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Abstract

In this paper ,we will consider the densily questions associated
with the single hidden layer feed forward model. We proved that a
FFENN with one hidden layer can uniformly approximate any
continuous function in C(k)(where k is a compact set in R" ) to any
required accuracy.

However, if the set of basis function is dense then the ANN’s can has
almost one hidden layer. But it the set of basis function non-dense.
then we need more hidden layers. Also, we have shown that there
exist localized functions and that there is no theoretical lower bound
on the degree of approximation common to all activation
functions(contrary to the situation in the single hidden layer model).

Introduction

Artificial Neural networks(ANN)effectively is a mapping
which creates a function of several variables from a number of sums
and products of functions of one variable. It may contain several
layers which can be used for calculations. corresponding to the layers
of the ANN's and it may modify the parameters in the resulting form
of the approximation by a learning or training procedure which passes
through the ANN’s repeatedly or which moves forward and back ward
through the ANN's,
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Let inputs vectors be in R" and the output Y of the ANN be a
vector in R™, where usually m << n (In many cases m = 1). The ANN
thus computes a function g : R" —— R™ which we regard as an
approximation to some other function f ; R" —— R". We wish to
know if our set of possible functions g, correspanding to our particular
class of ANN, is dense in some suitable function space which includes
our target function f. In view of the difficulty of dealing with non
differential and discontinuous functions, it is usual 10 use a smooth
actrvation function, instead of a threshold, for the units.

Note that the activation function o : R —— R required a
various restrictions to be putted on & to make it practical for the ANN,
and we will introduce these as required. We will discuss how a multi
layer FFENN with a single hidden layer of K neuron units can be used
to approximate a function of several variables, where the weight at the
J-th hidden neuron is denoted W,

Thus for a given input vector x, the input to this unit 1s

V»IJ'TH. We assume that each of the hidden units has identical

activation function o, but that ‘threshold like’ shift of the argument by
a real scalar c; is permitted. So the output from the j-th hidden unit is

o W'j[ X+ &)

Now we denote the weight connecting the j-th hidden unit to
the output by v;. The out put function g of the ANN is therefore (see

Fig.(1), (1):
k

g(}():ZVJG(W‘]TX‘FCI) ........................ [1.1]
=1

activation function ¢ used in practice have the property of being
monotonic increasing, bounded and sigmoidal, which means that the
limits at +eo, —oo are 1 and O respectively. Except for the threshold
function, they are also continuous and smooth. The most popular
choice is the sigmoid function:

a(x) = 1] +exp{—aX))ooiiieiriinnreianns | 1.2]

where o can be adjusted so that we can avoid the local minimum.
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However, the density proofs do not use all these conditions.
For the basic results only continuity or uniform continuity is required,

plus the condition that ¢ be sigmoidal.

Density

In this section we will consider density questions associated
with the single hidden layer feed forward neural model. That is, for an

activation function, o, and, for any f € C(R").k compact subset of R",
and any € > (), there exists g(x) = o(w.x — 8), where ® € R, w ¢ R".

such that: max [f(x) — g(x) <&
xeK

Firstly, we introduce definition of density:

Definition (2.1)
A subset D in C(X) is dense if and only if:

V fe C(X), vV compact set K « X and ¥ € > 0, 3 ge D, — such
that: |fgllx <¢

Remarks
Density 15 the theoretical means, the ability to approximate well.

1. Density dose not imply a good. cfficient scheme for the
approximation

2. Lack density means that it 1s impossible to approximate a
large class of functions, and this effectively precludes any
scheme based there on being in the least useful.

3. C(X) becomes a topological algebra. Since X 1s normed linear
space, it is not a compact topological space and usual Stone-
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Weienstrass theorem does not apply to it. However, there arc a
suitable substitute for it.

Now, we state Kolmogorov’s theorem:

Theorem (2.2) Kolmogorov's mapping Neural Network Existence
Theorem)

Given any continuous function f : [0,1["—> RM fixy=vy.
can be implemented exactly by a three-layer feed forward neural
network having n processing elements in the first (x-input) layer, (2n
+ 1) processing elements in the middle layer. and m processing
elements in the lop (y-output) layer.

