A Space of Fuzzy Orderings

L.N. M. Tawfiq Department of Mathematics, College of Education Ibn-Al-Haitham, University of Baghdad

Abstract

In this paper the chain length of a space of fuzzy orderings is defined, and various properties of this invariant are proved. The structure theorem for spaces of finite chain length is proved.

Spaces of Fuzzy Orderings

Throughout X = (X,A) denoted a space of fuzzy orderings. That is, A is a fuzzy subgroup of abelian group G of exponent 2. (see [1] (i.e. $x^2 = 1$, $\forall x \in G$), and X is a (non empty) fuzzy subset of the character group γ (A) = Hom(A, {1,-1}) satisfying

- 1. X is a fuzzy closed subset of χ (A).
- 2. \exists an element $e \in A$ such that $\sigma(e) = -1 \forall \sigma \in X$.
- 3. $X^{\perp} := \{a \in A \setminus \sigma(a) = 1 \forall \sigma \in X\} = 1.$
- 4. If f and g are forms over A and if $x \in D(f \oplus g)$ then $\exists y \in D(f)$ and $z \in D(g)$ such that $x \in D \le y, z \ge 0$.

Observe, by 3, that the element $e \in A$ whose existence is asserted by 2 is unique. Also, $e \neq 1$ (since $\sigma(1) = 1 \forall \sigma \in X$).

Notice that for $a \in A$, the set $X(a) := \{\sigma \in X \mid \sigma(a) = 1\}$ is clopen (i.e. both closed and open) in X. Moreover, $\sigma(a) = -1 \Leftrightarrow \sigma(-a) = 1$ holds for any $\sigma \in X$ (by 2).

Definition 1

A forms *f* and *g* are said to be isometric (over X) if they have the same dimension and $\sigma(f) = \sigma(g) \forall \sigma \in X$. This is denoted by writing $f \cong g$ or $g \cong f(\text{over } X)$.

Note A form *f* is said to represent the element $X \in A$ (over X) if \exists elements $x_1, ..., x_n \in A$ such that $f \cong \langle x, x_2, ..., x_n \rangle \cdot D(f)$ or D(f, X) will be used to denote the set of elements of A which are represented by *f* in this sense.

Definition 2

A form *f* is said to be isotropic if $\exists x_3, ..., x_n \in A$, such that

 $f \cong \langle 1,-1, x_3, ..., x_n \rangle$. Notice, in particular, this implies dim $(f) \ge 2$. A form which is not isotropic is said to be anisotropic, for any $x \in A$, $\langle x,-x \rangle \cong \langle 1,-1 \rangle$. any such form will be called a hyperbolic plane.

Theorem 1

The following are equivalent

- (i) $\forall x \in G, x \neq -1 \Rightarrow D < 1, x > = \{1, x\}.$
- (ii) $X = \{ \alpha \in \chi(A) \mid \alpha(-1) = -1 \}.$

Proof: see [3].

A space of fuzzy ordering satisfying either of the equivalent conditions in theorem 1 will be referred to as a fan.

Corollary 1

Suppose X is a fan. Then every subspace of X is also a fan.

Proof: compare [3].

Recall, a space of fuzzy orderings (X,A) is said to be finite if X (or equivalently A) is finite fuzzy set; and two spaces of fuzzy orderings (X,A) and (X',A') are said to be isomorphic if there exists a group isomorphism α :A \longrightarrow A' such that the dual isomorphism $\alpha^*:\chi(A') \longrightarrow \chi(A)$ maps X' on to X.

Definition 3

The chain length of X (denoted C1(X)) is the maximum integer $k \ge 1$ such that $\exists a_0, ..., a_k \in A$ satisfying $X(a_{i-1}) \subset X(a_i), i = 1, ..., k$ (or C1(X) = ∞ if no such maximum exists).

Remark 1

It is easily verified that C1(X) = 1 if and only if |x| = 1, and $C1(x) \le 2$ if and only if X is a fan.

Recall that X is said to be decomposable if there exist non-empty subspaces X_i of X, i = 1,2 such that $X = X_1 \oplus X_2$.

Let us denote by gr(X) the translation fuzzy group of X, i.e.,

 $gr(X) = \{T \in \chi(x) \mid TX = X\}.$

Thus gr(X) is a closed fuzzy subgroup of $\chi(A)$.

Let the residue space of X be defined to be X' = (X',A') where $A'=gr(X)^{\perp} \subseteq A$, and where X' denotes the image of X in $\chi(A')$ via restriction, X' is a space of fuzzy orderings. Moreover gr(X') = 1, and X is a fuzzy group extension of X'.

We can state the main theorem concerning spaces of finite chain length.

