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Abstract

In this paper, we introduce and discuss an algorithm for the numerical solution of some kinds
of fractional integral and fractional integrodifferential equations. The algorithm for the numerical
solution of these equations is based on iterative approach. The stability and convergence of the
fractional order numerical method are described. Finally, some numerical examples are provided
to show that the numerical method for solving the fractional integral and fractional
integrodifferential equations is an effective solution method.

Introduction

Various fields of science and engineering deal with the dynamical systems, which can be
described by fractional-order equations. This topic has received a great deal of attention in the
last decade (1, 4, 5).

Numerical methods associated with integral order ordinary differential equations were treated
extensively in the literature. On the other hand, theoretical studies of the numerical methods and
the error estimate of fractional order differential equation are quite limited, because theoretical
analysis of fractional-order numerical methods is very difficult(2).

In this paper, we find the general solution of fractional integral equations of the form:

e > dw"—bw=0,where v<0 and n+v<0.
i=0

e > dw" =0, where v<O0.
i=0

we offer fractional differintegrations calculated by Nishimoto, since this definition enables us to
calculate some fractional differintegrations that are easier to calculate than the other definitions.

Fractional Integral Equations of Order n+v
It's general form is:

> dw"? —bw=0,where v<0 and n+v<0and v:%, mkez, k20  [1]

i=0

Now, to find a;'s that satisfies e solution W =€* then:

Sda ¥ -b=0
i=0
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n ) m
D da' =akb
i—0

[Zn:dia‘J =a"b [2]

Equation [2] is an an algebraic equation of order max(m,nk) in the unknown a and by
finding its roots a;'s we find the general solution of [1]:

max(m,nk)

w(z) = Zcieaiz

where c's are arbitrary constants.
Example 1: Consider fractional integral equations of the form [1] where n =1,v=-3/2, d;=1,
do =1 and b =-2, eps=0.000006

Program
-1

Zn:diw(v”) —bw=0=w?? +W[7) +2w=0
i=0

Now, to find a;'s that satisfies W = €%, then:

a[_;j +a[_7lj +2=O:>4a3—%a2 —a-1=0

Use Fixed pointat0<a<1

Choose a:\/ia2 +1a+£
16 4 4

1
f(a,c,C,,C,) = (¢, +C,a+c,a)?

d
D(a’Cl’szcs) = ﬁ f (a’CpCz’Ca)
a=05 ¢=025 =025 ,=0.063
ID(a,c,, c,,c;)| —.19493451588085773769

:19493451588085773769 <1 then
f(a,c,,c,,C,) —0.73100443455321651638

f (0.73100443455321651638, c,,C,,C,;) —0.77536871880939399242
f (0.77536871880939399242, c,,c,,C,) —0.78374322291556063677
f (0.78374322291556063677,c,,C,,C;) —0.78531902901931962366
f (0.78531902901931962366, c,,C,,C,;) —0.78561536712613996803
f (0.78561536712613996803, c,,C,,C,) —0.78567108872455685163
f (0.78567108872455685163, c,,C,,C,) —0.78568156605114873639
f (0.78568156605114873639, c,,C,,C,;) —0.78568353609401988289
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f (0.78568353609401988289, c,,c,,c,) — 0.78568390651924141194
f (0.78568390651924141194,c,,c,,c,) —0.78568397616992137448
f (0.78568397616992137448, c,,c,,c,) —0.78568398926626797715
f (0.78568398926626797715, c,,c,,c,) —0.78568399172876071348
f (0.78568399172876071348, c,,c,,c,) —0.78568399219178071858
f (0.78568399219178071858, ¢,,c,,c,) —0.78568399227884189928
f (0.78568399227884189928, c,,c,,c,) — 0.78568399229521192455
f (0.78568399229521192455, ¢, c,,c,) — 0.78568399229828996376
f (0.78568399229828996376, c,,C,,C,) — 0.78568399229886872434
f (0.78568399229886872434,c,,c,,C,) —0.78568399229897754811
f (0.78568399229897754811, ¢,,c,,c,) —0.78568399229899801013
f (0.78568399229899801013, ¢,,c,,c,) — 0.78568399229900185758

Stop condition:
|0.78568399229900185758 - 0.78568399229899801013|=3.886E-15 < eps.
Then
0.78568399229900185758 is approximate 1% root
So, and in the same way, we find other roots for the equation and put it in:

a,z agz

w(z) =ce* +c,e® +ce
Where c's are arbitrary costants and a,, i=1,...,3is the i-th approximate root of the equation.

