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Abstract

In this paper the chain length of a space of fuzzy orderings is defined, and various
properties of this invariant are proved. The structure theorem for spaces of finite chain length
is proved.

Spaces of Fuzzy Orderings

Throughout X = (X,A) denoted a space of fuzzy orderings. That is, A is a fuzzy
subgroup of abelian group G of exponent 2. (see[1] (i.e. X=1,Vxe G), and X is a (non
empty) fuzzy subset of the character group % (A) = Hom(A,{1-1}) satisfying

1. Xis afuzzy closed subset of y (A).
2. Janelement e € A suchthat ole)=—-1V oce X.
3. X'={aeA oa)=1VoeX}=1.
4. Iffand g are forms over A and if x € D( f® g) then3 y € D(f) and z € D(g) such that x
e D<y,z>.
Observe, by 3, that the element e € A whose existence is asserted by 2 is unique.
Also, e# 1 (sincec(1)=1V o € X).
Notice that for a € A, the set X(a):= {ce X | o(a) =1} is clopen (i.e. both closed and
open) in X. Moreover, o(a) =—1 <> o(—a) =1 holds forany c € X (by 2).

Definition 1
A forms f'and g are said to be isometric (over X) if they have the same dimension and

o(f) = o(g) V o € X. This is denoted by writing f = g or g=f(over X).

Note A form fis said to represent the element X € A (over X) if 3 elements x,...,x, € A
such that /' = < x, x5,..., x, > - D(f)) or D(f,X) will be used to denote the set of elements of A
which are represented by f in this sense.

Definition 2
A form fis said to be isotropicif 3 x3, ..., x, € A, such that
f =<1-1, x3, ..., x, >. Notice, in particular, this implies dim(f) > 2. A form which is not

isotropic is said to be anisotropic, for any x € A, < x,—x>= <l,—1>.
any such form will be called a hyperbolic plane.

Theorem 1
The following are equivalent
(1) VxeG,x#-—1=D<l,x>={1,x}.
(i) X={a ey @A) |a-1)=-1}.
Proof: see [3].
A space of fuzzy ordering satisfying either of the equivalent conditions in theorem 1 will
be referred to as a fan.
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Corollary 1
Suppose X is a fan. Then every subspace of X is also a fan.

Proof: compare [3].
Recall, a space of fuzzy orderings (X,A) is said to be finite if X (or equivalently A) is

finite fuzzy set; and two spaces of fuzzy orderings (X,A) and (X',A') are said to be
isomorphic if there exists a group isomorphism a:A ——> A’ such that the dual isomorphism
o*:x(A") — x(A) maps X' on to X.

Definition 3
The chain length of X (denoted C1(X)) is the maximum integer £ > 1 such that 3 q,, ...,
a; € A satisfying X(a; 1) < X(a;),i=1, ..., k (or C1(X) = o if no such maximum exists).

Remark 1

It is easily verified that C1(X) = 1 if and only if |x| = 1, and C1(x) < 2 if and only if X is
a fan.

Recall that X is said to be decomposable if there exist non-empty subspaces X; of X, i =
1,2 such that X = X; @ X,.
Let us denote by gr(X) the translation fuzzy group of X, i.e.,
g(X)={T e yx) | TX=X}.
Thus gr(X) is a closed fuzzy subgroup of y(A).

Let the residue space of X be defined to be X' = (X',A") where A'Zgr(X)LgA, and
where X' denotes the image of X in y(A') via restriction, X' is a space of fuzzy orderings.

Moreover gr(X') =1, and X is a fuzzy group extension of X'.
We can state the main theorem concerning spaces of finite chain length.

Theorem 2

Suppose C1(X) < . Then either |X| =1, o0r ar(X) # 1, or X is decomposable.

The proof of this key result is found in [4]. For now we concentrate on giving two
important applications.

