IBN AL- HAITHAM J. FOR PURE & APPL, SCI VOL.21 (3) 2008

An Efficient Shrunken Estimators For The Mean Of Normal Population With Known Variance

A. N. Al- Goburi

Department of Mathematics, College of Education ,Ibn Al- Haithm ,Baghdad University

Abstract

This article considers a shrunken estimator of Al-Hermyari and Al-Goburi (1) to estimate the mean (θ) of a normal distribution N(θ , σ^2) with known variance (σ^2), when a guess value (θ_{\circ}) is available about the mean (θ) as an initial estimate. This estimator is shown to be more efficient than the classical estimators especially when θ is close to θ_{\circ} . General expressions for bias and MSE of considered estimator are given, with some examples. Numerical results, comparisons and

conclusions are reported.

Introduction

Let X be a random variable that has a normal distribution N(θ , σ^2) when θ is an unknown parameter and σ^2 is a known parameter, and when a prior information (θ_{\circ}) available about the mean based on any one of the following reasons (2)

e.g.:

(i) we believe θ_{\cdot} is close to the true value θ , or

(ii) we fear that θ_{\circ} may be near the true of θ ,

i.e., Something bad happens if $\theta \approx \theta_{\circ}$, and we do not know about it.

In such a situation it is natural to start with the MLE $(\hat{\theta})$ of (θ) and modify it by moving it closer to θ_0 so that the resulting estimator, though perhaps biased has a smaller mean squared error (MSE) than that of $\hat{\theta}$ in some interval around θ_0 .

IBN AL-HAITHAM J. FOR PURE & APPL. SCI VOL.21 (3) 2008

Several authors studied shrunken estimators for the mean (θ) of a normal distribution (see, e.g. Thompson(2,3), Mehta and Srinivasan (4), Kambo, Handa and Al-Hemyari (5) and others).

In this paper we have studied a shrunken estimator for the mean (θ) of a normal distribution N(θ , σ^2) with known σ^2 , which has the following form:

$$\hat{\theta} = \begin{cases} \psi(\hat{\theta})(\hat{\theta} - \theta_0) + \theta_0 & , \text{If } \hat{\theta} \in R, \\ (1 - \psi(\hat{\theta}))(\hat{\theta} - \theta_0) + \theta_0 & , \text{If } \hat{\theta} \notin R, \end{cases} \dots \dots [1]$$

where $0 \le \psi(\theta) \le 1$ is a shrinkage weight function that may be constant or a function of $\hat{\theta}$, and R be a suitable region of $\hat{\theta}$ depending on θ_0 (e.g. pre test region).

General expressions for the bias and Mean squared error of considered estimator ($\tilde{\theta}$) defined in [1] are given for any shrinkage weight function $\Psi(.)$ and for any region R. Examples of $\Psi(.)$, R and numerical results are given and compared with known estimators.

Expressions for Bias and Mean Squared Error of Estimator $\tilde{\theta}$

General expressions for bias and MSE of a shrunken estimator $\tilde{\theta}$ for any shrinkage weight function $\Psi(.)$ and any region R can be expressed as:

$$B(\hat{\theta}/\theta,R) = \{ \int_{R} (2\psi(\hat{\theta}) - 1)(\hat{\theta} - \theta_0) + \int_{-\infty}^{\infty} [(1 - \psi(\hat{\theta}))(\hat{\theta} - \theta_0) + (\theta_0 - \theta)] \} f(\hat{\theta}/\theta) d\theta \dots [2]$$

$$\mathsf{MSE}(|\tilde{\theta}|/\theta,R) = \{ \iint_{R} [(2\psi(\hat{\theta}) - 1)(\hat{\theta} - \theta_{0})^{2} + 2(\theta_{0} - \theta)(2\psi(\hat{\theta}) - 1)(\hat{\theta} - \theta_{0})] + 2(\theta_{0} - \theta)(2\psi(\hat{\theta}) - 1)(\hat{\theta} - \theta)(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta))] + 2(\theta_{0} - \theta)(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta))(2\psi(\hat{\theta} - \theta))(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta))(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta))(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta)(2\psi(\hat{\theta}) - \theta))(2\psi(\hat{\theta}) - \theta)$$