Fractional Integral Equations of Order nv
It's general form is:

> dw®™ =0, dy#0 and v=% <0, mk ez, k0 3]

i=0

Now, to find a;’s satisfies the solution W= €% then:
Y d;a"e® =0, sincee™#0, then Y d;a" =0
i=0 i=0

Rewriting this equation in the form:

av(dna” +d "t 4+ dl): —d,
a%(dna” +d A"t + dl): —d,

(d,a"+d, @ +..+d,f =a"(~d, ) [4]

Which is an algebraic equation of order max(m,nk) in the unknown a.
Finding its roots a;'s w solution of [3] in the form:

max(m,nk)

w(z) = Zcieaiz
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Where c's e find, are arbitrary constants.

Notice. We use numerical method to solve equations [2] and [4] since we can not obtain
theoretical solution always because general roots don't exist to solve equation of order more than
the one which equal 5.

As a special case, consider the fractional integral equations of order 2v.

w® +bw" + Aw=0, v <0, V=_km, mkez, k#0

Example 2: Consider fractional integral equations of the form [3] where n=4,v =—-1/2,
d(): -1, d1 = d2 = d3 = d4: 1 and epS:000005

Program
Zn: dw" =0= —W(O;j + w[%1j + W[%l] + W(%l] + W(%lj =0
i=0

Now, to find a;'s that satisfies W = €, then:

-1

—l+a[2]+a(‘1)+a[3_1]+a =0=a?-32°-3a°+a’+1=0

Use a fixed pointat 1 <a<?2

1

Choose a=(3a°+3a° —a® -1}
1
f(a,¢,,C,,C5,C4,Cs,C,C1,Cy, Gy, Cyp) = (€, +C,a+C,a° +C,a° +C.a’ +C,a° +¢,8° +¢,a" +C,a° +¢,,a° )12

d
D(a,cl,cz,03c4,c5,06,c7,08,c9,clo)=ﬁf(a,cl,cz,cs,c4,cs,cs,c7,c8,c9,clo)
a=15 ¢=-1 ¢,=0 ¢;=0 ¢,=-1 ¢=0 ¢=0 ¢,;=3 ¢,=0 ¢,=0 ¢c,=3

ID(a,¢;,C,,C,C4, Cs, C, €, Gy, g, Cy)| — 0.68025578889276714799

0.68025578889276714799 <1 then
f(a,c,c,,c,,C,,Cs, Gy, C,, Cg, G, Cp) > 1.5253332893390171162

f (1.5253332893390171162,¢,,c,,C,,C,,Cs,Cq, C;, Cq, Cg, Cp) > 1.5425681077739530993
f (1.5425681077739530993,¢,, ¢,,C,,C,,Cs,Cq, C;, G, Cy, Cp) > 1.5542943084644395413
f (1.5542943084644395413,c,, c,,C,,C,, Cs,Cs, C7, Cy, Cg, C;p) = 1.5622724402627148754
f (1.5622724402627148754,¢,,c,,C,,C,,Cs,Cq, C;, Cq, Cy, ) > 1.5677002760803632163
f (1.5677002760803632163,¢,,c,,C,,C,,Cs,Cq, C;, Cq, g, Cp) = 1.5713928861397996957
f (1.5713928861397996957, ¢, c,,C,,C,, Cs, C, C;, Cy, Cq, Cyp) = 1.5739049148507729346
f (1.5739049148507729346, c,, c,,C,,C,,Cs,Cq, C;, Cy, C, Cyp) = 1.5756137644497782316
f (1.5756137644497782316,¢,,c,,C,,C,,Cs,Cq, C;, Cq, Cg, Cyp) = 1.5767762147279333541
f (1.5767762147279333541,¢c,,¢c,,C,,C,,Cs,Cq, C;, Cy, Cq, Cyp) > 1.5775669638893329789
f (1.5775669638893329789, ¢,, c,,C,,C,,Cs,Cq, C;, G, Cy, Cp) — 1.5781048604366752736
f (1.5781048604366752736, ¢, C,,C,,C,,Cs,Cq, C;, Cg, Cy, Cp) > 1.5784707548380016783
f (1.5784707548380016783,¢,,c,,C,,C,,Cs,Cq, C;, Cg, €y, ) > 1.5787196467007653374



