Vol.30 (1) 2017

Quasi-Fully Cancellation Fuzzy Modules

Hatem Yahya Khalaf Department of Mathematics/ College of Education(Ibn-Al-Haitham), University of Baghdad Hadi Ghali Rashed Al-Rusafa the First Education/ Ministry of Education Received in 5/December /2016 Accepted in: 28/Decmber/2016

Abstract

In this paper it was presented the idea quasi-fully cancellation fuzzy modules and we will denote it by Q-FCF(M), condition universalistic idea quasi-fully cancellation modules It .has been circulated to this idea quasi-max fully cancellation fuzzy modules and we will denote it by Q-MFCF(M). Lot of results and properties have been studied in this research.

Key word : Q-FCF(M), Q-MFCF(M), Direct Sum Q-FCF(M).

Introduction

Let R be a commutative ring with identity . Let X be a fuzzy module of an R-module M and we will denote it by (X be F(M)) . X is called Q-FCF(M), if for every fuzzy ideal I of R and two every fuzzy submodules A and B of X, if IA=IB, then A+(F-annI)=B+(F-annI) where F-annI is a fuzzy submodule of X and define by F-annI ={ $x_t \subseteq X$: I $x_t=0_1$ } $\forall t \in (0,1]$ see Definition (1.1).

And X is called Q-MFCF(M) if for every maximal fuzzy ideal of R and for every two fuzzy submodules A and B of X such that IA=IB implies that $A+(F-ann_xI)=B+(F-ann_xI)$ see (2.1).

Clearly, every Q-FCF(M) is Q-MFCF(M) see (Remark(2.3)(1)) and every fully cancellation fuzzy module is Q-FCF(M). See (Remark(1.3)(1)) but the convers is not true ingenarl see (Remark(1.6))

And , if X is multiplication and naturally cancellation fuzzy module or (fuzzy Principle ideal), then X is Q-FCF(M). See Proposition (1.4) and Proposition (1.5).

In this chapter , we will study in details the concept of Q-FCF(M). This chapter consists of three parts. In part one we give some basic propositions of Q-MFCF(M).

It turns out that a fuzzy module X is quasi-fully cancellation (quasi-max fully cancellation) if and only if $IH \subseteq IK$, then $H \subseteq K+(F-ann_xI)$, where H and K are fuzzy submodules of X and I be a fuzzy ideal (fuzzy maximal ideal) of R. Equivalently, $I(h_t) \subseteq IL$, then $h_t \subseteq L+(F-ann_xI)$, where $h_t \subseteq X$ if and only if (IH:I)=H+(F-ann_xI) where L is a fuzzy submodule . And h_t is a fuzzy singleton of R, $\forall t \in (0,1]$. see Proposition (1.7) and Proposition (2.9).And fully cancellation fuzzy module is equivalent quasi-fully cancellation in the class X is torsion free fuzzy module over a fuzzy integral domain R see Proposition (1.4).

Part two is devoted to study the relation between max-fully cancellation fuzzy module and Q-MFCF(M) but the convers is not true see Remark (2.7) and Example (2.8). Part three is study the concepts the direct sum of Q-FCF(M) which is mentioned in chapter one section five.

And naturally cancellation fuzzy module X is equivalent to quasi-fully cancellation if X is multiplication fuzzy module.

§ 1. Quasi-Fully Cancellation Fuzzy Modules

In this part we give the concept of Q-FCF(M) this concept is generalization of concept quasi-fully cancellation modules[1], and we give a some basic results and properties of this concept. Also, relationships between the class of Q-FCF(M)and other types of modules are established.

"Recall that an R-module M is called quasi-fully cancellation produle. If for every ideal I of R and for every two submodules A,B of M. Such that IA=IB implies A+ann_MI=B+ann_MI (where ann_MI={m \in M, Im=0}.[1]"

Here ,we introduce the principle definition of our work.

Definition 1.1:

Let X beF(M). X is called Q-FCF(M) for every fuzzy ideal I of R and for every fuzzy submodules A and B of X , if IA=IB, then A+F-ann_XI=B+F-ann_XI

Where F-annI is a fuzzy submodule of X. And definition by $\{x_t \subseteq X: I.x_t=0_1\}$. $\forall t \in (0,1]$.

Proposition 1.2:

Let X beF(M). such that $(F-annX)_t = F-annX_t$. Then X is a Q-FCF(M)if and only if X_t is a quasi-fully cancellation module, $\forall t \in (0,1]$.

Vol.30 (1) 2017

Proof:

Let X beF(M). Let N and K be two submodules of M, and let J be an ideal of R. such that JN=JK.