$$\int_{-\infty}^{\infty} [(1-\psi(\hat{\theta}))^2(\hat{\theta}-\theta_0)^2+2(\theta_0-\theta)(1-\psi(\hat{\theta}))(\hat{\theta}-\theta_0)+(\theta_0-\theta)^2] f(\hat{\theta}/\theta)d\hat{\theta},\dots\dots\dots[3]$$

where $f(\hat{\theta}/\theta)$ is a p.d. f. of $\hat{\theta}$ Shrunken Estimators $\tilde{\theta}_1$ and $\tilde{\theta}_2$

In this section we assumed two types of shrunken estimator $(\tilde{\theta})$ defined in [1] by taken two different shrinkage weight function $\Psi(.)$ to estimate the mean (θ) of a normal distribution N(θ, σ^2)

IBN AL- HAITHAM J. FOR PURE & APPL. SCI VOL.21 (3) 2008

with known variance, and we assumed the pre- test region R of level of significance α , such that:

 $R = \{\hat{\theta}, T(\hat{\theta}) \in [L_{1-\alpha/2}, U_{\alpha/2}]\}, \qquad \dots [4]$ where $L_{1-\alpha/2}$ and $U_{\alpha/2}$ are the lower and upper $100(\alpha/2)$ percentile points of the test statistic T used for testing $H \circ : \theta = \theta \circ$ against $H_1: \theta \neq \theta_0$

Let us take $\psi_1(\hat{\theta}) = \sqrt{w/c}$ as a first type, where $w = n(\bar{x} - \theta_s)^2 / \sigma^2$, $c = Z_{\alpha/2}$ and $\psi_2(\hat{\theta}) = a/b$ as the second, where a and b are natural numbers such that $(a \le b)$.

Now, the shrunken estimators $\tilde{\theta}_1$ and $\tilde{\theta}_2$, using [1], are respectively given by:

$$\widetilde{\theta}_{1} = \begin{cases} \frac{\sqrt{w}}{c} (\overline{X} - \theta_{*}) + \theta_{*} &, & \text{if } \overline{X} \in R, \\ (1 - \frac{\sqrt{w}}{c} (\overline{X} - \theta_{*}) + \theta_{*} &, & \text{if } \overline{X} \notin R,. \end{cases}$$

$$\dots [5]$$

$$\widetilde{\theta}_{2} = \begin{cases} a(\overline{X} - \theta_{\circ})/b + \theta_{\circ} &, \text{ if } \overline{X} \in R, \\ (1 - a/b)(\overline{X} - \theta_{\circ}) + \theta_{\circ} &, \text{ if } \overline{X} \notin R, \end{cases} \qquad \dots [6]$$

By using equation [2], the expressions for bias of $\tilde{\theta}_1$ and $\tilde{\theta}_2$ are respectively given as follows:-

$$B(\tilde{\theta}_{1} / \theta, R) = (\sigma / \sqrt{n}) \{ (2/c) [J_{2}(\ell, u) - 2\lambda J_{1}(\ell, u) + \lambda^{2} J_{0}(\ell, u)] - [J_{1}(\ell, u) - \lambda J_{0}(\ell, u)] + (1 + \lambda^{2}) / c \}, \dots, [7]$$

and,

$$B(\widetilde{\theta}_2 / \theta, R) = (\sigma / \sqrt{n}) \left\{ \left\{ (2a/b - 1) \left[J_1(\ell, u) - \lambda J_o(\ell, u) \right] + (a/b) \lambda \right\} \right\} \dots [8]$$

Using equation [3], the expressions for MSE of $\tilde{\theta}_1$ and $\tilde{\theta}_2$ are respectively given by:-

