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Abstract 
In this paper the chain length of a space of fuzzy orderings is defined, and various 

properties of this invariant are proved. The structure theorem for spaces of finite chain length 
is proved. 

  

Spaces of Fuzzy Orderings 
        Throughout X = (X,A) denoted a space of fuzzy orderings. That is, A is a fuzzy 
subgroup of abelian group G of exponent 2. (see [1] (i.e. x2 = 1,  x  G), and X is a (non 

empty) fuzzy subset of the character group  (A) = Hom(A,{1,–1}) satisfying: 

1. X is a fuzzy closed subset of  (A). 
2.  an element e  A such that (e) = – 1    X. 

3. X
:={a  A\ (a) = 1    X} = 1. 

4. If f and g are forms over A and if x  D( f  g) then  y  D( f ) and z  D(g) such that x 
 D<y, z >. 

        Observe, by 3, that the element e  A whose existence is asserted by 2 is unique. 
Also, e  1 (since (1) = 1    X). 
        Notice that for a  A, the set X(a):= {  X(a) = 1} is clopen (i.e. both closed and 
open) in X. Moreover, (a) = – 1  (– a) = 1 holds for any   X     (by  2). 
 

Definition 1 
        A forms f and g are said to be isometric (over X) if they have the same dimension and 
(f ) = (g)    X. This is denoted by writing  f   g or                      g  f (over X). 
        Note A form f is said to represent the element X  A (over X) if  elements x1,…,xn  A 
such that f   < x, x2,…, xn >  D(f ) or D(f ,X) will be used to denote the set of elements of A 
which are represented by f  in this sense. 
 

Definition 2 
   A form f is said to be isotropic if  x3, …, xn  A, such that                           
  f   <1,–1, x3, …, xn >. Notice, in particular, this implies dim(f )  2. A form which is not 
isotropic is said to be anisotropic, for any x  A, < x,– x >  <1,–1>. 
any such form will be called a hyperbolic plane. 
 
Theorem 1 
        The following are equivalent 
(i)  x  G, x  – 1  D<1, x > = {1, x}. 
(ii)  X = {   (A)(–1) = –1}. 
Proof: see [3]. 
        A space of fuzzy ordering satisfying either of the equivalent conditions in theorem 1 will 
be referred to as a fan. 
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Corollary 1 
        Suppose X is a fan. Then every subspace of X is also a fan. 
Proof: compare [3]. 
        Recall, a space of fuzzy orderings (X,A) is said to be finite if X   (or equivalently A) is 
finite fuzzy set; and two spaces of fuzzy orderings (X,A) and (X,A) are said to be 
isomorphic if there exists a group isomorphism :A  A such that the dual isomorphism 
*:(A)  (A) maps X on to X. 
 

Definition 3 
        The chain length of X (denoted C1(X)) is the maximum integer k  1 such that  a0, , 
ak  A satisfy ing: X(ai – 1)  X(ai ), i = 1, , k (or C1(X) =  if no such maximum exists). 
 
Remark 1 
        It is easily verified that C1(X) = 1 if and only if x = 1, and C1(x)  2 if and only if X is 
a fan. 
        Recall that X is said to be decomposable if there exist non-empty subspaces Xi of X, i = 
1,2 such that X = X1  X2. 
Let us denote by gr(X) the translation fuzzy group of X, i.e., 
gr(X) = {T  (x)  TX = X}. 
Thus gr(X) is a closed fuzzy subgroup of (A). 

        Let the residue space of X be defined to be X = (X,A) where A=gr(X)

A, and 

where X denotes the image of X in (A) via restriction, X is a space of fuzzy orderings. 
Moreover gr(X) = 1, and X is a fuzzy group extension of X. 
          We can state the main theorem concerning spaces of finite chain length. 
 
Theorem 2 
        Suppose C1(X) < . Then either X = 1, or gr(X)  1, or X is decomposable. 
        The proof of this key result is found in [4]. For now we concentrate on giving two 
important applications. 
 
Theorem 3 
        Suppose a form f  is anisotropic over a space of fuzzy ordering X0. Then there exists a 
finite subspace X  X0 such that f is an isotropic over X. 
Proof:  Let X=(X,A) be a subspace of X0 chosen minimal subject to f is anisotropic over X. 
Let a0, , ak  A satisfy: D<1,ai – 1>  D<1,ai >, i = 1,,k. Thus <1,ai >  < ai – 1, ai – 1 ai > 
and ai – 1  ai  for i = 1,,k. We may assume a0 = 1, ak = 1. Let bi = ai – 1 ai . Thus bi  1, so 
X(bi) is a proper subspace of X. Thus f is isotropic over X(bi), i.e. there exists a form gi of 
dimension n – 2 (where n denotes the dimension of f) such that f  gi over X(bi). Thus: 
f  <1,bi >  gi  <1,bi > over X, so by addition 
 

k k

i 1 i 1

1, 1,
i i i

f b g b
 

      
 
