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Abstract

A snake is an energy-minimizing spline guided by external
constraint forces and influenced by image forces that pull it toward
features such as lines and edges. Snakes are active contour models:
they lock onto nearby edges, localizing them accurately. Snakes
provide a unified account of a number of visual problems, including
detection of edges, lines, and motion tracking. We have used snakes
successfully for segmentation, in which user-imposed constraint
forces guide the snake near features of interest (anatomical structures).
Magnetic Resonance Image (MRI) data set and Ultrasound images are
used for our experiments. Good results are obtained, where Kass’
snake could successfully segment the anatomical structures from MRI
and ultrasound images.

Introduction

Techniques of image processing are more and more used in medical
field. Mathematical algorithms of feature extraction, modeling and
measurement can be exploited in the images to detect pathology,
evolution of the disease, or to compare a normal subject to abnormal
one. The advance of medical imaging devices has realised several
developments in modern medicine and most of them in magnetic
resonance imaging: MRI. These techniques provide detailed, non-
invasive diagnosis of most human body structures. A second
development have provided by coupling some computational
techniques to help specialists to analyze the enormous amount of data
contained in medical images. The aim of these methods is extracting
and analyzing scientifically relevant and clinically important pieces of
information from the original set of images.
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One of the most important applications is, hence, the segmentation of
specific structures. These methods make possible the application of
mathematical or geometrical models on the steps of description and
analysis of the acquired information. Image segmentation is a
fundamental issue in biomedical imaging area. Segmenting structures
from medical images and the reconstruction of a compact analytic
representation of these structures is difficult. This difficulty was due
to the sheer size of the data sets and the complexity and variability of
the anatomic shapes of interest. The active contour method is one of
the most successful image segmentation techniques; it has received a
tremendous amount of attention in medical image processing. The
segmentation operation can carried out manually or automatically. A
manual segmentation requires a skilled operator trained to use a digital
tool to mark the contours of the desired structures. An obvious
disadvantage is that an exhaustive process, where the results are
hardly repeatable. Automatic techniques usually apply evolving
interfaces dynamically adaptable to the desired features contained in
the image. The difference between the two techniques is whether or
not the user is involved the process (1). In this work, we are mainly
concerned about the application active contour model in medical
image segmentation.

Kass’ Snake Model

Snake model was developed by Kass, Witkin, and Terzopoulos in
1987 (2, 3). The name “snake” was named after its behavior on an
image. While minimizing their energy, it slithers on the image.

A snake is expressed as a planar parametric curve in equation [1].
The parameter s is snake control points that are linked together to
form it. The snake is not a method to automatically detect the
boundary of the desired object in an image. It requires appropriate
parameters setting and initial locations of the control points according
to the subjective boundary. Therefore, some prior knowledge about
the image is required from higher-level system.

x(s) = [x(s), y(s)] s€[0,1] seisivesve |3]
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A snake moves through the spatial domain of an image to minimize
the energy functional:

1
B E[“ XY + X" ] +Ext(X(s))ds  eeeeeeeres 2]

where @ and B are weighting parameters that control the snake’s
tension and rigidity, respectively, X'(s) and x''(s) denote the first
and second derivatives of x(s) with respect to s.

The external energy function E,, is derived from the image so that

it takes on its smaller values at the features of interest, such as
boundaries. Given a gray-level image I(x, y), viewed as a function of
continuous position variables (x, y), typical external energies designed
to lead a snake toward step edges are:

Eu(x.y)=- |VI (x, y)‘ 2 e [3]

2
E (k. y)= -'V[Gc x, y)* I(x, y)] ‘ .......... [4]
where Gc (x,y) is a two-dimensional Gaussian funcuou wiwn swnaard

deviation G and V is the gradient operator. If the image is a line
drawing (black on white), then appropriate external energies include:

BugltIeT&d) wscn [5]

Eext (X, )= GU ) *I(x,y)

It is easy to see from these definitions that larg
the boundaries to become blurry. Such large G’s are often necessary,
however, in order to increase the capture range of the snake.
A snake that minimizes E must satisfy the Euler equation

ax'(s)-Fx""(s)-VE,, =0

This can be viewed as a force balance equat ~ ****"**** [7]
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Fie*Fee=0 ... (8]

where F,= 0.X'"(s)- B x'"(s) and F..= =~ VE.. The internal
force F,, discourages stretching and bending while the external
potential force F,,, pulls the snake toward the desired image edges.