Proof : The proof can be found in (2) &

As stated in the above theorem, the Kolmogorov mappmg
network consists of three layers of processing elements (input layer-
hidden layer and output layer). The first layer (input layer) consists of
n input units. The second layer consists of 2n + 1 semi linear units
(i.e.. the transfer function of these units is similar to a linear weighted
sum). Finally, the third (output) layer has m processing elements with
highly nonlinear transfer functions. The second layer implement the
n

kkw(xj +key+k

following transfer function 7y, =

=1

where the real constant % and the continuous real
monotonically increasing function y are independent of f(although
they do depend on n). The constant ¢ is a rational number 0 < & < 9,
where & is an arbitrarily chosen positive constant. The m top layer

processing elements (output units) have the following transfer
2n+]

functions: y; = Zgi(zk)
k=]

where the functions g, i = 1.2,...m are real and continuous (and
depend on f and £). No specific example of a function y and constant
¢ are known (still an open problem). No example of a g function 1s
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known. The proof of the theorem is not constructive, so it does not tell
us how to determine these quantities. It is strictly an existence

theorem. It tells us that such a three layer mapping network must exist.
but it doesn’t tell us how to find it.

However, the direct usefulness of this result is doubtful.
because no conslructive method for developing the g; functions is
known.

Direct Approaches to Density

[n this section, we intreduce several proofs of the density
result, by considering the one-dimensional casc. We start with the

following definition,
Definition (3.1)

Let K be a compact set in R and f e C(K). The modulus of
continuity of f 1s defined as:

w(f.d)= sup ifix) - f(y)l
X.vel
x-y|<d
It we choose K to be the interval [0, 1], ne N and we consider the
step function h,(x)} which takes the value f{v/n) in the interval v/n < x
< (v+1)/n. Obviously this gives :

"' — hyll. € w(t,1/n). It is convenient o write:

[
ha(x) = f(0) + Z{f(wn)—(f(v—l)xn)} .................. (3.1]

v=I

where | 1s the largest Integer which does not exceed nx.

150




IBN AL- HAITHAM J. FOR PURE & APPL.SCL.  VOL.20 (1) 2007

Definition (3.2)

If o is a continuous function on R and sigmoidal, we define
An to be the smallest positive integer, such that:

I
lo(x) € — forx <-Apand (1 - —) soX)s(1+—)forx=> A,
I il I
Then they define the quasi interpolate g, as:

n

ga(x) =f(0) + z {(v/n)—f((v- I))in}G(An (nx —v)).....[3.2]

v=]

for X € [0, 1]. Now, we introduce the following theorem:

Theorem (3.3)

There exists a constant ¢ such that ¥ [ e CIOL): If — golle =
cw(f, 1/n).

(Note that: Here the uniform norm is taken on the interval [0, 1] and ¢

i1s independent of f).

Proof : We have.
i E- €l = ||f = hy + hy — Bnllo < [If = halle+ [fhy - Zallo

We already know |if — h,ll, < w(f, 1/n) so only the second term need
be considered. Now for any x e [0. 1] with u defined as in [3.1]we
have:

. hn(X)—ga(x)=f(0)+
Z fiviny—fiev—1)/n)} - F0) - Z Tvin) = I((v = in)jo(A, (nx - v))

v=| v=|

1L n
:Z FE(vin)— (v — I}fn}}(]— a{ A, (nx — x-']l}) + Z fiviny = fliv=1); npbo{A, (nx - v))

=1 RITE |

Now from definition (3.2) we have:
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[fv<p—1impliesv+1<ubutp<nx,thusv+1<nx, thennx —v
21

==

1
So |1 - oA, (nx = v))| < —. by the definition of A,

I
Similarly if v 2 n + 2, ImplIE5|G(An(HK—V))|E E Thus:
| hp(x)—ga(x)|<
H 1
Z|[I’u-.-’n]—!'{f_r—]}.-‘nJ}-||i—n{.-‘-\”;n:~;—v}}|+ E I{f{w‘n}—I'Hv—l]:’n]” |G[An{nx—w]|
et | vy =+
il
= —w(f,l/n)
I

That s, | = gall = W(f, 1/0) + (4/n) w(f, 1/n) = (1 + 4/n)w(f, 1/n)

That is ¢ may be chosen as (1+4/n). Which complete the proof &

Remarks

. There are two well known methods of passing from one-
dimensional to higher- dimensional approximations: the
blending operator and the tensor product (3).