IBN AL- HAITHAM J. FOR PURE & APPL. SC1 VOL.21 (3) 2008

$$MSE(\tilde{\theta}_{1}/\theta, R) = (\sigma^{2}/n) \{ (4\lambda/c) [J_{2}(\ell, u) - 2\lambda J_{1}(\ell, u) + \lambda^{2} J_{0}(\ell, u)] + 2\lambda [J_{1}(\ell, u) - \lambda J_{0}(\ell, u)] + (2/c) [J_{3}(\ell, u) - 3\lambda J_{2}(\ell, u) + 3\lambda^{2} J_{1}(\ell, u) - \lambda^{3} J_{0}(\ell, u)] + [1 + (3 + 6\lambda^{2} + \lambda^{4})/c^{2} - 2(3\lambda + \lambda^{3})/c + (2\lambda/c^{2})(1 + \lambda^{2}) \} [9]$$

and,

 $MSE(\tilde{\theta}_{2}/\theta, R) = (\sigma^{2}/n)\{(2a/b-1)[J_{2}(\ell, u) - \lambda^{2}J_{0}(\ell, u)] + (1 - a/b)^{2} + (a\lambda/b)^{2}\}...[10]$

It is possible, for example to take b=1 and find the value of (a) by minimizing the MSE($\tilde{\theta}_2/\theta$) with respect to a; therefore the value of (a) is as:

by simple calculation,

where:

$$\lambda = \sqrt{n}(\theta_0 - \theta)/\sigma, \ \ell = \lambda - c, \ u = \lambda + c, \ z = \sqrt{n}(\overline{x} - \theta)/\sigma$$
and

Conclusons and Numerical Results

In this section some conclusions and numerical results concerning $\tilde{\theta}_1$ and $\tilde{\theta}_2$ will be presented as follows: (1) $MSE(\tilde{\theta}_i / \theta, R)$ is an even function of λ , where

$$\lambda = \sqrt{n(\theta_0 - \theta)}/\sigma$$
, for $i = 1,2$.

- (2) $\lim_{n \to \infty} MSE(\tilde{\theta}_i / \theta, R) = 0$, then $\tilde{\theta}_1$ (i=1,2) are consistent estimators.
- (3) The bias, mean squared error, and relative efficiency $[R.Eff = MSE(\hat{\theta}) / MSE(\tilde{\theta}_i)]$ of estimators $\tilde{\theta}_i$ (i=1,2) with **162**

IBN AL-HAITHAM J. FOR PURE & APPL. SCI VOL.21 (3) 2008

- region (R) were computed for different values of λ which is involved in these estimators, The following results based on these computations:-
 - (i) Numerical computations are performed by taken $\alpha = 0.002$, 0.01, 0.02, 0.05, 0.08, ... and $\lambda = 0.0 (0.1) 2.0$.
 - (ii) In tables (1) and (2), some sample values of R. efficiency relative to \bar{x} and bias ratio $\frac{\sqrt{n}}{\sigma}B(\tilde{\theta}_i/\theta)$ (shown in

parenthesis) of $\tilde{\theta}_i$ (i=1,2) with λ are given for some selected values of α . It was observed that generally R. Eff ($\tilde{\theta}$ i) increases as α decreases and decreases as λ increases; Therefore, for each α , the estimators $\tilde{\theta}_i$ (i=1,2) have higher relative efficiency when $\lambda = 0$. The relative efficiency of $\tilde{\theta}_2$ increased with the increasing of b for each α and λ .

(4) The considered estimators $\tilde{\theta}$ i (i= 1,2) have higher relative efficiency than the classical estimator and than the known estimators which are considered by Thompson(1), Mehta and Srinivasan(4) and Hirano(6).

References

- Al- Hemyari, Z.A. and Al- Goburi, A.N. (1999). population". AL-Fath J.of the College of Pure Sci.<u>3</u>:5
- 2. Thompson, J. R. (1968a). J. Amer. Statist. Assoc, 63: 113-122.
- 3. Thompson, J. R. (1968a). J. Amer. Statist. Assoc., 63 :951-963.
- 4. Mehta, J.S. and Srinivasan, R. (1971). J. Amer. Statist. Assoc., 66: 86-90.
- 5. Kambo, N. S.; Handa, B. R. and Al-Hemyari, Z.A. (1992).
- Comm. Statist. Theory Meth, <u>3</u>: 823-841.
- 6.Hirano, K. (1974).Ann. Inst. Statist. Math., pp. 479-492.