Now, define: A:M \rightarrow [0,1], B:M \rightarrow [0,1] by $A(x) = \begin{cases} t \\ \cdot \end{cases}$ if $x \in N$ $\forall t \in (0,1]$ otherwise $B(x) = \begin{cases} t \\ 0 \end{cases}$ if x ∈ K $\forall t \in (0,1]$ and otherwise Define : I:R \rightarrow [0,1] by $I(x) = \begin{cases} t \\ 0 \end{cases}$ if $x \in I$ $\forall t \in (0,1]$ otherwise It is clear that A and B are fuzzy submodules of X and I be a fuzzy ideal of R. Also, $A_t=N$, $B_t=K$ and $I_t=J$; $\forall t \in (0,1]$, JN=JK, then $I_tA_t=I_tB_t$ Therefore $(IA)_t = (IB)_t \quad \forall t \in (0,1]$. Thus IA=IB. ButX is a Q-FCF(M). Then we get $A+F-ann_XI = B+F-ann_XI$ Hence $(A+F-ann_XI)_t = (B+F-ann_XI)_t$. $\forall t \in (0,1]$ But $(F-ann_XI)_t = F-ann_MI_t$ $\forall t \in (0,1]$ see[5,Proposition.(2.2)] So, A_t +F-ann I_t = B_t +F-ann I_t . Therefore N+F-annJ=K+F-annJ. Thus X_t is quasi-fully cancellation module. Another side, let A,B be two fuzzy submodules of X and let I be a fuzzy ideal of R. such that IA=IB. To prove A+F-annI=B+F-annI. Now, since IA=IB, then $(IA)_t = (IB)_t$ $\forall t \in (0,1]$, so, $I_tA_t = I_tB_t$ But X_t is a quasi-fully cancellation module. Then A_t +F-ann I_t = B_t +F-ann I_t . \forall t \in (0,1] which implies But (F-annI)_t=F-sannI_t $A_t+(F-annI)_t=B_t+(F-annI)_t$. So $(A+F-ann_XI)_t = (B+F-ann_XI)_t$, by [2, Remark (1.1.7)]. Thus A+F-ann_xI=B+F-ann_xI. Therefore X is Q-FCF(M).

Remarks and Examples 1.3:

(1) Every fully cancellation fuzzy module is Q-FCF(M). But the converse is not true ingeneral by the following example:

Let M=Z₄ is a Z-module .

Let X : M \rightarrow [0,1] define by X(x)= $\begin{cases} 1 & \text{if } x \in M \\ 0 & \text{otherwise} \end{cases}$ Let A: $(\overline{2}) \rightarrow$ [0,1] define by A(x)= $\begin{cases} t & \text{if } x \in (\overline{2}) \\ 0 & \text{otherwise} \end{cases}$ $\forall t \in (0,1]$ Let B: Z₄ \rightarrow [0,1] define by B(x)= $\begin{cases} t & \text{if } x \in Z_4 \\ 0 & \text{otherwise} \end{cases}$ $\forall t \in (0,1]$ Define I: (4) \rightarrow [0,1] define by I(x)= $\begin{cases} t & \text{if } x \in (4) \\ 0 & \text{otherwise} \end{cases}$ $\forall t \in (0,1]$

It is clear that A and B are fuzzy submodules of X and I is a fuzzy ideal of R $\,$

Vol.30 (1) 2017

Ibn Al-Haitham J. for Pure & Appl. Sci.

 $M=Z_4=X_t$ is not fully cancellation module by [3, Remark and Examples (2.3)(2)].

Since (4). $(\overline{2}) = (4).Z_4 = 0$, but $(\overline{2}) \neq Z_4$.

Implies that X is not fully cancellation fuzzy module by [4, Proposition (1.2,2)].

Hence $I_t=(4)$, $A_t=(\overline{2})$ and $B_t=Z_4$.

So $I_tA_t = I_tB_t$ (since (4). (2) =(4).Z₄=(0)). Also, ann I_t =ann (4)=Z₄

Then A_t +ann I_t =($\overline{2}$)+Z₄=Z₄

Also , $B_t \!\!+\! ann I_t \!\!=\!\! Z_4 \!\!+\!\! Z_4 \!\!=\!\! Z_4$

Then $X_t=M$ is quasi-fully cancellation module. and by proposition (1.2).

X is Q-FCF(M).

(2) Any fuzzy module of a Z-module Z is Q-FCF(M).

Proof:

By[4, Remark and Examples (1.2.3)(1)] we get X is fully cancellation fuzzy module.

And by (1) we interduce X is Q-FCF(M).

(3) Every fuzzy submodule of Q-FCF(M) is quasi-fully cancellation.

Proof:

 $\label{eq:left} \mbox{Let }X \mbox{ be a }Q\mbox{-}FCF(M) \mbox{ of an }R\mbox{-}module \mbox{ M. let }N, K \mbox{ be two submodules of }M \mbox{ and }J \mbox{ be an }ideal \mbox{ of }R. \mbox{ let }C \mbox{ be a fuzzy submodule of }X \mbox{ .}$

To prove C is Q-FCF(M).

Define: C: $M \rightarrow [0,1]$ by C(x)= $\begin{cases} 1\\ 0 \end{cases}$	if $x \in M$ otherwise	
Define A: N \rightarrow [0,1] by A(x)= $\begin{cases} t\\ 0 \end{cases}$	if $x \in N$ otherwise	∀ t∈(0,1]
Define B: $K \rightarrow [0,1]$ by B(x)= $\begin{cases} t \\ 0 \end{cases}$	if $x \in K$ otherwise	∀ t∈(0,1]
Define I: $J \rightarrow [0,1]$ by $I(x) = \begin{cases} t \\ 0 \end{cases}$	if $x \in J$ otherwise	∀ t∈(0,1]

It is clear that A,B are fuzzy submodules of C and I is a fuzzy ideal of R.