2. Suppose we have two sets of basis functions} @y, @2, ..., ¢,
and {y;, g2, ..., y,} where ¢, y; : R —— R. The tensor
product basis is the sct of pxv functions:

i j( X, ¥) = @i(x) y5(y).

Sometimes one can  construct a  two-dimensional
approximation using the tensor product basis by applying a one-
dimensional approximation operator in each dimension.

In practice the two sets are usually the same type of function
(c.g. both polynomials or both trigonometric functions) although n
and v may of course be different. Now. what happens if we apply this
construction to ridge functions. For simplicity we assume that the
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same function ¢ is to be used for x and y. So typical one-
dimensional ridge functions will be o(ax + ¢;) and o(bjyy + d;). The
tensor product basis thus consists of functions of the form olax + ¢
a(bjy +dj). In

general this does not give a two-dimensional ridge function
so we will not land up with a ANN approximation of the form
(1.1).However, there is one particular choice of o for which the
construction does work. namely o{x) = exp(x). Then we get:

s(ax + ¢) olby + d;) = explaix + ¢;) exp(byy + dj)

= exp (ax +hy + ¢, +d)) =olax thy + ¢+ d))

The above observation has been used by several authors to
produce an n-dimensional ridge function approximations. The basic
idea is to prove that the density of the ridge functions for the special

case of o(x) = exp(x) and then to use a. One-dimensional result such
as theorem 3.3 to approximate the exponential function by linear

Combinations of the desired o. Now. we introduce the following
definition:

Definition (3.4)

A set of functions is said to be fundamental in a given space
if a linear combinations of them are dense 1s that space.

Theorem (3.5)

Let k be a compact set in R". Then the set E of functions of
the form p(x) = exp(a' x), where a € R, is fundamental in C(K).

Proof

By the Stone-Weierstrass theorem we need only show that

the sct forms an algebra and separates points. Suppose x € K. First,
we have:

exp(a'x) ﬁ::-:p{b'rx} = exp{aTx + bT:-:) = 'e:h:p((a" + bhx).

The set also contains the function®1’simply choose a= 0. This
establishes that E is an algebra. It remains to show that E separates the

pc}ints_n:_:mf K.Soletx,y € K with x # y. Set a=(x—y). Then a'(x — y) =
0.soa' x#a'v.Thus expla’ x) # exp(a'y).The proof is complete.C
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Before considering more constructive versions of this result
we complete the density proof.

Theorem (3.6)

Let K be a compact set in R". Then the set F of functions of

the form g (x).defined by (1.1} with o as a continuous sigmoidal
function is dense in C(K).

Proof
Let { € C(K). For any € > 0, there exists (by theorem 3.5) a
m
; g &
finite number m of vectors a;, such that: | — » expla; x} < =
=1 o

; T _
since there are only m scalars a; X. we may find a finite interval

including all of them. Thus there exists a number I' such that exp
(a ;1“ X ) = exp(l'y) where
y = (aiTxﬂ“] e [0,1]. Then theorem (3.3) tells us that the function exp

(T'y) can be approximated by lincar combinations functions of the
form a( W J-T:a; + ¢;) with a uniform crror less than £/2m, from which

the desired result easily follows. £

Remarks

1. Theorem (3.5) tells us one hidden layer is sufficient to
approximate any continuous function to any required
accuracy.

-2

I" in the proof of theorem (3.6) can be chosen to be an integer,
and the numbers A, nand v in (3.2) are also integers.

3. The question of rate of convergence of approximations is
obviously of considerable importance. If [ 15 smooth and we
use smooth approximating functions such as [1.2] we might
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hope to get belter convergence than the simple O(1/n) which
implied by theorem (3.3).

