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Abstract

Evolutionary computation is a class of global search techniques
based on the learning proeess of a population of potential solutions to
a given problem, that has been successfully applied to variety of
problems. In this paper a new approach to design neural networks
based on evolutionary computation is present, A linear chromosome
representation of the network is used by genetic operators, which
allow the evolution of the architecture and weights simultaneously
without the need of local weights optimization. This paper describes
the approach, the operators and reports results of the application of
this technique to several binary classification problems.

Introduction

Artificial neural networks [ANNs] are a class of computational
tools inspired by the biological neurons system (1). They consist of
partially or fully interconnected simple processing units, called
neurons. ANNs derive their power from their parallel distributed
structure, and their ability to learn underlying relations from a given
set of representatives (2). The connections between units have
welights, which must be adjusted through a training process, to solve a
particular problem. The design of a neural network is still largely
pertormed using a lengthy process of trial and error definition of the
topology, followed by the application of learning algorithm such as
back propagation (3). The most ambitious combination attempts to
cvolve the architecture and weights simultaneously without a separate
trazmng process (2). Two common strategies 10 do this are the
destructive and constructive algorithms. Evolutionary computation is a
class of global search techniques based on the evolution process of
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each individual [4)(3)(6), representing a posential solution to a given
problem. Typical evalutionary computation updates this population
seeking for better regions of the search space using the operations of
selection, recombination and mutation, inspired by bialogical
evelution (7).

An appreach based on generic programming [GPJ. has been largely
limited by the lack of a good encoding mechanism, which 1§ a st
step in this direction. for example, in'(8) ANNs have been represented
as parse (rees. This representation’ was propesed by Koza, which s
recombined using a crossover operator tha swaps sub-trecs
representing sub-nets. The graph like structure of 4 neural network is
not ideally represented directly with parse trees either. An alternative
method based on genetic programming, known as cellular encading
(9) is indirect approach that avoids the problem of representing the
network directly as a parse tree. It represents the rules to eonstruct e
network instead. However, there are still constraing on the weights
evolved. and to consiruct the network using the rule ar esch genergation
which can bé a considerable overhead. A recent work based on a new
form of [GP], known as paralle] distributed genetic programming
(PDGP) was proposed by R.Poli. in which programs are représented
as graphs (instead of parse: [rees) has been applied to evolution of NNs
with promising resuks (10). R. Poli and J. Pujol proposed new
methods upon the preliminary work done with PDGP by intreducing a
dual representation and tiew operators. In PDGP. instead of usual
parse tree representation a/graph representation was used, where nodes
are allocated in two-dimensional grid of & fixed size and shape, which
forms the chromoseme. This method does not include auy operators
specialized in handling the connection weignts. By using this structure
to represent ANNs we cannotl apply lhe standard genetip operators
(such as one-point crossover...ete)eoutd not be applied because the
structure is nonlinear. Although the results were encouraging but led
us to believe that a proper representation with fixed size and shape of
the chromosomes  could make insfficient use of the available
memory. In addition anothen disadvamage of this method when
representing ANNs s that it does not take care with the design rulés of
neural network structure,

This paper describes a new form of Evoluticnary computation
which is suitable for evolution of artificial neural networks. I
represents each individual with a linear chromosome of variable size
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and shape. This feature gives the power and ability of the new
approach to passing most problems of representation in Genetic
Programming,.

The new approach proposes a new combination of crossover and
mutafion operators. Applying any one from both (standard or special
genetic operators) allows the evolution of topology and weights of
ANNs concurrently and very efficiently. The new method has been
successfully applied to determination of architecture and weights of
(three layered) feed forward networks.

Representation

In the new form, instead of the usual parse tree or the graph
representation, an array of pointers is used to represent the
chromosome. Each pointer represents a neuron and points to a linked
list of nodes that describe jts connections with the sending neurons in
a previous layer,

Graph representation uses a linear genotype and a separate grid
description to make it more natural. The new(linear or two-
dimensional) representation avoids this preblem where no need to
descriptions because it represents NNs  directly . The linear
chromosome consists of a munber of genes which represent the
neurons of network. This chromosome is divided into three sub
chromosomes. The genes of the first sub chromosome represent the
Input neurons, the genes of the second sub chromosorme represent the
hidden neurons, and the genes of the third sub chromosome represent
the output neurons. This chromosome uses an array of pointers
structure (see figure (1)).