Also, $I_t=J$, $A_t=N$, $B_t=K$, $C_t=M$.

Since X is Q-FCF(M).

Then X_t is quasi-fully cancellation module.by Proposition (1.2).

Since C is a fuzzy submodule of X.

Then C_t is a submodule of X_t and by [3, Remark and Examples (2.2)],

we get C_t is quasi-fully cancellation module.

Therefore C is Q-FCF(M). by Proposition(1.2)

Proof:

Since X is multiplication and naturally cancellation fuzzy module, then by[4, Theorem (1.4.3)]. We obtian

X is fully cancellation fuzzy module and by Remark and Examples((1.3)(1)).

X is Q-FCF(M).

Proposition 1.5:

Let X be a fuzzy torsion free module over a fuzzy integral domain R. If X is quasi-fully cancellation modules, then X is fully cancellation.

Proof:

Let X be a fuzzy torsion free module and R be a fuzzy integral domain.

Suppose that IA=IB where A,B are two fuzzy submodules of X and I be a fuzzy ideal of R.

Since X is quasi-fully cancellation, then $A+(F-ann_xI)=B+(F-ann_xI)$.

Now, let $x_t \subseteq F$ -ann_xI, then $Ix_t = 0_1 \quad \forall t \in (0,1]$

And hence $r_{\ell}x_t=0_1$ for each fuzzy singleton r_{ℓ} of I, $\forall \ell \in (0,1]$. $r_{\ell}\neq 0_1$ (since R is integral domain). Then I $\neq 0_1$.

Therefore $x_t=0_1$ (since X is a fuzzy torsion free).

Then F-ann_xI=0₁.Thus A=B and hence X is a fully cancellation fuzzy module.

Mathematics | 196

Ibn Al-Haitham J. for Pure & Appl. Sci.

(4) Let X_1 and X_2 be two fuzzy modules of an R-module M_1 , M_2 respectively such that $M_1 \cong M_2$. Then X_1 is Q-FCF(M) if and only if X_2 is Q-FCF(M).

Proof:

(⇒) Let X₁: M₁→[0,1] define by X₁(x)= $\begin{cases} 1 & \text{if } x \in M_1 \\ 0 & \text{otherwise} \end{cases}$ Let X₂: M₂→[0,1] define by X₂(x)= $\begin{cases} 1 & \text{if } x \in M_2 \\ 0 & \text{otherwise} \end{cases}$

It is clear that X_1 and X_2 are fuzzy modules of M_1 and M_2 respectively .

Since $(X_1)_t = M_1$, $(X_2)_t = M_2$ and $M_1 \cong M_2$, $\forall t \in (0,1]$, then M_2 is quasi-fully cancellation

module by [3, Remark and Examples (2.2). (5)]

Then X_2 is Q-FCF(M) by Proposition (1.2).

Conversely: it is clear.

Proposition 1.4:

Proposition 1.6:

Let X be F(M) and let R be a fuzzy principle ideal ring . Then X is a quasi-fully cancellation module.

Proof:

Let A and B be two fuzzy submodules of X.

Let I be a fuzzy ideal of a fuzzy principle ideal ring R.

Suppose that IA=IB.

We show that A+(F-ann_xI)=B+(F-ann_xI)

Since R is a fuzzy principle ideal ring, then $I=(r_{\ell})$, where r_{ℓ} be a fuzzy singleton of R, $\forall \ell \in (0,1]$.

Then $(r_{\ell}) A = (r_{\ell}) B$ and hence $r_{\ell} a_t = r_{\ell} b_s$ where $a_t \subseteq A$ and $b_s \subseteq B \forall t, s \in (0,1]$.

Now, $r_{\ell}.a_t-r_{\ell}.b_s=0_1$

Then (ra-rb) $\lambda = 0 \lambda \le 0_1$ where $\lambda = \min{\{\ell, t, s\}}$. Therefore $r_{\ell}(a-b) \lambda = 0_1$, and hence $r_{\ell}(a_t-b_s) = 0_1$

.Thus $a_t-b_s \subseteq F-ann_x I$. But $a_t=b_s+a_t-b_s \subseteq B+(F-ann_x I)$.

Then $A \subseteq B+(F-ann_xI)$

Hence $A+(F-ann_xI) \subseteq B+(F-ann_xI)$

Similarly:

 $B+(F\text{-}ann_{x}I) \subseteq A+(F\text{-}ann_{x}I)$

Thus $A+(F-ann_xI) = B+(F-ann_xI)$

And hence X is Q-FCF(M).

Remark 1.7:

The converse of Remark and examples ((1.3)(1)) is not true in general by the following example:

Let $M=Z_{p\infty}$ and R=Z define by $X:M \rightarrow [0,1]$ such that

 $X(x) = \begin{cases} 1 & \text{if } x \in m \\ 0 & \text{otherwise} \end{cases}$

It is clear that $\forall t \in (0,1]$, X_t=M and M is not fully cancellation module

[3, Examples (2.5)(2)].