IBN AL- HAITHAM J. FOR PURE & APPL. SCI VOL.22 (2) 2009

f (1.5787196467007653374,¢,,c,,C,,C,,Cs,Cq, C;, Cg, Cy, Cp) > 1.5788889495273038146
f (1.5788889495273038146, c,, ,,C,,C,,Cs,Cq, C;, Cg, Cy, Cp) > 1.5790041135285882146
f (1.5790041135285882146,¢,,c,,C,,C,,Cs,Cq, C;, g, Cg, Cyp) = 1.5790824508319440980
f (1.5790824508319440980, ¢,, ,,C,,C,,Cs,Cq, C;, C, Cy, Cp) > 1.5791357376804271389
f (1.5791357376804271389, ¢, c,,C,,C,,Cs, Cq, C;, g, Cg, Cyp) = 1.5791719846033924980
f (1.5791719846033924980, c,,c,, ¢, C,,Cs,Cq, C;, Cq, Cg, Cp) > 1.5791966405705758888
f (1.5791966405705758888, ¢, c,,C,,C,,Cs,Cq, C;, Cg, Co, ;) — 1.5792134121050226560
f (1.5792134121050226560, ¢,, c,,C,,C,,Cs,Cq, C;, Gy, Cy, Cp) > 1.5792248204712984177
f (1.5792248204712984177,c,,c,,C,,C,,Cs,Cq, C;, Cq, Cg, Cyp) = 1.5792325806915453767
f (1.5792325806915453767,¢,,c,,C,,C,,Cs,Cq, C;, G, Cy, Cp) > 1.5792378593625278867
f (1.5792378593625278867,¢,,c,,C,,C,,Cs,Cq, C;, Cg, Cy, Cp) > 1.5792414500293495853
f (1.5792414500293495853, ¢, c,,C,,C,, Cs, Cg, C;, Cq, g, Cp) > 1.5792438924789067742

f (1.5792438924789067742,¢,,c,,C,,C,,Cs,Cq, C;, Cg, Cy, Cp) > 1.5792455538860883029

f (1.5792455538860883029, ¢,, c,,C,,C,,Cs,Cq, C;, Gy, Cy, Cp) > 1.5792466840112748059

Stop condition:

|1.5792466840112748059- 1.5792455538860883029| = 1.13E-6 < eps.
Then

1.5792466840112748059 is approximate 1% root
As in the same way, we find the remaining roots for the equation and put them in:

W(Z) = Ce™ +C,e™ +C™" +C,e™" +Ce™ +Ce™ +Ce"" +Ce™ +Ce™" +C, ™" +¢% +Ce
Where c's are arbitrary costants and a,, i=1,...12 is the i-th approximate root of the equation.

02 a2 a1,

Example 3: Consider  fractional integral equations of the form w®” +bw™ + Aw=0,
wherev=-3/2,b=-1,4=-1 and eps = 0.00001
Program

w® +pow" + Aw=0= W([;) - w(j] -w=0

Now, to find a;'s that satisfies W= €%, then:

-3
a’ —a[7J -1=0=>-a"+3a’-1=0

Use a fixed pointat0<a<1

6
Choose a:?’a 1
3
1

f(a,C,C,,C,,C,, G, Cq ) = (C, +C,a+C,a° +¢,a° +c.a +c,a” +¢,a°)3

d
D(a,cl,cz,cg,c4,c51c6,c7) —f(a, C.,C,,C5, G4, G5, Co, Gy )

d(a)
a=05 ¢=0333 ¢,=0 ;=0 ¢=0 ¢=0 c¢=0 ¢ =0333
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ID(a,¢,,€,,C5,C4,C5 Cs. C;)| —4.2889469781380487238- 107
4.2889469781380487238-10 <1 then