 :  (over X) (1) 

 
But using the assumptions on a0, , ak we see that (over X) < b0, , bk >               < a0 a1, 
a1 a2,, ak – 1 ak >  < a1, a1 a2,, ak – 1 ak >  < 1, a2, a2 a3,, ak – 1 ak >  < 1,, 1, ak 
>  < 1,,1, 1 >. 
Substituting this in (1) yields 

k

i 1

(2  - 2) 1,
i i

k  f g b


 :  
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Now f (and hence (2k – 2) f, by (3, corollary 3.5(ii)) is anisotropic over X, so comparing 

dimensions, and using (3, lemma 2.4), (2k – 2) n  k (n – 2)(2), i.e.,           k  
1

2
n. This 

proves C1(X) < . 
Now, we apply theorem 2. If X = 1 we are done. 
Suppose X = X1  X2 where Xi = (Xi,A /i) is a non-empty subspace of X, i = 1,2. Thus there 
exist elements ai 3, , ai n  A such that 
f  <–1,1, ai 3, , ai n > over Xi, i = 1,2. 
Since X = X1  X2, the natural injection A  A /1  A /2 is surjective, so there exist a3, 
, an  A such that aj  aij (mod i), 3  j  n, i = 1,2. 
Then clearly f  <1,–1, a3,,an > over X, a contradiction. Thus X is indecomposable, so 
gr(X)  1. Let X=(X,A) denote the residue space of X and decompose f as f 1 f1  s 

fs where f1,,fs are forms over A, and 1,,sA are distinct modulo A. 
The assertion that f is anisotropic over X is equivalent to the assertion that each f1,,fs is 
anisotropic over X. 
There are two cases to be considered. 
        Suppose S = 1. Let  be any fuzzy subgroup of A such that A is the direct product A =  

 A, and let Y = 


  X. Then one verifies easily that Y = (Y,A/) is a subspace of X and 
that (Y,A/)  (X,A), this equivalence being induced by the natural isomorphism A/  A  
Thus, since f1 is anisotropic over X, it (and then f  1 f1) is anisotropic over Y. But, on the 
other hand gr(X)  1, i.e. A  A, i.e.   1, i.e., Y  X. 
This contradicts the minimal choice of X. 
        Thus S  2. It follows that each fi has strictly lower dimension than f so by  induction on 
the dimension, there exist finite subspaces Z1, , Zs   X such that fi is anisotropic over Z i  
. Thus f1,,fs are all anisotropic over the subspace of X generated by Z1, , Zs . Denote this 

space by Z = (Z ,A/). Note Z is still finite Z = 


  X. Then Z = (Z,A/) is a subspace 
of X, and a fuzzy group extension of Z = (Z,A/). Moreover, since 1,,s are distinct 
modulo A, f is anisotropic over Z. Thus, by minimal choice of X, Z= X, i.e.  = 1, i.e., Z = 
X is finite. However, X itself could be infinite (since, a priori, gr(x) could be infinite). Define 
A  to be the fuzzy subgroup of A generated by A and 1,,s, and let X  denote the 
restriction of X to A . 
        Thus (X,A) is a fuzzy group extension see[ 2] of (X ,A) which, inturn, is a fuzzy group 
extension of (X,A). Moreover (X ,A) is finite, and f is anisotropic over X . Finally, let  be 

fuzzy subgroup of A so that A =A , and let Y=

X. Then Y = (Y,A/) is a subspace of 

X naturally equivalent to (X ,A). Thus Y is finite, and f is anisotropic over Y. Thus Y = X is 
finite. 
        Notice, the condition X(ai – 1)  X(ai) is equivalent to D<1,ai >  D<1,ai – 1>. 
 
Theorem 4 
(i) Suppose Xi = (Xi,A/i), i =1,,n are subspaces of X generating X. Then:        CL(X) 

=
n

i 1

CL(X )
i


 . 

(ii)  If, in addition, X = X1  Xn, then: C1(X) = 
n

i 1

C1(X )
i


 . 

(iii) If X is a fuzzy group extension of X, then CL(X) = CL(X), except in the case X = 1 
(in which case X is a fan). 
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Proof: 
(i) Suppose X(aj – 1)  X(aj), j = 1,,k. Then for each i, 1  i  n, Xi(aj – 1)  Xi(aj). 

Moreover, since X(aj – 1)  X(aj), there exists i, 1  i  n such that  X i(aj – 1)  Xi(aj). (for 

if Xi(aj – 1) = Xi(aj) for all i  n, then aj aj – 1 
n

i 1
1

i

  , i.e., aj = aj – 1 a contradiction). 

This holds for j = 1,,k. Simple counting yields 
n n

i 1 i 1

k CL(X ),i.e.,CL(X) CL(X )
i i

 

   . 