Thus X is not fully cancellation fuzzy module by Proposition (1.2).

Proposition 1.8:

Let X be F(M) and let H,K and L are fuzzy submodules of X. let I be a fuzzy ideal of R.

Then the following statements are equivalent:-

1- X is a Q-FCF(M).

Vol.30 (**1**) 2017

Ibn Al-Haitham J. for Pure & Appl. Sci.

- 2- If IH \subseteq IK, then H \subseteq K+(F-ann_xI).
- 3- I(h_t) \subseteq IL, then h_t \subseteq L+(F-ann_xI), where h_t \subseteq X. $\forall t \in (0,1]$.
- 4- (IH:_xI)=H+(F-ann_xI).

Proof:

(1)⇒(2) let X be a Q-FCF(M) and let IH⊆IK.

Then $IK \subseteq IH + IK = I(H+K)$ by [5, proposition (2.6)].

Hence K+(F-ann_xI)=(H+K)+(F-ann_xI) (since X is Q-FCF(M)).

Therefore $H \subseteq K + (F - ann_x I)$.

(2)⇒(3) let I(h_t) ⊆IL, where h_t ⊆H and by (2) we have (h_t) ⊆L+(F-ann_xI).

Thus $h_t \subseteq L+(F-ann_x I)$.

(3)⇒(4) let $x_t \subseteq (IH:_xI)$, $\forall t \in (0,1]$, then $Ix_t\subseteq IH$ and by (3) $x_t \subseteq H+(F-ann_xI)$.

Therefore (IH:_xI) \subseteq H+(F-ann_xI).

Conversely, let $a_{\ell} \subseteq H+(F-ann_xI), \forall \ell \in (0,1].$

Then $a_{\ell} = h_t + m_s$, where $h_t \subseteq H$ and $m_s \subseteq (F-ann_x I)$, $\forall s \in (0,1]$.

Thus I a_{ℓ} =Ih_t+Im_s . But Im_s=0₁

Therefore I a_{ℓ} =Ih_t ⊆IH.

Then $a_{\ell} \subseteq (IH:_xI)$.

Thus $H+(F-ann_xI) \subseteq (IH:_xI)$. and hence $(IH:_xI)=H+(F-ann_xI)$.

(4) \Rightarrow (1) let IH=IK we want to prove X is Q-FCF(M).

i.e To prove H+(F-ann_xI)=K+(F-ann_xI)

 $K \subseteq (IH:_xI)$ and by (4) we get $(IH:_xI) = H+(F-ann_xI)$.

Hence $K \subseteq H+(F-ann_xI)$.

Therefore $K+(F-ann_xI) \subseteq H+(F-ann_xI)$.

Similarly:

 $H \subseteq (IK:_xI)$ and by (4), we obtain($IK:_xI$)= K+(F-ann_xI), then H \subseteq K+(F-ann_xI).

Therefore $H+(F-ann_xI)=K+(F-ann_xI)$.

Thus X is Q-FCF(M).

Proposition 1.9:

Let X be F(M). Then X is Q-FCF(M) if and only if $((A+(F-ann_xI):B)=(IA:_RIB)$ where I be a fuzzy ideal of R and A,B are two fuzzy submodules of X.

Proof: (\Longrightarrow)

Let $x_t \subseteq ((A+(F-ann_xI):B), \forall t \in (0,1].$

Vol.30 (1) 2017

Then $x_t B \subseteq A + (F-ann_x I)$ and hence $x_t b_s \subseteq A + (F-ann_x I)$ for and $b_s \subseteq B, \forall s \in (0,1]$.

Thus $x_t IB \subseteq IA$. Then $x_t \subseteq (IA:_R IB)$.

Therefore $((A+(F-ann_xI):B) \subseteq (IA:_RIB).$

Now, let $x_t \subseteq (IA:_RIB)$, then $x_tIB\subseteq IA$ and by Proposition (1.7), we get $x_tB\subseteq A+(F-ann_xI)$ and hence $x_t \subseteq ((A+(F-ann_xI):B).$

Thus $(IA:_RIB) \subseteq ((A+(F-ann_xI):B))$.

Therefore ((A+(F-ann_xI):B)=(IA:_RIB).

On the other side: suppose IB \subseteq IA, where I be a fuzzy ideal of R and A,B are two fuzzy submodules of X. Then (IA:_RIB)=R.

But $((A+(F-ann_xI):B)=(IA:_RIB))$.

Then $((A+(F-ann_xI):B)=R, it follows that B\subseteq A+(F-annI).$

Thus X is Q-FCF(M).

§ 2. Quasi-Max Fully Cancellation Fuzzy Modules

As we have mentioned in section one, that every fully cancellation fuzzy module is Q-FCF(M) and the converse is not to be true in general.

In this section, we introduce the concept of Q-MFCF(M) and to show that every max-fully cancellation fuzzy module is Q-FCF(M) but the converse is not true . Morevore , we prove that in the class of faithful fuzzy module , the two concepts max-fully cancellation fuzzy module and Q-MFCF(M) are equivalent.

