easily from (a). To prove (c) Let C be quasi- j-ω-H-closed relative to H, and ϕ be a filter base on λ_−1(C), then λ(ϕ) is a filter base on C. By Theorem 20, (al− j−ω−c λ(ϕ)) ∩ C ≠ ϕ and by Theorem (33, b), (al− j−ω−c ϕ) ∩ λ_−1(C) ≠ ϕ. By Theorem 20, λ_−1(C) is quasi- j-ω-H-closed relative to G, where j ∈ {θ, δ, α, pre, b, β}.

Theorem 35

An j-ω-closure continuous mapping λ : G → H is j-ω-perfect if and only if

(a) λ is almost j-ω-closed, and

(b) λ_−1(γ) j-ω-rigid for each h ∈ H, where j ∈ {θ, δ, α, pre, b, β}.

Proof: (⇒) If λ is j-ω-closure continuous and j-ω-perfect mapping, then by Corollaries 34 and 24, λ is almost j-ω-closed. To show λ_−1(h), for h ∈ H, is j-ω-rigid, Let 3 be a filter base on G such that λ_−1(h) ∩ (al− j−ω−c 3) = ϕ. So, h ∈ λ(al− j−ω−c 3) and by Theorem (33, b), h ∉ (al− j−ω−c λ(3)). Yond is open S of h and M ∈ 3 such that cl j−ω−(S) ∩ λ(M) = ϕ. So, λ_−1(cl j−ω−(S)) ∩ M = ϕ. Since λ is j-ω-closure continuous, then for any g ∈ λ_−1(h), yond is open T of g such that cl j−ω−(T) ⊆ λ_−1(cl j−ω−(S)). So, λ_−1(h) ∩ cl j−ω−(M) = ϕ, where j ∈ {θ, δ, α, pre, b, β}.

(⇐) Assume that j-ω-closure continuous mapping λ satisfies (a) and (b). Let 3 be a filter base on λ(G) such that 3_j−ω ∋ h. Let ϕ be a filter base on G such that λ_−1(3) < ϕ. So, 3 < λ(ϕ) implying that h ∈ (al− j−ω−c λ(ϕ)). Therefore, for each G ∈ ϕ, h ∈ (al− j−ω−cl λ(ϕ)) ⊆ λ(al− j−ω−cl G). Hence, λ_−1(h) ∩ (al− j−ω−cl ϕ) ≠ ϕ for each G ∈ ϕ. By (b), λ_−1(h) ∩ (al− j−ω−c ϕ) ≠ ϕ. By Theorem 33, λ is j-ω-perfect mapping, where j ∈ {θ, δ, α, pre, b, β}.

Actually, in the proof of the converse of Theorem 35, we have shown that property (a) of Theorem 35 can reduced to this statement: For each K ⊆ G, al j−ω−cl λ(K) ≤ λ(al j−ω−cl K); in fact, we have shown the next corollary (the mapping is not necessarily j-ω-closure continuous).

Corollary 36

Let λ : G → H be a mapping if

(a) For all K ⊆ G, (al− j−ω−cl λ(K)) ⊆ λ(al− j−ω−cl K)
(b) $\lambda^{-1}(h)$ j-ω-rigid for each $h \in H$, then λ is j-ω-perfect, where $j \in \{\theta, \delta, \alpha, \text{pre, } b, \beta\}$.

Corollary 37

Let $\lambda: G \to H$ be a mapping.

(a) λ is almost j-ω closed

(b) $\lambda^{-1}(h)$ j-ω rigid for each $h \in H$, then λ^{-1} preserves j-ω rigidity, where $j \in \{\theta, \delta, \alpha, \text{pre, } b, \beta\}$.

Proof. Let $C \subseteq H$ be j-ω rigid and \mathcal{F} be a filter base on G such that all j-ω $c_\mathcal{F} \mathcal{F} \cap \lambda^{-1}(C) = \emptyset$.

By Corollary 36 and Theorem 33, $(\text{al-} j$-$\omega \text{ cl}(\mathcal{F})) \cap C = \emptyset$. So, there is $M \in \mathcal{F}$ such that $(\text{al-} j$-$\omega \text{ cl}(M)) \cap C = \emptyset$. Nevertheless $(\text{al-} j$-$\omega \text{ cl}(M)) = \lambda(\text{al-} j$-$\omega \text{ cl}(M))$. So, $(\text{al-} j$-$\omega \text{ cl}(M)) \cap \lambda^{-1}(C) = \emptyset$. So, by Theorem 32, $\lambda^{-1}(C)$ is j-ω rigid, where $j \in \{\theta, \delta, \alpha, \text{pre, } b, \beta\}$.

Theorem 38

Suppose $\lambda: G \to H$ has j-ω rigid point-inverses. Then:

(a) λ is j-ω closure continuous iff for each $h \in H$ and open set T containing h, there is an open set S containing $\lambda^{-1}(h)$ such that $\lambda(\text{cl} j$-$\omega (S)) \subseteq \text{cl} j$-$\omega (T)$, where $j \in \{\theta, \delta, \alpha, \text{pre, } b, \beta\}$.

(b) If for each $h \in G$ and open set S containing $\lambda^{-1}(h)$, there is an open set T of h such that $\lambda^{-1}(\text{cl} j$-$\omega (T)) \subseteq \text{cl} j$-$\omega (S)$, then for each $K \subseteq G$, $(\text{al-} j$-$\omega \text{ cl}(\lambda(K)) \subseteq \lambda(\text{al-} j$-$\omega \text{ cl}(K))$, where $j \in \{\theta, \delta, \alpha, \text{pre, } b, \beta\}$.