Theorem 2

Suppose $C1(X) < \infty$. Then either |X| = 1, or $gr(X) \neq 1$, or X is decomposable.

The proof of this key result is found in [4]. For now we concentrate on giving two important applications.

Theorem 3

Suppose a form f is anisotropic over a space of fuzzy ordering X_0 . Then there exists a finite subspace $X \subset X_0$ such that f is an isotropic over X.

Proof: Let X=(X,A) be a subspace of X₀ chosen minimal subject to *f* is anisotropic over X. Let $a_0, ..., a_k \in A$ satisfy: $D < 1, a_{i-1} > \subset D < 1, a_i >, i = 1, ..., k$. Thus $< 1, a_i > \cong < a_{i-1}, a_{i-1} a_i >$ and $a_{i-1} \neq a_i$ for i = 1, ..., k. We may assume $a_0 = 1, a_k = 1$. Let $b_i = a_{i-1} a_i$. Thus $b_i \neq 1$, so X(b_i) is a proper subspace of X. Thus *f* is isotropic over X(b_i), i.e. there exists a form g_i of dimension n - 2 (where *n* denotes the dimension of *f*) such that $f \sim g_i$ over X(b_i). Thus: $f \otimes < 1, b_i > \sim g_i \otimes < 1, b_i >$ over X, so by addition

$$f \otimes \left(\sum_{i=1}^{k} <1, b_i > \right): \sum_{i=1}^{k} g_i \otimes <1, b_i > (\text{over X}) \qquad \dots (1)$$

But using the assumptions on $a_0, ..., a_k$ we see that (over X) $< b_0, ..., b_k > \cong < a_0 a_1$, $a_1 a_2,..., a_{k-1} a_k > \cong < a_1, a_1 a_2,..., a_{k-1} a_k > \cong < 1, a_2, a_2 a_3,..., a_{k-1} a_k > \cong ... \cong < 1,..., 1, a_k$ $> \cong < 1,..., 1, 1 >$. Substituting this in (1) yields

$$(2k - 2)f$$
 : $\sum_{i=1}^{k} g_i < 1, b_i >$

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.22 (4) 2009

Now f (and hence (2k - 2) f, by (3, corollary 3.5(ii)) is anisotropic over X, so comparing

dimensions, and using (3, lemma 2.4), $(2k - 2) n \le k (n - 2)(2)$, i.e., $k \le \frac{1}{2}n$. This

proves $C1(X) < \infty$.

Now, we apply theorem 2. If |X| = 1 we are done.

Suppose $X = X_1 \oplus X_2$ where $X_i = (X_i, A / \Delta_i)$ is a non-empty subspace of X, i = 1, 2. Thus there exist elements $a_{i,3}, \ldots, a_{i,n} \in A$ such that

 $f \cong \langle -1, 1, a_{i3}, \dots, a_{in} \rangle$ over X_i, i = 1, 2.

Since $X = X_1 \oplus X_2$, the natural injection $A \longrightarrow A / \Delta_1 \times A / \Delta_2$ is surjective, so there exist a_3 , ..., $a_n \in A$ such that $a_i \equiv a_{ij} \pmod{\Delta_i}$, $3 \le j \le n$, i = 1, 2.

Then clearly $f \equiv \langle 1,-1, a_3,...,a_n \rangle$ over X, a contradiction. Thus X is indecomposable, so $gr(X) \neq 1$. Let X' = (X',A') denote the residue space of X and decompose f as $f \cong \pi_1 f_1 \oplus ... \oplus \pi_s$ f_s where $f_1,...,f_s$ are forms over A', and $\pi_1,...,\pi_s \in A$ are distinct modulo A'.

The assertion that f is anisotropic over X is equivalent to the assertion that each f_1, \dots, f_s is anisotropic over X'.

There are two cases to be considered.

Suppose S = 1. Let Δ be any fuzzy subgroup of A such that A is the direct product A = $\Delta \times A'$, and let Y = $\Delta^{\perp} \cap X$. Then one verifies easily that Y = (Y,A/ Δ) is a subspace of X and that (Y,A/ Δ) ~ (X',A'), this equivalence being induced by the natural isomorphism A/ $\Delta \cong A'$ Thus, since f_1 is anisotropic over X', it (and then $f \cong \pi_1 f_1$) is anisotropic over Y. But, on the other hand gr(X) \neq 1, i.e. A' \neq A, i.e. $\Delta \neq$ 1, i.e., Y \subset X. This contradicts the minimal choice of X.