" Recall that an R-module M is called quasi-max fully cancellation module if for every maximal ideal I of R and for every two submodules N and K of M such that IN=IK implies N+ann_MI=K+ann_MI [6]."

We shall fuzzify this concepts as follows:

Definition 2.1:

Let X be F(M). X is called Q-MFCF(M) if for every maximal fuzzy ideal of R and for every two fuzzy submodules A and B of X such that IA=IB implies that A+(F-ann_xI)=B+(F-ann_xI).

Next, we have the following Proposition.

Proposition 2.2:

Let X be F(M) and let I be a maximal fuzzy ideal of *R*. such that $(F-annI)_t=F-annI_t$, then X is a Q-MFCF(M) if and only if X_t is a quasi-max fully cancellation module $\forall t \in (0,1]$.

Proof:

It is similar of proof of Proposition (1.2) only we take I maximal fuzzy ideal.

Remarks and examples 2.3:-

(1) Every Q-FCF(M) is a Q-MFCF(M).

Proof: it is clear.

(2) A fuzzy module X of an Z_6 -module Z_6 is Q-MFCF(M).

Proof:

Let $M=Z_6$ and $X: M \rightarrow [0,1]$ such that $X(x) = \begin{cases} 1 & \text{if } x \in M \\ 0 & \text{otherwise} \end{cases}$ Define: $I:(\overline{2}) \rightarrow [0,1]$ by $I(r) = \begin{cases} t & \text{if } r \in (\overline{2}) \\ 0 & \text{otherwise} \end{cases}$, $\forall t \in (0,1]$. Define: $A:(\overline{2}) \rightarrow [0,1]$ by $A(x) = \begin{cases} t & \text{if } x \in (\overline{2}) \\ 0 & \text{otherwise} \end{cases}$ Define: $B:Z_6 \rightarrow [0,1]$ by $B(x) = \begin{cases} t & \text{if } t \in Z_6 \\ 0 & \text{otherwise} \end{cases}$ It is clear that $A_t=(\overline{2})$, $B_t=Z_6$ and $I_t=(\overline{2})$ is a maximal ideal and $X_t=M$, $\forall t \in (0,1]$. Now, $I_tA_t=(\overline{2})(\overline{2})=(\overline{2}).Z_6=I_tB_t=(\overline{2})$ Similarly if $A_t=(0)$, $B_t=(\overline{3})$ since $I_tA_t=(\overline{2})(\overline{0})=(\overline{2}).(\overline{3})=I_tB_t=(\overline{0})$ where $(0), (\overline{2}), (\overline{3})$ are

submodules of M=Z₆

Then we obtain $(\overline{0})$ +ann_M $(\overline{2})$ = $(\overline{3})$ +ann_M $(\overline{2})$ = $(\overline{3})$

Thus M is Q-MFC(M). Therefore X is Q-MFCF(M). by Proposition (2.2).

(3) The fuzzy module X of an Z_4 -module Z_4 is a Q-FCF(M).

Proof:

By Remark and Examples ((1.3)(2)). We have Z_4 is quasi max fully cancellation module and by Proposition (2.2) we get the result.

(4) Let X_1 and X_2 be a fuzzy modules of an R-module M_1, M_2 respectively . if M_1 is a Q-MFC(M)and $M_1 \cong M_2$, then X_1 is a Q-MFCF(M) if and only if X_2 is a Q-MFCF(M).

Proof:

 $(\Longrightarrow) \text{ let } X_1 : M_1 \longrightarrow [0,1] \text{ define by } X_1(x) = \begin{cases} 1 & \text{ if } x \in M_1 \\ 0 & \text{ otherwise} \end{cases}$ Let $X_2 : M_2 \longrightarrow [0,1] \text{ define by } X_2(x) = \begin{cases} 1 & \text{ if } x \in M_2 \\ 0 & \text{ otherwise} \end{cases}$

Clear that $(X_1)_t=M_1$, is a quasi-max fully cancellation module, then X_1 is a Q-MFCF(M) by Proposition (2.7).

But $M_1 \cong M_2$, then M_1 is a quasi-max fully cancellation module by [6, Remark and Examples (1.3)(4)]

Therefore X_2 is a Q-MFCF(M).

Ibn Al-Haitham J. for Pure & Appl. Sci.

Conversely: it is clear.

(5) Let X be F(M).and let C be a fuzzy submodule of X, then C is Q-MFCF(M).

Proof:

The prove is similar of Remarks and Examples (1.3)(4)) only we take the ideal of a ring R in maximal fuzzy ideal.

The following Lemmas are needed to prove next Proposition.

Lemma 2.4:

Let X be F(M) and let A,B and C are fuzzy submodules of X such that $C \subseteq B$. Then $C+(B\cap A)=(C+A)\cap B$.

Proof:

First to show that $C+(B\cap A) \subseteq B \cap (C + A)$, (since $C \subseteq B$ and $B \cap A \subseteq B$)

Then C+(B \cap A) \subseteq B by [2].

Further C \subseteq C+A, B \cap A \subseteq C+A.

Thus $C+(B\cap A) \subseteq C+A$

Therefore $C+(B\cap A) \subseteq B \cap (C+A)$.