To find a solution to [7], the snake is made dynamic by treating x
as function of time t as well as S (i.e., x(s, t)). Then, the partial
derivative of x with respect to t is then set equal to the left side of [7]
as follows:

X5, 0=ax"(s8)-Bx"(s,t)-VE,,
When the solution x(s, t) stabilizes, the term x ¢ (s, t) vanishes and we

achieve a solution of [7] (2). A solution to [9] can be found by
discretizing the equation and solving the discrete system iteratively.

Numerical Methods for Kass’ Approach
In the below, there are numerical methods to describe Kass® snake
model (2).

* Represent the curve with a set of n points
r1=(xlﬂy|), i=03uoo,n-1

e The energy equation can be rewritten as follows:
n
Esnake = X Eint (i) + Eext (i)
i=1
* Accordingto F;

Eintz(a(s) |I‘S(S)|2 +B(S)’ rss(s)|2)/2

the derivatives can be approximated with finite differences and
are converted to vector notation with p. = ( X.»Y,), we rewrite |

© Ejp @)
2 2
Eint(i)=f1i|l'i'1’i-1’ /2+Bill‘i-1 -2rj +I’i+1| /2
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where r (0) =r (n).

e The corresponding Euler equations is:
oi (1 - 13-~ @i +1 (ria1- 1) +Bi -1 (ricz —2ri-1+1i)
~2B;(ri-1=2ri+Ti+1)+ Byy o —2Tis1+Ti42)
(£ @ Fy =0 m
where

fx(i): ‘aEext /aXi

fy(i)= ‘aEext /aYi

Kass’ Snake Algorithm
Algorithm of Kass’ snake is shown in the Fig (1).

Implementation of Kass’ Snake

The implementation of Kass’ snake algorithm involves loading the
image, giving an initial snake by user, inputting the values of alpha,
beta and the number of iteration, and then performing the snake
algorithm. The Kass’ snake algorithm was implemented on line
drawing images, gray level images, and series of gray level images.

Line Drawing Images

An implementation of the Kass’ snake algorithm was first run on a
line drawing 256 x 256 pixel image containing a Circle object as
shown in Fig (2). As can be seen from the outputs, the algorithm
correctly converges to the object boundary. The algorithm was next
run on a line drawing 256 x256 pixel image containing a convex
polygon. The results can be seen in Fig (3). The snake succeeded in
converging to the boundary positions in this example too. The values
of Kass’ snake parameters of the two examples are shown in table (1).
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Gray Level Images

In this section we show how the Kass’ snake, can be applied to
medical image segmentation. In order to show the interests of the
segmentation by Kass’ snake, we select an MR image of 256x256
pixels. The image represents slice liver attained of a hepatic cystic
lesion.

In order to segment the pathology in liver slice image, we must
proceed initially by an operation of pretreatment; this consists of
application of the Gaussian filter to the initial image. The edge map
was computed by using the Gradient operator as mentioned before. As
shown in Fig (4), the edge map shows higher values where the image
gradient is larger, and low values over homogeneous regions. The
Gaussian filter blurs the edges, thus increasing the snake capture range
as it spreads the force vectors along the potential field. Using a Kass’
snake model and a fair initial position, we can see that it correctly
evolves towards the desired boundary, see Fig (5), The values of
snake parameters are shown in table (2).

Also we used Kass’ snake model to segment the embryo from
Ultrasound image. Kass’ snake could correctly evolve towards the
desired boundary of embryo, see Fig (6). The values of snake
parameters are shown in table (2).

Application to Multiple Slices

The graphical user interface (GUI) of the program has the ability
to save the current snake, then to reload it for use on the same image
or other images. Therefore, the snake can be applied and iterated on a
slice from a dataset, and when the segmentation of a region of interest
is completed by opening the next slice and loading this snake, the
snake will appear at the same coordinate positions as in the previous
slice, and it can then be iterated on the new slice. Hence, no snake
initialization is required for the second slice. This results in time
saving and simplicity of operation. Fig (7) illustrates this feature of
GUI on four successive slices of an MRI dataset. An initial snake is
implemented and iterated to segment a desired structure in a slice (i.e.,
slice 03), and the converged snake is loaded on the successive slice
(i.e., 04), for the same structure. Thereafter, by iterating the snake on
this slice, it fits itself to the boundary of the structure in this slice and
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segments the desired structure. This example continues this process on
the next slice (i.e., 06).