Proof. (a) (\Rightarrow) Is obvious.

(\Leftarrow) Is straightforward using Theorem (32, c) (b) Let $\phi \neq K \subseteq G$ and $h \in \lambda(\text{al-} j$-$\omega \text{ cl}(K))$. Then $\lambda^{-1}(h) \cap (\text{al-} j$-$\omega \text{ cl}(K)) = \emptyset$. Now, $\mathcal{F} = \{K\}$ is a filter base and $(\text{al-} j$-$\omega \text{ cl}(\mathcal{F})) \cap \lambda^{-1}(h) = \emptyset$. So, yond is open set S containing $\lambda^{-1}(h)$ such that $\text{cl} j$-$\omega (S) \cap K = \emptyset$, yond is open T of h such that $\lambda^{-1}(\text{cl} j$-$\omega (T)) \subseteq \text{cl} j$-$\omega (S)$. Therefore, $\text{cl} j$-$\omega (T) \cap \lambda(K) = \emptyset$. Hence $h \in (\text{al-} j$-$\omega \text{ cl}(\lambda(K))$, where $j \in \{\theta, \delta, \alpha, \text{pre, } b, \beta\}$.

The next result related to Theorem (38, b); the proof is straightforward.

Theorem 39

Let $\lambda: G \to H$. The following are equivalent:

(a) For all j-ω-closed $K \subseteq G$, $\lambda(K)$ is j-ω-closed, where $j \in \{\theta, \delta, \alpha, \text{pre, } b, \beta\}$.

(b) For all $L \subseteq H$ and j-ω open S containing $\lambda^{-1}(L)$, there is j-ω-open T containing L such that $\lambda^{-1}(T) \subseteq S$, where $j \in \{\theta, \delta, \alpha, \text{pre, } b, \beta\}$.

Theorem 40

If $\lambda: G \to H$ is j-ω closure continuous and H is j-ω Urysohn, then λ is j-ω perfect if and only if for all filter base \mathcal{F} on G, if $\lambda(\mathcal{F})$ j-ω $\rightsquigarrow h \in H$, then $(\text{al-} j$-$\omega \text{ c}_\mathcal{F} \mathcal{F}) \neq \emptyset$, where $j \in \{\theta, \delta, \alpha, \text{pre, } b, \beta\}$.

Proof. (\Rightarrow) Assume that λ is j-ω perfect and $\lambda(\mathcal{F})$ j-ω $\rightsquigarrow h$. Therefore, $\lambda^{-1}(\mathcal{F})$ j-ω $\rightsquigarrow \lambda^{-1}(h)$.

Since $\lambda^{-1}(\mathcal{F}) < \mathcal{F}$, then by Theorem (18, d), $\mathcal{F} j$-ω $\rightsquigarrow \lambda^{-1}(h)$, by Theorem (18, h), $(\text{al-} j$-$\omega \text{ c}_\mathcal{F} \mathcal{F}) \neq \emptyset$.

(\Leftarrow) Assume that for each filter base \mathcal{F} on G, if $\lambda(\mathcal{F})$ j-ω $\rightsquigarrow h \in G$, then $(\text{al-} j$-$\omega \text{ c}_\mathcal{F} \mathcal{F}) \neq \emptyset$.

Suppose \mathcal{F} is a filter base on $\lambda(G)$ such that $\mathcal{F} j$-ω $\rightsquigarrow h \in H$, and assume \mathcal{L} is a filter base on G such that $\lambda^{-1}(\mathcal{F}) < L$. Then $\mathcal{F} = \lambda \lambda^{-1}(G) < \lambda(L)$. So, $\lambda(L)$ j-ω $\rightsquigarrow h$. Therefore, $(\text{al-} j$-$\omega \text{c}_\mathcal{F}$
(L) ≠ φ. Let i ∈ H – {h}. Because of H j-ω-Urysohn, are open sets S_i of i and S_h of h such that cl j-ω-(S_i) ∩ cl j-ω-(S_h) = φ. Yond is H ∈ L such that λ(H) ⊆ cl j-ω- (S_h). For every g ∈ λ^−1(i), there is open T_i of i such that λ (cl j-ω- (T_i)) ∋ cl j-ω- (S_i). So, cl j-ω- (T_g) ∩ H = φ. It follows that λ^−1(i) ∩ (al- j-ω-c_λ L) = φ for each i ∈ H – {h}. So, (al- j-ω-c_λ L) ∩ λ^−1(h) ≠ φ and λ is j-ω-perfect, where j∈{θ, δ, α, pre, b, β}.

Corollary 41

If λ : G → H be a mapping is j-ω-closure continuous, G is quasi- j-ω-H-closed, and H is j-ω-Urysohn, then λ is j-ω-perfect, where j∈{θ, δ, α, pre, b, β}.

Proof. Since G is quasi- j-ω-H-closed, then all filter base on G has non void almost j-ω-cluster; now, the corollary follows directly from Theorem 35, Where j∈{θ, δ, α, pre, b, β}.

7. **Conclusions**

The starting point for the application of abstract topological structures in j-ω-mapping is presented in this paper. We use filter base to introduce a new notion namely filter base and j-ω-perfect mapping. Finally, certain theorems and generalization concerning these concepts of studied; j∈{θ, δ, α, pre, b, β}.

References