Conversely: to show that

 $B \cap (C + A) \subseteq C + (B \cap A)$

Let $\mathbf{b}_{\mathbf{t}} \subseteq B \cap (\mathcal{C} + A)$, $\forall \mathbf{t} \in (0,1]$.

Then $b_t = c_\ell + a_s$ for some fuzzy singletons $c_\ell \subseteq C$, $a_s \subseteq A \quad \forall \ell, s \in (0,1]$.

Hence $b_t = (c+a)_t$ where $t = \min\{\ell, s\}$.

Then b=c+a by[7, Definition (1.1.3)(3)].

Hence a=b-c and $a_s = b_t - c_\ell$

Thus $a_s \subseteq B$ (since $b_t \subseteq B$ and $c_\ell \subseteq C \subseteq B$)

Hence $a_s \subseteq B \cap A$ and so $b_t = c_\ell + a_s \subseteq C + (B \cap A)$.

Therefore $C+(B\cap A)=(C+A)\cap B$.

Lemma 2.5:

Let A be a fuzzy submodule of a fuzzy module X of an R-module M, let I be any fuzzy ideal of R, then $F\text{-ann}_AI=F\text{-ann}_xI \cap A$.

Proof:

Since $F\text{-}ann_AI$ is a fuzzy submodule of a fuzzy submodule A. then $F\text{-}ann_xI$ is a fuzzy submodule of X . and $F\text{-}ann_xI\cap A\subseteq F\text{-}ann_AI$

Conversely: to show that $F-ann_A I \subseteq F-ann_x I \cap A$?

Let $x_t \subseteq F\text{-ann}_A I$, where $x_t \subseteq A$, $\forall t \in (0,1]$.

Then x_tI=0₁

 $0_1 {=} 0_1 \cap A = x_t I \cap A {=} F{\text{-}ann_A I} \cap A$

But $x_t \subseteq A \subseteq X \implies x_t \subseteq X$.

Thus $F-ann_x I \cap A=0_1=x_t I=F-ann_A I$

Now, we have the following Proposition.

Proposition 2.6:

Let A be a fuzzy submodule of a Q-MFCF(M) X, then A is a Q-MFCF(M).

Proof:

B,C are two fuzzy submodules of a fuzzy submodule A and let I be a maximal fuzzy ideal of

R. such that IB=IC, then B,C are fuzzy submodules of X.

Since X is a Q-MFCF(M)

Then $B+(F-ann_xI)=C+(F-ann_xI)$.

But F-ann_AI=F-ann_xI \cap A by Lemma (2.5).

Hence B+ F-ann_AI=B+((F-ann_xI) \cap A)

 $=(B+(F-ann_{x}I)) \cap A \quad by Lemma (2.4).$ $=(C+(F-ann_{x}I)) \cap A$ $=C+((F-ann_{x}I) \cap A) \quad by Lemma (2.4)$ $=C+(F-ann_{A}I) \quad by Lemma (2.5)$

Thus A is a Q-MFCF(M).

Remark 2.7:

Every max-fully cancellation fuzzy module is Q-MFCF(M).

Proof:

It is clear.

The converse of Remark (2.7) is not true in general for example:-Let M=Z₆, R=Z₆

Let X : $M \rightarrow [0,1]$ define by X(x) = $\begin{cases}
1 & \text{if } x \in M \\
0 & \text{otherwise}
\end{cases}$ X_t=M $\forall t \in (0,1]$, then X is a Q-MFCF(M) by Remark((1.3)(1)) and it is not max-fully cancellation fuzzy module since

Let I: $(\overline{2}) \rightarrow [0,1]$ define by I(r) = $\begin{cases} t & \text{if } r \in (\overline{2}) \\ 0 & \text{otherwise} \end{cases}$, $\forall t \in (0,1]$. And A: $(\overline{0}) \rightarrow [0,1]$ define by A(x) = $\begin{cases} t & \text{if } x \in (\overline{0}) \\ 0 & \text{otherwise} \end{cases}$

Mathematics | 202

مجلة إبن الهيثم للعلوم الصرفة و التطبيقية

Vol.30 (1) 2017

Let

مجلة إبن الهيثم للعلوم الصرفة و التطبيقية

Also, B: $(\overline{3}) \rightarrow [0,1]$ define by B(x) = $\begin{cases} t & \text{if } x \in (\overline{3}) \\ 0 & \text{otherwise} \end{cases}, \forall t \in (0,1].$

It is clear that A,B are fuzzy suodules of X and I is a fuzzy ideal of R.

 $IA{=}IB \Leftrightarrow I_tA_t{=}I_tB_t.$

 $(\overline{2}).(\overline{0}) = (\overline{2}).(\overline{3}) = (\overline{0}), \text{ but } (\overline{0}) \neq (\overline{3})$

Then $A_t \neq B_t \iff A \neq B$.

Thus X is not max-fully cancellation fuzzy module.

The convers of Remark (2.7) is true under the following conditions.

Proposition 2.8:

Let X be F(M) and let $F-ann_xI=0_1$ be (F-faithful) for every non-empty fuzzy ideal I of R. Then every Q-MFCF(M) is max-fully cancellation fuzzy module.