Thus $S \ge 2$. It follows that each f_i has strictly lower dimension than f so by induction on the dimension, there exist finite subspaces $Z_{1'}, ..., Z_{s'} \subseteq X'$ such that f_i is anisotropic over $Z_{i'}$. Thus $f_1,...,f_s$ are all anisotropic over the subspace of X' generated by $Z_{1'}, ..., Z_{s'}$. Denote this space by $Z' = (Z', A'/\Delta')$. Note Z' is still finite $Z = \Delta'^{\perp} \cap X$. Then $Z = (Z, A/\Delta')$ is a subspace of X, and a fuzzy group extension of $Z' = (Z', A/\Delta')$. Moreover, since $\pi_1, ..., \pi_s$ are distinct modulo A', f is anisotropic over Z. Thus, by minimal choice of X, Z = X, i.e. $\Delta' = 1$, i.e., Z' =X' is finite. However, X itself could be infinite (since, a priori, gr(x) could be infinite). Define A" to be the fuzzy subgroup of A generated by A' and $\pi_1,...,\pi_s$, and let X" denote the restriction of X to A".

Thus (X,A) is a fuzzy group extension see[2] of (X'',A'') which, inturn, is a fuzzy group extension of (X',A'). Moreover (X'',A'') is finite, and f is anisotropic over X''. Finally, let Δ be fuzzy subgroup of A so that $A = \Delta \times A''$, and let $Y = \Delta^{\perp} \cap X$. Then $Y = (Y,A/\Delta)$ is a subspace of X naturally equivalent to (X'',A''). Thus Y is finite, and f is anisotropic over Y. Thus Y = X is finite.

Notice, the condition $X(a_{i-1}) \subset X(a_i)$ is equivalent to $D < 1, a_i > C D < 1, a_{i-1} > C$.

Theorem 4

(i) Suppose $X_i = (X_i, A/\Delta_i)$, i = 1, ..., n are subspaces of X generating X. Then: CL(X)

$$=\sum_{i=1}^{n} CL(X_{i}).$$

(ii) If, in addition, $X = X_1 \oplus ... \oplus X_n$, then: $C1(X) = \sum_{i=1}^n C1(X_i)$.

(iii) If X is a fuzzy group extension of X', then CL(X) = CL(X'), except in the case |X'| = 1 (in which case X is a fan).

Proof:

(i) Suppose X(a_{j-1}) ⊂ X(a_j), j = 1,...,k. Then for each i, 1 ≤ i ≤ n, X_i(a_{j-1}) ⊂ X_i(a_j). Moreover, since X(a_{j-1}) ≠ X(a_j), there exists i, 1 ≤ i ≤ n such that X_i(a_{j-1}) ≠ X_i(a_j). (for if X_i(a_{j-1}) = X_i(a_j) for all i ≤ n, then a_j a_{j-1} ∈ ∩ Δ_i = 1, i.e., a_j = a_{j-1} a contradiction). This holds for j = 1,...,k. Simple counting yields k ≤ ∑ⁿ_{i=1} CL(X_i), i.e., CL(X) ≤ ∑ⁿ_{i=1} CL(X_i).
(ii) We are assuming X = U_i X_i and the natural homomorphism from A into π_iA /Δ_i is an isomorphism. Suppose X_i(a_{i,j-1}) ⊂ X_i(a_{j,j}), j = 1,...,ki, i = 1,...,n.

We may as well assume $a_{i,0} = -1$, and $a_{i,k_i} = 1$. Choose elements $b_{ij} \in A$ such that: $b_{ij} = 1 \pmod{\Delta_k}$ for k < i.

 $b_{ij} \equiv a_{ij} \pmod{\Delta_i}$, and $b_{ij} \equiv -1 \pmod{\Delta_k}$, for k > i.

Notice that $X(b_{ij}) = (U_{s < i} X_s) \cup X_i(a_{ij})$. It follows that $X(b_{10}) \subset ... \subset X(b_{1k_1}) = X(b_{20})$

 $\subset ... \subset X(b_{nk_n})$. There are $\sum k_i$ inequalities in this chain, so $CL(X) \ge \sum k_i$, and hence $CL(X) \ge \sum CL(X_i)$.

The other inequality follows from (i).