Theorem 3

Suppose a form f* is anisotropic over a space of fuzzy ordering X,. Then there exists a
finite subspace X < X, such that fis an isotropic over X.
Proof: Let X=(X,A) be a subspace of X, chosen minimal subject to fis anisotropic over X.
Let aq, ..., a; € A satisfy: D<l,q; ;> c D<l,a;>,i=1,....,k. Thus<l,g;>=<a;_1,a,_, a;>
and a; | # a; fori=1,....,k. We may assume ap =1, a;=1.Leth;=a;_, a;. Thus b, # 1, so
X(b;) is a proper subspace of X. Thus f'is isotropic over X(b;), i.e. there exists a form g; of
dimension n — 2 (where n denotes the dimension of f) such that f~ g; over X(b;). Thus:
f®<1,b;>~ g; ®<1,b,> over X, so by addition

K k
f ®(Z<1,bi >j: Zgi®<1,bi > (over X) ..(1)
i=1 i=l
But using the assumptions on ay, ..., a; we see that (over X) < by, ..., by > = <apa,
Ay Aoy Qi1 > =2<q1, a1 gy, Q10> 2< 1, ap, a0 a3,...,0; 10, >=.2<1,..., 1, a;

>=<1,.,1,1>
Substituting this in (1) yields

k
2k -2)f : > g, <Lb, >
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Now f (and hence (2k — 2) f, by (3, corollary 3.5(ii)) is anisotropic over X, so comparing
1
dimensions, and using (3, lemma 2.4), 2k —2) n < k (n — 2)(2), i.e, k < En This

proves C1(X) < oo.
Now, we apply theorem 2. If |X| =1 we are done.
Suppose X = X; @ X, where X, = (X,,A /A) is a non-empty subspace of X, i = 1,2. Thus there
exist elements a;3, ..., @;, € A such that
f=<-1,1,a;3,...,a;,>over X, i=1,2.
Since X = X; @© X, the natural injection A ——> A /A; x A /A, is surjective, so there exist as,
...,y € Asuch that ;= g;(mod A),3<j<n,i=1.2.
Then clearly = <1,-1, as,...,a, > over X, a contradiction. Thus X is indecomposable, so
gr(X) # 1. Let X'=(X",A") denote the residue space of X and decompose fas f=n, f; ©...D
fs where f1,....f; are forms over A’, and 7,,...,m,€A are distinct modulo A’.
The assertion that f is anisotropic over X is equivalent to the assertion that each f,...f; is
anisotropic over X'.
There are two cases to be considered.

Suppose S= 1. Let A be any fuzzy subgroup of A such that A is the direct product A =A

x A’, and let Y = A~ N X. Then one verifies easily that Y = (Y,A/A) is a subspace of X and
that (Y,A/A) ~ (X'",A"), this equivalence being induced by the natural isomorphism A/A= A’
Thus, since f; is anisotropic over X', it (and then f'= m, f}) is anisotropic over Y. But, on the

other hand gr(X) = 1,1.e. A'# A,1.e. A= 1,1e, Y X.
This contradicts the minimal choice of X.

Thus S > 2. It follows that each f; has strictly lower dimension than f'so by induction on
the dimension, there exist finite subspaces Zy, ..., Z,» < X' such that f; is anisotropic over Z ;-
. Thus f,,....f; are all anisotropic over the subspace of X' generated by Z, ..., Z,.. Denote this
space by Z' =(Z',A'/A"). Note Z' is still finite Z = A’ * NX.ThenZ = (Z,A/A") is a subspace
of X, and a fuzzy group extension of Z' = (Z',A/A"). Moreover, since m,...,m are distinct
modulo A’, f'is anisotropic over Z. Thus, by minimal choice of X, Z=X,i.e. A'=1,1e.,Z' =
X' is finite. However, X itself could be infinite (since, a priori, gr(x) could be infinite). Define
A" to be the fuzzy subgroup of A generated by A’ and m,...,w,, and let X" denote the
restriction of X to A”.

Thus (X,A) is a fuzzy group extension see[ 2] of (X”,A") which, inturn, is a fuzzy group
extension of (X',A"). Moreover (X",A") is finite, and fis anisotropic over X" . Finally, let A be
fuzzy subgroup of A so that A =AxA", and let Y=A"X.Then Y= (Y,A/A)is a subspace of
X naturally equivalent to (X"”,A"). Thus Y is finite, and fis anisotropic over Y. Thus Y = X is
finite.

Notice, the condition X(a,_) < X(&;) is equivalent to D<l,a;,> < D<l,aq;_>.

Theorem 4
(1) Suppose X; = (X,A/A), i =1,...,n are subspaces of X generating X. Then: CL(X)

- >'CL(X,).