Proof:

Let I be a maximal fuzzy ideal of R. and let A,B be two fuzzy submodules of X such that IA=IB

```
Since X is Q-MFCF(M), then A+(F-ann<sub>x</sub>I)=B+(F-ann<sub>x</sub>I). But (F-ann<sub>x</sub>I)=0<sub>1</sub>. Thus A=B
```

Then X is max-fully cancellation fuzzy module.

The following is characterization of Q-MFCF(M).

Theorem 2.9:

Let X be F(M), let A,B be two fuzzy submodules of X and let I be a maximal fuzzy ideal of R. Then the following statements are equivalent :-

- (1) X is a Q-MFCF(M).
- (2) If $IA \subseteq IB$, then $A \subseteq B+(F-ann_xI)$.
- (3) If $I(x_t) \subseteq IB$, then $x_t \subseteq B+(F-ann_xI)$.where $x_t \subseteq X$.
- (4) (IA:_xI)= B+(F-ann_xI).

Proof:

Compare this proof with the proof of Proposition (1.7).

The next result gives another characterization for Q-MFCF(M).

Proposition 2.10:

Let X be F(M). Then for any maximal fuzzy ideal I of R the following statements are equivalent:-

- (1) X is Q-MFCF(M).
- (2) For every fuzzy submodules A,B of X then ((A+(F-ann_xI)):B)=(IA:IB).

Ibn Al-Haitham J. for Pure & Appl. Sci.

Proof:

It is similar proof of Proposition (1.8).

§3. The Direct Sum of Quasi-Fully Cancellation Fuzzy Modules and Its Generalization

In this part we study the direct sum of two Q-FCF(M) and we prove some results about it.

Also, we study its generalizations .

First, we give the following lemma, which is needed in the next our Proposition.

Lemma 3.1:

Let X be F(M), $M=M_1 \bigoplus M_2$ where M_1 , M_2 are submodules of M, if $X=A_1 \bigoplus A_2$, where A_1 , A_2 are fuzzy submodules of X, then F-ann_xI=F-ann_{A1}I \bigoplus F-ann_{A2}I where I is a fuzzy ideal of R.

Proof:

We must prove that F-ann_x $I \subseteq F$ -ann_{A1} $I \oplus F$ -ann_{A2}I

Let $x_t \subseteq F$ -ann_xI, then $Ix_t=0_1$ and $x_t \subseteq X$, $\forall t \in (0,1]$.

Since $x_t \subseteq X \Longrightarrow x \in X_t = M = M_1 \bigoplus M_2$.

Then $x=x_1+x_2$ for some $x_1 \in M_1$, $x_2 \in M_2$

Define I: $J \rightarrow [0,1]$ by

$$I(x) = \begin{cases} t & \text{if } x \in J \\ 0 & \text{otherwise} \end{cases}, \ \forall t \in (0,1].$$

Be a fuzzy ideal of R.

It is clear tat I_t=J

Then $J.x=J(x_1+x_2)=0$ (since + on M is a direct sum) it follows

That:- $Jx_1=Jx_2=0$.

 $(Jx_1)_t = (Jx_2)_t = 0_t \le 0_1 \qquad \forall t \in (0,1].$

 $I_t(x_1)_t = I_t(x_2)_t = 0_t$ (since $J = I_t$).

$$I(x_1)_t = I(x_2)_t = 0_t.$$

Thus $(x_1)_t \subseteq F$ -ann_{A1}I and $(x_2)_t \subseteq F$ -ann_{A2}I.

Therefore $x_t = (x_1)_t + (x_2)_t \subseteq F - ann_{A1}I \oplus F - ann_{A2}I$.

Conversely: let $x_t \subseteq F$ -ann_{A1}I \bigoplus F-ann_{A2}I

```
Then x_t \subseteq ((x_1)_{\ell}, (x_2)_s) where (x_1)_{\ell} \subseteq F\text{-ann}_{A1}I and (x_2)_s \subseteq F\text{-ann}_{A2}I \quad \forall \ell, s \in (0,1].
```

Thus $I(x_1)_{\ell} = 0_1$ and $I(x_2)_s = 0_1$. Therefore $I(x_1)_{\ell} + I(x_2)_s = 0_1$,

and hence $I((x_1)_{\ell} + (x_2)_s) = 0_1$

Then $[J(x_1+x_2)]_{\lambda}=0_{\lambda} \le 0_1$ where $\lambda=\min\{t,s,\ell\}$ implies, $J(x_1+x_2)=0$

Therefore Jx=0 and hence $I(x_t)=0_1$

Vol.30 (1) 2017

Hence $x_t \subseteq F\text{-ann}_x I$. Therefore $F\text{-ann}_x I = F\text{-ann}_{A1} I \bigoplus F\text{-ann}_{A2} I$

Proposition 3.2:

Let X be F(M) and let $X = A_1 \bigoplus A_2$, where A_1 and A_2 be two fuzzy submodules of X. such that F-ann_{A1}I \bigoplus F-ann_{A2}I= λ_R where $\lambda_R(x)=1$; $\forall x \in \mathbb{R}$. Then A_1 and A_2 are Q-FCF(M). **Proof:**

 (\Rightarrow) Let I be a non-empty fuzzy ideal of R and let A and B are fuzzy submodules of X. Suppose that IA=IB we show that A+(F-ann_xI)=B+(F-ann_xI)

Since (F-annA₁)+ (F-annA₂)= λ_R , then by [4,Lemma (1.5.5)] we get, A= A₁ \oplus A₂ and B=

 $B_1 \oplus B_2$ for some fuzzy submodules A_1 , A_2 of A and for some fuzzy submodules B_1 , B_2 of B.