Fig (7)shows: (a) the initial snake (in red color) on slice 03 of MRI
dataset, (b) the final snake (in green color) after 100 iterations when
the snake converges to the boundary, (c) the snake (in green color)
loaded on the same structure in slice 04, (d) the final snake on slice 04
after 40 iterations, () the snake loaded on the same structure in slice
05, and (f) the final snake on slice 05 after 40 iterations. (g) the snake
loaded on the same structure in slice 06, and (h) the final snake on
slice 06 after 25 iterations. The values of parameters of each slice in
the series of a same case may not be similar, for example the no. of
iteration in first slice may be 20 and the second slice may be 100.

Note: Medical Images of patients’ cases are taken from Hitachi
Medical Systems America (4).

Conclusion

It is found that the generic segmentation algorithms (thresholding
approaches, region-based approaches, edge-based approaches) are
usually easy to use. However, they are all sensitive to noise. They tend
to over segment the images. Moreover, the segmentation results may
not correspond to the desired object. They failed with the medical
images because of the sheer size of data sets and the complexity and
variability of the anatomic shapes of interest.

The Snakes Models are the popular approaches currently used in
medical image segmentation. The efficiency of snakes depends on a
set of parameters such as alpha (elasticity parameter), beta (rigidity
parameter), iteration no. etc. When the user gives the appropriate
values, the snake deforms well and locks on the desired object. Also it
is found that, there is no way to compute or directly give the
appropriate values for these parameters, but by experiments and
common sense; with respect to our experiments we found that the
acceptable range for each parameter is as follows:

Increasing B will increase the rigidity of the model and would
affect the shape even if close to start with. We found that the rigidity
parameter can be increased from 0 to 0.01 with almost the same
results. Decreasing the tension parameter causes the active contour to
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follow the influence of the external force and lose its smoothness. The
acceptable range that we found for tension was from 0.5 to 0.8.

Also it is found that the best combination of the parameters may
vary depending on the characteristics of the region of interest (i.e., the
contrast and shape), the number of points of the initial contour, and
the distance of the points from the boundary.

Finally, it is important to observe that an efficient, precise medical
image segmentation system should necessarily add to the model some
level of intrinsic knowledge about the problem. Variables like the
kind, shape and relative location of the common structures or
pathology, and their size compared to some reference system such as
an anatomy atlas, would improve enormously the model robustness
and autonomy.
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Table (1) Kass’ snake parameters

Shape (o) () (B) Iteration No.

Circle 2 0.5 0.05 250
Convex 3 0.7 0 300
polygon

Table (2) Kass’ snake parameters with medical images

Type of

o (0) (a) (B) Iteration No.
MRI 3 0.5 0 80
Ultrasound 3 0.8 0.01 260
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Do
For each control point (X;5 Yi)

Calculate the local energy of the curve at (X» Yi)

Estimate the partial derivatives X g, X g, ¥ g¢ and y ssss using

finite
difference approximations

Calculate the force F;, and F ext along x and y directions
Thus calculate the total force experienced by the point

(X;5 Yi) in

]
x and y directions and find the new pixel (x',y )it should
move to

'
Calculate the local energy of the curve at this new pixel ( x', y)

Update (X;, ¥i) to (x,y) only if this brings about a

decrease in
local curve energy.
END FOR
WHILE number of control points moved > &

€ is the threshold specified by the user and defines the termination

criterion for the loop

Fig. (1) Kass’ snake algorithm
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(@) ) ©
Fig (2) Kass’ snake locked on a circle (a) is the initial snake in red
color, (b) is the snake deformation in red color, and (c) is the final

snake in green color

(@ ) ©
Fig (3) Kass’ snake locked on a convex polygon (a) is the initial snake
in red color, (b) is the snake deformation in red color, and (c) is the
Jfinal snake in green color
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Fig (4) MRI slice liver image corresponding to a patient with a hepatic
cystic lesion depicted. Pathological image convolved with a Gaussian

B _filter G, for 6 =2.5

(a) ()
'Fig (5) Pathological image segmented with Kass’ snake model, (a) is

the initr‘_al snake red _c?lor an_d (b) is the final snake in green color
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(@) () (©

(d) (e)

Fig (6) Ultrasound image of embryo segmented with Kass’ snake
model, (a) is the original image, (b) is the edge map, (c) is the initial
snake in red color, (d) is the snake deformation, and (e) is the final

snake in green color
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Slice 03 (b)

Slice 06 (g)

F fg (7) Example of the multi-loading property of snake in GUI
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