(i) If, in addition, X = X; ®...® X,,, then: C1(X) = » CI(X,).
i=l

(i) If X is a fuzzy group extension of X', then CL(X) = CL(X"), except in the case X' =1
(in which case X is a fan).
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Proof:
(i) Suppose X(a;_ 1) < X(a)), j = 1,....,k. Then for each i, 1 <i< n, X(a;_) < X{(a)).
Moreover, since X(a;_ ) # X(a;), there exists i, 1 < i< n such that X,(a;_,) # X{(a)). (for

n

if X{(a;_ 1) = X{(a)) for all i <n, thenag;a;,_, € QAi =1, e, a; = a;_; a contradiction).

This holds for Jj = 1,....k. Simple counting yields
k<Y CL(X,)ie.,CL(X) <Y CL(X,).
i=1 i=l

(ii) We are assuming X = U; X; and the natural homomorphism from A into mA /A;is an
isomorphism. Suppose X{a;;_1) < X; (a;),j = 1,....ki,i=1,...,n.

We may as well assume ;o = —1,and a,, = 1 . Choose elements b; € A such that: b;

=1 (mod Ay) for k <.
bj=a; (mod A)), and b;;=—1 (mod Ay), for k > i.

Notice that X(b;) = (Us<; X,) U X(a;). It follows that X(b9) c...C X(blkl) = X(by)
c...c X(b, k. ). There are Y. k; inequalities in this chain, so CL(X) > X k;, and hence
CL(X) > X2 CL(X)).

The other inequality follows from (i).

(iii) Suppose | X' 1. Suppose X'(a;_1) < X'(a;), i=1,...,k, with @; € A". Then clearly
X(a;_1) < X(a;), i =1,...,k. Thus CL(X) > CL(X"). Now suppose D<1,q,>c D<I1,
ai_>,i=1,...,k,witha,, ..., ¢ € A. We may assume ay=—1, a, = 1. Thena; # — 1.
There are two cases to be considered
1* Case: Suppose a; ¢ A'. It follows (from the definition of fuzzy group extension) that
D<l1,a;> = {1,a;}. Thus K < 2 in this case. Thus, since | X' | 1, CL(X")>2>k.

2" Case: Suppose a; € A’. Then D<l1,a;> c A’ (e.g by (5, lemma 4.9); notice a; # — 1.
Thus ay, ..., a; are all in A’, and X'(a,_) < X'(a,), i=1,...,k. Thus CL(X") > K. Thus,
in any case CL(X') > K, so CL(X") > CL(X).

Lemma 1
Suppose b, ay, ..., a; € A satisfy D<1,b> = {1,b}, and D<l,q, _ > <1,b> < D<l,q;>
<1,b>, i = 1,....,k. Then there exists ai' € D< a,ab > = {a;ab} such that D<I, a;f1 > C

D<l,a > i=1,...k
Proof: compare [6].
We now proceed to prove a deeper property of chain length.

Theorem S

Suppose Y is a subspace of X. Then C1(Y) < C1(X).
Proof: Suppose, to the contrary, cl(Y) > cl(X). Then, in particular, cl(X) < . Choose a
subspace Z < X minimal subject to (1)Z o Y and (2) C1(Z) < C1(X). To show such Z exists.
Suppose {Z;} is a collection of subspaces of X satisfying (1) and (2) and linearly ordered by

inclusion. Let z' = MZ;. Then z' is a subspace of X satisfying (1). To show z' satisfies (2)

suppose ay, ..., ax €A satisty z'(a)cz'(a;_1),j = 1,...,k. Thus the set M={ceX|o<1, a;>c
<a;_y,a;_1a;>j=1,..,k}isopenin X and contains Z'. By compactness, Z; = M for some
i, s0 Z{a) <Z{a;_1),j = 1,....k. These inclusions must be strict, since Z' < Z;. Thus k <
CL(Z) £ CL(X), so CL(Z") £ CL(X). So Z exists as asserted. To simplify notation, we may
assume X = Z. Let Y =(Y,A/A), since Y # X(CL(Y) > CL(X)). It follows that A # 1, so there
exists a € A,a# 1. Thus Y < X(a) < X. Since CL(X) < oo, there exists be A, b # 1, such that
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X(a) < X(b) < X, X(b) maximal. Thus D<I,b> is minimal, i.e., D<1,b> = {1,b}. By the
minimal choice of X (=Z), it follows that CL(X(b)) > CL(X). On the other hand it follows
from lemma (1) that CL(X(b)) < CL(X). This is a contradiction.
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