Now, we introduce the following interesting result about
density,

Let X a normed vector space over R. The {bounded) dual
space of X, denoted by X', is the space of all bounded lincar
functionals on X. (A linear functional is a linear mapping from X to

R). It has a natural norm defined by: '| £ || = sup | £ (x)
XxEX
I xi|=1

X' 15 always a Banach space, even if X is not.
Now let V be a subspace of X. We wish to know whether V
Is dense in X. The relevance of the dual space is shown by the

following theorem,

Theorem 3.7 (4)

Vi is dense in X if and only if the only linear functional £ X' for

which ¢ (v) =0 for all v € V is the trivial one £ (x) =0,

Proof : Suppose first that v is dense in X. Suppose also that # is a
linear functional ¢ such that £ (v)=0forv e V. Let x € X. For any €
> (), we have v e V, with Ix —v|| <¢ .

Then| £(x)| =€ (x)~ £ ()| =€ (x—v)[ <16 ]Ix—v]|<|£].

since this 1s true for any € > 0, we must have ¢ (x) = 0.
This establishes the “only if” part of the theorem.

Now suppose that V is not densein X. Then there is a x € X and a
number & > 0 such that ||[x — v| > §, for all vin V. Let W be the space
spanned by x and the space V, i.c., the set of all linear combinations
ox + v, where . € Rand v € V. Note that o € R is unique, for if a;x
TV =X v, we have (o — o)X = v — v, whence we must have
0y = oy since x ¢ V. Thus we can define the following lincar
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functional on W : f(ax + v} = . Note that f(x) = | and
¢ (v)=0.forall veV. Now if w = ax + v with et # 0.

[w | = lowx + il = [ed Jix + & 'vi] = [€ (WIS =odd = [[w]] 2 | £ (W)} .So
£ (w)] < (lwt 8.

On the other hand ife = 0, that is |[£(w)] = 0, so the
inequality above holds trivially. This shows that { is a non-trivial
bounded linear functional on the whole of X, This completes the

proof .C

Thus if we want to establish density of V in X we need only
to show that any linear functional which annihilates V is, in fact, the
zero functional.

Poggio, Girosi and Jane in (3) shows:

For approximating a d-variable functions, (X, X2, .... Xd)
with S continuous derivatives, the best achievable approximation

11
accuracy (ratc of convergence) 15 O( m_“”"L where fi(x, W) = ZW 0
.

_that is they relate the smoothness of the function. the number of basis
function. m. and the dimension of the domain, d. It is clear that if m 1s
fixed then as the number of variable increased we get smaller error
bound and this is one of the advantage of using ANN, to approximate
f(xX1. X2, -..s Xa), instead of using other methods such FEM, where such
upper bound get poorer as d increase. However for a given
approximation etror the number of parameter m exponentially
increases with d (for a fixed measure of complexity S). It implies that
the number of samples needed for accurate estimation of m {(number
of basis function or dimension of the space) parameters also grows
exponentially with dimensionalily d. This result constitutes the curse
of dimensionality. If we view S/d as the complexity index of possible
irade- off between the smoothness and dimensionality which is the
rate of convergence and the number of samples needed for accurate
estimation that increases exponentially with complexity index s/d.
Thus fast rate of convergence for high-dimensional problems can be
obtained. in principle, by imposing stronger smoothness constraints,
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Theorem (3.8) (Maiorov and Pinkus, 1999) (6)

Thete existo € C(R) that are sigmoidal and strictly increasing,

I ;
and have the property that for every g(x) = Zg_(ai x) »a € R, g
(a'.
s
e C(R) and £ > 0 there existc; .0, e R and
W oeg RBL v o2 T 2 sa T o+ H o4 1 satisfying:

r-n+l
g(x)— Zciﬁ(’ﬁix -0.)

=1

me

for all x € B", where B" denote the unit ball in R", that is:

2-1f2£l}

B"= {x:|x|a=(X; + X3 + ...+ X
= X=Xy + X5+t X))

Remark

In practice any approximation process depends not only on the
degree (order) of approximation, but also on the possibility,
complexity and cost of finding good approximates. The above
activation [unctions are very smooth and give the best degree of
approximation. However, they are very difficult to be implemented.
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X1 X Xy ... X
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ZFJG(ZLVJ]Ei *CJ}-— f(xlsz,...,xl)
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Fig.(1) Layers in ANN.
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