(iii) Suppose $|X'| \neq 1$. Suppose $X'(a_{i-1}) \subset X'(a_i)$, i = 1, ..., k, with $a_i \in A'$. Then clearly $X(a_{i-1}) \subset X(a_i)$, i = 1, ..., k. Thus $CL(X) \ge CL(X')$. Now suppose $D < 1, a_i \ge C < 1$, $a_{i-1} \ge i = 1, ..., k$, with $a_1, ..., a_k \in A$. We may assume $a_0 = -1$, $a_k = 1$. Then $a_1 \ne -1$. There are two cases to be considered

1st Case: Suppose $a_1 \notin A'$. It follows (from the definition of fuzzy group extension) that D<1, a_1 > = {1, a_1 }. Thus K ≤ 2 in this case. Thus, since $|X'| \neq 1$, CL(X') ≥ 2 ≥ k. 2nd Case: Suppose $a_1 \in A'$. Then D<1, a_1 > ⊂ A' (e.g by (5, lemma 4.9); notice $a_1 \neq -1$. Thus $a_1, ..., a_k$ are all in A', and X'(a_{i-1}) ⊂ X'(a_i), i = 1,...,k. Thus CL(X') ≥ K. Thus, in any case CL(X') ≥ K, so CL(X') ≥ CL(X).

Lemma 1

Suppose *b*, $a_0, ..., a_k \in A$ satisfy $D < 1, b > = \{1, b\}$, and $D < 1, a_{i-1} > <1, b > \subseteq D < 1, a_i > <1, b >$, i = 1, ..., k. Then there exists $a'_i \in D < a_i, a_i b > = \{a_i, a_i b\}$ such that $D < 1, a'_{i-1} > \subseteq D < 1, a'_i >, i = 1, ..., k$.

Proof: compare [6].

We now proceed to prove a deeper property of chain length.

Theorem 5

Suppose Y is a subspace of X. Then $C1(Y) \le C1(X)$.

Proof: Suppose, to the contrary, cl(Y) > cl(X). Then, in particular, $cl(X) < \infty$. Choose a subspace $Z \subseteq X$ minimal subject to $(1)Z \supseteq Y$ and $(2) C1(Z) \le C1(X)$. To show such Z exists. Suppose $\{Z_i\}$ is a collection of subspaces of X satisfying (1) and (2) and linearly ordered by inclusion. Let $z' = \bigcap_i Z_i$. Then z' is a subspace of X satisfying (1). To show z' satisfies (2) suppose $a_0, \ldots, a_k \in A$ satisfy $z'(a_j) \subset z'(a_{j-1}), j = 1, \ldots, k$. Thus the set $M = \{\sigma \in X | \sigma < 1, a_j \ge \sigma < a_{j-1}, a_{j-1}, a_j >, j = 1, \ldots, k\}$ is open in X and contains Z'. By compactness, $Z_i \subseteq M$ for some i, so $Z_i(a_j) \subset Z_i(a_{j-1}), j = 1, \ldots, k$. These inclusions must be strict, since $Z' \subseteq Z_i$. Thus $k \le CL(Z_i) \le CL(X)$, so $CL(Z') \le CL(X)$. So Z exists as asserted. To simplify notation, we may assume X = Z. Let $Y = (Y, A/\Delta)$, since $Y \ne X(CL(Y) > CL(X))$. It follows that $\Delta \ne 1$, so there exists $a \in \Delta, a \ne 1$. Thus $Y \subseteq X(a) \subset X$. Since $CL(X) < \infty$, there exists $b \in A, b \ne 1$, such that

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.22 (4) 2009

 $X(a) \subseteq X(b) \subseteq X$, X(b) maximal. Thus D < 1, b > is minimal, i.e., $D < 1, b > = \{1, b\}$. By the minimal choice of X (=Z), it follows that CL(X(b)) > CL(X). On the other hand it follows from lemma (1) that $CL(X(b)) \le CL(X)$. This is a contradiction.

References

- 1. Malik ,D.S. and Mordeson, J.N. (1991),Fuzzy subgroups of Abelian group, Chinese J.M ath., <u>19(2)</u>.
- 2. Mordeson ,J.N. and Sen,M.K. (1995), Basic Fuzzy subgroups, Inform Sci., <u>82</u>, 167-179.
- 3. Marshall ,M. (1980), The Wittring of a space of ordeeerings, Trans. Amer. Math. Soc.258.
- 4. Marshall, M. (1989), Ouotients and inverse limits of spaces of orderings, Can. J.Math. <u>31</u>,604-616.
- 5. Marshall, M. (1989), Classification of finite space of orderings, Can. J.Math. <u>31</u>, 320-330.
- 6. Marshall, M. (1990), Spaces of orde ngs IV, Can. J.M ath., <u>XXXII</u>(3): 603-627.

الفضاء الضبابى الترتيب

لمى ناجي محمد توفيق قسم الرياضيات ، كلية التربية – ابن الهيثم ، جامعة بغداد

الخلاصة

يعرض البحث تعريف طول سلسلة في فضاء ضدبابي الترتيب ومن ثم عرض خواص وبرهنتها، ولقد تم برهان المبرهنة الأساسية لطول السلسلة المنتهية وعرض بعض النتائج المتعلقة بالموضوع.