Now, I($A_1 \oplus A_2$) =I($B_1 \oplus B_2$).

Hence $(IA_1, IA_2)=(IB_1, IB_2)$. [7, Proposition (3.2.4)]

Which implies that , $IA_1=IB_1$ and $IA_2=IB_2$

But A_1 and A_2 are Q-FCF(M).

Thus A_1 +(F-ann_{A1}I)=B₁+(F-ann_{A1}I) and A_2 +(F-ann_{A2}I)=B₂+(F-ann_{A2}I)

It follows that , $A_1+A_2+(F-ann_{A1}I)+(F-ann_{A2}I)=B_1+B_2+(F-ann_{A1}I)+(Fann_{A2}I)$

Then we have : $A+(F-ann_xI)=B+(F-ann_xI)$

Therefore X is Q-FCF(M).

(\Leftarrow) it is clear by used Remarks and Examples ((1.3) (4)).

We end this section by the following result.

Proposition 3.3:

Let X be F(M) and let $X = A_1 \bigoplus A_2$ where A_1 and A_2 are two fuzzy submodules of X, such that F-ann A_1 + F-ann A_2 = λ_R where

 $\lambda_R(x)=1$, $\forall x \in \mathbb{R}$. Then A_1 and A_2 are Q-MFCF(M) if and only if X is Q-MFCF(M).

Proof:

First side, let A and B be two fuzzy submodules of X and let I be a maximal fuzzy ideal of R.

Since F-annA₁+F-annA₂= λ_R , where $\lambda_R(x)=1$, $\forall x \in R$.then by[4, Lemma (1.5.5)] we get, A=A₁ $\oplus A_2$ and B= B₁ $\oplus B_2$, and by similar procedure as in the Proposition (3.2). the required result can be obtained.

Another side, it is clear by Remarks and Examples ((2.3)(5)).

References

- 1. Inaam,M.A.Hadi, Alaa,A.Elewi (2014)"quasi-fully cancellation module" Iraqi Journal of science (2014), Vol55,No.3A pp(1080-1085).
- 2. Gada, A.A., (2000), "Fuzzy Spectrum of a Modules Over Commutative Ring", M.Sc.Thesis , University of Baghdad .
- 3. Inaam, M.A.Hadi, Alaa, A. Elewi (2014), "Fully cancellation and naturally cancellation module" journal of Al-Nahrain university, vol. 17(3).sep, pp.178-184.
- 4. .Hatam,Y.Khalaf., and Hadi,G.Rashed(2016),"Fully and Naturally Cancellation Fuzzy Modules"International Journal of Applied Mathematics statistical Sciences (IJAMSS):Vol.(5).pp.2319-3980.
- 5. Inaam ,M.A.Hadi, Maysoun, A. Hamil. (2011),"Cancellation and Weakly Cancellation Fuzzy Modules" Journal of Basrah Reserchs((sciences)) Vol.37 No.4.D .
- 6. Bothaynah,N.Shihab and Heba,M.A Jude (2015)" Max-fully cancellation modules" Journal of Advances In Mathematics. Vol.11No.7,p5462-5475
- 7. Layla,S.M.And Shrooq,B.S.(2003),"Semi-Primary fuzzy Submodules"SC.Thesis. University of Baghdad.

مجلة إبن الهيثم للعلوم الصرفة و التطبيقية

Vol.30 (1) 2017

Ibn Al-Haitham J. for Pure & Appl. Sci.

الموديولات الحذف شبه التامة الضبابية

і<mark>нір</mark>аз

حاتم يحيى خلف قسم الرياضيات/ كلية التربية للعلوم الصرفة (ابن الهيثم)/ جامعة بغداد **هادي غالي راشد** تربية الرصافة الأولى/ وزارة التربية

استلم في :5/كانون الأول/2016 قبل في: 28/كانون الاول / 2016

الخلاصة

في هذا البحث تمت در اسة فكرة الموديولات الحذف شبه التامة الضبابية . وقد تم إعطائها الرمز Q-FCF(M). و هي اعمام لحالة الموديولات الحذف شبه التامة الاعتيادية وقد تم تعميم هذه الفكره الى موديولات شبه التامة العظمى الضبابية وقد تم اعطائها الرمز Q-MFCF(M) . نتائج عديدة وخواص كثيرة تمت در استها في بحثنا هذا.

الكلمات المفتاحية: الموديولات الحذف شبه التامة الضبابية ، الموديولات الحذف شبه التامة الاعتيادية ، الموديولات الحذف شبه التامة لعظمى الضبابية .