Ø	r	0.0	1.0	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.002	R.ET B	7.21 (0.0)	6.21 (.05)	5.05 (.15)	4.02 (.22)	3.19 (29)	2.55 (35)	2.07 (.42)	1.71 (.49)	1.42 (.56)	1.19 (.62)	1.12 (.68)
0.01	R.Ef	4.83 (0.0)	4.33 (.06)	3.70 (0.14)	3.06 (.21)	2,49 (.28)	2.02 (.35)	1.64 (.42)	1.34 (.49)	(-56)	0.89 (.64)	0.80 (.72)
0.05	R.Er B	2.39 (0.0)	2.11 (.08)	1.76 (.17)	1.42 (.26)	1.11 (.35)	0.87 (.44)	0.68 (.54)	0.53 (.65)	0.41 (.77)	0.32 (.90)	0.25 (1.04)
0.1	R Ef 11	1.14 (0.0)	(11) (11)	0.82 (.22)	0.65 (.34)	0.51 (.46)	0.39 (.59)	0.31 (.74)	0.24 (.89)	0.18 (1.06)	0.14 (1.24)	0.10 (1.45)

and B $(\tilde{\theta}_{1}^{\prime}/\theta)$

a	7	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.002	R.Ef 13	30.80 (0.0)	16.21 (.09)	9.38 (.18)	6.16 (.26)	4.47 (.33)	3.48 (.37)	2.88 (.41)	2.48 (.43)	2.21 (.45)	2.01 (.46)	1.82 (.47)
0.01	R.Hf B	11.59 (0.0)	8.79 (.08)	6.16 (26)	4.85 (.23)	3.93 (.29)	3.18 (.33)	2.74 (.36)	2.44 (.39)	2.23 (.41)	2.07 (.42)	1.70 (.43)
0.05	R.Ef B	4.83 (0.0)	4.47 (.06)	4.03 (.12)	3.60 (.17)	3.24 (.22)	2.94 (.26)	2.70 (.30)	2.50 (.34)	2.32 (.38)	2.14 (.41)	1.62 (.42)
0.1	R.Ef	4.01 (0.0)	3.87 (.05)	3.67 (.10)	3.45 (,15)	3.22 (.20)	3.00 (.25)	2.78 (.29)	2.56 (.35)	2.34 (.37)	2.12 (.40)	1.53 (.41)

IBN AL- HAITHAM J. FOR PURE & APPL. SCI VOL.21 (3) 2008

Table (1): R. Eff $(\widetilde{ heta}, | heta)$

Table (2): R.Eff ($\tilde{\theta}$, $/\theta$) and B ($\tilde{\theta}$, $/\theta$)

-

164

مجلة ابن الهيثم للعلوم الصرفة والتطبيقية المجلد21 (3) 2008 مقدرات التقلص الكفوءة لمتوسط التوزيع الطبيعي عندما يكون التباين معلوماً

عباس نجم سلمان الجبوري قسم الرياضيات، كلية التربية- ابن الهيثم، جامعة بغداد

الخلاصة

في هذا البحث درس مقدر المقلص ذو المرحلة الواحدة للباحثين [1] Al- Hemyari, and Al- Goburi التقدير الوسط الحسابي (θ) للتوزيع الطبيعي(θ, σ^2) عندما يكون التباين (σ^2) معلوماً بافتراض تو افر المعلومات المسبقة (θ_{0}) بشكل تقديرات اولية حول الوسط الحسابي (θ). اشتقت المسيغة العامة للتحيز (θ_{0}) ومتوسط مربعات الخطأ (MSE) لهذا المقدر لمختلف دو ال المتقلص الموزونية

 (٠) و مختلف المجالات (R)، ثم اقترحت بعض الامثلة و اعطيت النتائج العددية بتناول مختلف الثوابت التي تضمنتها. قورنت المقدرات المقترحة في هذا البحث مع المقدرات الكلاسيكية و المشابهة وبينت كفاءتها.