f(a,c,c,,cC,,C,,Cq,Cq,C,) >0.59674159596366847153

f (0.59674159596366847153, c,,c,,C;,C,,Cs,C,,C,) —0.70364454056999046660
f (0.70364454056999046660, ¢, c,,C;,C,,Cs,Cq,C,) — 0.72034885326896709841
f (0.72034885326896709841, ¢, c,,C;,,C,,C;,Cy,C,) — 0.72425624597214515841
f (0.72425624597214515841, ¢, c,,C,,C,,C,Cq, C,) — 0.72523130986763758800
f (0.72523130986763758800, ¢,, c,,C;,C,,Cs,Cq,C,) —0.72547834796395703979
f (0.72547834796395703979, ¢, c,,C;,C,,Cs,Cq, C,) — 0.72554117386534124342
f (0.72554117386534124342, ¢, c,,C,,C,,C;,Cq,C,) —0.72555716687026665442
f (0.72555716687026665442, ¢,,c,,C;,C,,Cs,Cq,C,) — 0.72556123905387340202
f (0.72556123905387340202, ¢,, c,,C;,C,, Cs, Cq, C,) — 0.72556227598903008752
f (0.72556227598903008752, ¢,, c,,C;,C,,Cs,Cq, C,) — 0.72556254003692763325
f (0.72556254003692763325, ¢,, c,,C;,C,, C, Cq, C,) — 0.72556260727504995250
f (0.72556260727504995250, ¢, c,,C;,C,,Cs,Cq, C,) — 0.72556262439682887969
f (0.72556262439682887969, ¢, c,,C;,C,,Cs,Cq,C,) —0.72556262875678689238
f (0.72556262875678689238, ¢, C,,C;,C,,Cs,Cs, C,) — 0.72556262986702404804
f (0.72556262986702404804, c,,c,,C;,C,,Cs,Cq,C,) — 0.72556263014973928500
f (0.72556263014973928500, ¢, c,,C;,C,,Cs,Cq,C,) — 0.72556263022173102582

Stop condition:

|0.72556263022173102582-0.72556263014973928500|= 7.199E-11 < eps
Then
0.72556263022173102582 is approximate 1% root

So, and in the same way, we find the remaining roots for the equation and put them in:
W(z) =ce™ +c,e* +c,e™ +c,e™ +ce™ +c,e™
Where c's are arbitrary costants and a,, i=1,...,6 is the i-th approximate root of the equation.

4. Fractional Integro-Differential Equations
We study these of the form:

Sdw ) —bw=0, v="", mkez, k#0and n-1<[v|<n [5]
! K

i=0

To solve such kind, suppose W = €% then:

Zn:diavn — b
i=0

and as in section 2,we get the solution.
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Notice. Special kinds of fractional differintegral equations, of variable coefficient are solved
theoretically by Nishimoto (3).

5. Existence and Uniqueness

To show the existence of a fixed point of fractional integral and fractional integrodifferential
equations we give the following theorem.
Theorem. Let g(x) be a function in interval 1= [a,b] for all xel such that continuous,

differentiable and there exists a constant 1, 0 < A<1 such that g'(x)| <A Vxel.Then g has
exactly a fixed point el and if x,el, then the sequence defined from X ., =9(x,),
n=0,1,... .Convergesto « .

Proof. To show the existence of a fixed point «.

suppose g(a)=a, g(b)=b, thena<g(a) <b, a<g(b) <b

Let h(a)=a—g(a)<0, h(b)>0

Then, there exist « € (a,b) such that h(a) =0, then a = g(x) by mean value theorem.

To show x,,, =9g(x,), let x, €| converges to o

Let e, =a —x, (error)

e, =0g(a)—-9g(x,,,) by mean value theorem between «, X, ,

9(a) - 9(x,1) = 9'() (@ — X, 1)

Then e, =g'(c)e,, =e.|=(9'(C)]e,|

e < A,y <A- e,
Then the sequence {e,} —0, then {x }—>a.

To show uniqueness of «

let 0 be another fixed pointof gand 6 € 1.
let 6 = Xo, X;= g(0)=6

eg=a—-0, e=a-X=a-0

Then |e;| =e,| but |e|< Ale|, then |e,|<|e,| which is a contradiction, then e, =€ =0, a=6.

6. Rate of convergence of iterative method
Give any iterative method its order which is said to be equals p if |e, ;| = cle,|” for some number

¢ depending on f where e, =« — X, thatis |e

as p increases the method converges faster.
Since x=g(x), [9'(x)|=4, 0<4<l

lfe,|”if, p=1is linear

n+1

|en+l| = 2‘|en|
Then general iterative method is linear.
Finally, the method converge if 0< A<l and ¢ must be less then 1.

7. Stability

The issue of stability is very important when implementing the method on a computer in finite-
precision arithmetic because we must take into account the effects introduced by rounding errors.
It is known (6) that the classical iterative method is a reasonable and practically useful
compromise in the sense that its stability properties allow for a save application to mildly stiff
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equations without undue propagation of rounding errors, whereas the implementation does not
require extremely time consuming elements. From the results of (7), we can see that these
properties remain unchanged when we look at the fractional version of the algorithm instead of
the classical one, and therefore it is also clear that the behaviour does not depend on the order of
the differential operators involved.
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