(ii) We are assuming X = Ui Xi and the natural homomorphism from A into   iA /i is an 
isomorphism. Suppose Xi(ai,j – 1)  Xi (ai,j), j = 1,,ki, i = 1,,n. 

We may as well assume ai,0 = – 1, and a 1
ii,k  . Choose elements bij  A such that: bij 

= 1 (mod k) for k < i. 
bij  aij  (mod i), and bij  – 1 (mod k), for k > i. 

Notice that X(bij) = (Us < i Xs) U X i(aij). It follows that X(b10)  
11X( )kb  = X(b20) 

 
n

X( )n kb . There are  ki inequalities in this chain, so CL(X)    ki , and hence 

CL(X)   CL(Xi). 
The other inequality  follows from (i). 

(iii) Suppose X 1. Suppose X(ai – 1)  X(ai), i = 1,,k, with ai  A. Then clearly  
X(ai – 1)  X(ai), i = 1,,k. Thus CL(X)  CL(X). Now suppose D<1,ai >  D<1, 
ai – 1>, i = 1,,k, with a1, , ak  A. We may assume a0 = – 1, ak = 1. Then a1  – 1. 
There are two cases to be considered 
1

st Case: Suppose a1  A. It follows (from the definition of fuzzy group extension) that 
D<1,a1> = {1,a1}. Thus K  2 in this case. Thus, since    X 1, CL(X)  2  k. 
2nd Case: Suppose a1  A. Then D<1,a1>  A (e.g. by (5, lemma 4.9); notice a1  – 1. 
Thus a1, , ak are all in A, and X(ai – 1)  X(ai), i = 1,,k. Thus CL(X)  K. Thus, 
in any case CL(X)  K, so CL(X)  CL(X). 
 

Lemma 1 
        Suppose b, a0, , ak  A satisfy D<1,b> = {1,b}, and D<1,ai – 1> <1,b>  D<1,ai > 

<1,b>, i = 1,,k. Then there exists ia   D< ai,aib > = {ai,aib} such that D<1, i 1a 
  >  

D<1, ia >, i = 1,,k. 

Proof:  compare [6]. 
        We now proceed to prove a deeper property  of chain length. 
 
Theorem 5 
        Suppose Y is a subspace of X. Then C1(Y)  C1(X). 
Proof:  Suppose, to the contrary, cl(Y) > cl(X). Then, in particular, cl(X) < . Choose a 
subspace Z  X minimal subject to (1)Z  Y and (2) C1(Z)  C1(X). To show such Z exists. 
Suppose {Z i} is a collection of subspaces of X satisfying (1) and (2) and linearly ordered by 

inclusion. Let z = 
i
Z i. Then z is a subspace of X satisfying (1). To show z satisfies (2) 

suppose a0, , ak A satisfy  z(aj)z(a j – 1), j = 1,,k. Thus the set M ={X < 1, aj   
< a j – 1, a j – 1 aj >, j = 1,,k} is open in X and contains Z. By compactness, Z i  M for some 
i, so Zi(aj) Z i(a j – 1), j = 1,,k. These inclusions must be strict, since Z  Zi. Thus k  
CL(Zi)  CL(X), so CL(Z)  CL(X). So Z exists as asserted. To simplify notation, we may 
assume X = Z. Let Y = (Y,A/), since Y  X(CL(Y) > CL(X)). It follows that   1, so there 
exists a  , a  1. Thus Y  X(a)  X. Since CL(X) < , there exists b A, b  1, such that 
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 X(a)  X(b)  X, X(b) maximal. Thus D<1,b> is minimal, i.e., D<1,b> = {1,b}. By the 
minimal choice of X (=Z), it follows that CL(X(b)) > CL(X). On the other hand it follows 
from lemma (1) that CL(X(b))  CL(X). This is a contradiction. 
 

References 
1. Malik ,D.S. and Mordeson, J.N. (1991),Fuzzy subgroups of Abelian group, Chinese 

J.M ath., 19(2). 
2. Mordeson ,J.N. and Sen,M.K. (1995), Basic Fuzzy subgroups, Inform Sci., 82, 167-179. 
3. Marshall ,M. (1980), The Wittring of a space of ordeeerings,Trans. Amer. Math. Soc.258. 
4. Marshall, M. (1989), Ouotients and inverse limits of spaces of orderings, Can. J.M ath. 

31,604-616. 
5. Marshall,M. (1989), Classification of finite space of orderings,Can. J.M ath. 31, 320-330. 
6. Marshall,M. (1990), Spaces of orde ngs IV,Can. J.M ath., XXXII(3): 603-627. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 2009) 4 (22مجلة ابن الھیثم للعلوم الصرفة والتطبیقیة                 المجلد

 
 

 الفضاء الضبابي الترتیب

 
 
 
 

  لمى ناجي محمد توفیق

  جامعة بغداد، ابن الهیثم -كلیة التربیة ،قسم الریاضیات 

 
 

  خلاصةال
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