In the standard GP the size of chromosome (parse tree) may grow
excessively, but the new represemtation avoids this problem because
the length of the chromosome is limited by the length of the array
which equals the total sum of neurons in a particular neural network.
Graph representation must represent the same number of NEUrons in
all layers, While in this new form no peed to do that. This
characteristic can make the new method of representation more
efficient in using the available memory, Like in standard GP there are
three classes of neurons, The inpwt class, the internal class and the
output class. Also there are three types of nodes. in the linked lists
pointed to by the neurons: function node, terminal node and body
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node ., Each node consists of four fields. The function node fields are
(see figure 2.a):
 The first field contains a value representing the number of nodes in the
linked list.
* The second field contains a value representing the type of activation
function.
 l'he third field contains a vatue representing the bias of the receIving
neuron.
» The fourth field contains a pointer to next node.
The body node fields are (see figure 2.b):
¢The first field contains a value representing the class of sending
neuron.
* The second field contains the index of sending neuron.
¢ The third field contains a weight value of the link.
* The fourth field contains a pointer to the next node.
The terminal node fields are (sec figure 2.¢):
e The first field contains a value representing the the class of sending
Neuron.
* The second field contains the index of sending neuron.
s The third field contains the mput value or a weight value of the link.
* The fourth field contains the nil pointer.
The mput class must contain terminal nodes only, but the internal
class and output class may consist of all types of nodes.
In the following are descriptions of the neurons in all parts of the
chromosome, see figure (1): -
a. The first sub chromosome (Input neurons or input class), The
neurons m this parf are representing the input layer, which contains
input values. The node type in this part is a terminal node only (see
figure 3).
b, Tne second sub chromosome. (Hidden neurons or intemal
class) The neurons in this part are representing hidden layer see figure
(4). Each neuron in this sub chromosome points to a linked list of
nodes that describe its connections with the sending neurons in the
put layer. The nodes of this list consist of three types the first 15 a
function node; the last is a terminal node and otherwise is a body node
(internal node).
c. The third sub chromosome. (Output neurons or output class)The
neurons 1n this part represent output layer see figure (5). Each neuron
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i this sub chromosome points to a linked list of nodes that describe
Its connections with the sending neurons in a previous layer. The
nodes of this list consist of three types. The first is a function node;
the last is a terminal node and otherwise is a body node (internal
rode).

The number of input neurons and output neurons depends on the
problem (fixed number), and the number of hidden neurons is variable
but subject to the condition that at least there is One neuron in the
hrdden layer connected with lnput and gutput layers,

Genetic operators
Genetic operalors are performed on the last two sub chromosomes,
Crossover operators
» Both nodes are Sunctions (Semi two points crossover). This is
the most important case, By combining the description of two
functions, the topology and weights of the network can be changed
see figure7.
The descriptions are combined by selecting two random Crossaver
points, k1 in node a and K4 following node b, and by exchanging the
nodes between the two outs.
s Both nodes are funetion (Semi ome point crossover), In thig
case the crossover operator applied by selecting randomly one point
following both nodes (k1), and then replacing the right bloek of the
node @ with the right block in the node b. see figure 6, this case
applied successfully.
Note
In all types of node level GP LLOSS0vVer operators, if the sub index of
one or more of nodes is fepeating in the offspring, the nodes which
contain the iteration sub index are deleted, and one of them and i5 stay
make its weight equal 1o the average ol the iterations weights.
The genes of last two sub chromosomes of parents are scanned from
left to right and exchanged with probabhility pe.

Mutation operator
- Changing mutation
The neurons of last two subcromosomes of a child are scanned
from left to right and with small probability (Pm) we mutate the bias
and weight in all nodes associated with the neuron. Each of the
mutation values is generated randomly in the range [-g.. + a.
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It a new weight is close to zero, the node is removed. 1f all welghts
are close to zero the hidden neuron is removed.
- Removing mutation |
T'he neurons of second sub chromosome of a child are scanned
from left to right and with small probability Pm  we remove the
neuron (remove all its associated nodes and set the neuron to nil).

Note
If all hidden neurons are removed, the child is refused.

Results

To'show the performance of the method proposed, it was applied to
a test suit of benchmarks present in the literature: N-bit odd parity
problems (for N’=2(XOR),3,4 and 3), where the Network output must
be 1 if there is an odd number of 1's in the Input pattern, and ¢
otherwise,

In all experiments a population of 100 chromosomes was evolved
for a maximum of 100 generations.

For each problem, we performed 50 runs with different random
seeds. In the expenments, we used g generational genetic algorithm
with: tournament selection (Iﬂmnamﬂn[.size,:.?) ana crossover and two
types of mutation probabilities of 0.4 and 0.09 and 0.1 respectively,

The weights and biases were randomly initialized within the range |-
1.0, +1.0].

The mutation operator used was the addition value to the weights
during the evolution. The fitness function was the standard mean
square crror of the output of the network for all input patterns. The
tunction set included a Sigmoid activation function.

The results obtained of using the XOR-problem (N-party problems)

when all types of crossover are applied is shown in the table 1, the
results table2, table3 and tabled.
Column 2 represents the average number of generations at which
reprsents the solution. Column 3 and 4 show the number of hidden
neurons and the number of connections of such solution, respectively.
Column 5 shows the copulated effort, and column 6 shows the
percentages of runs in which solutions were found,

The representation of a typical solution for the XOR problem and
the corresponding,
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Fuarther work
I.'The results obtained so far are promising , but they were achieved
without any optimization of relative probabilities of operators,
Although some operators seem to perform better than others.
2.To keep diversity within the population, other mutation operators
should be explored,
3.The extension to recurrent neural networks is a natural one, allowing
the method to be applied to a wide range of tasks.

Conclusion

In this paper, a new approach to the automatic design of neural
networks based on evolutionary computation has been presented. new
eperators were introduced . which exploited a liner representation , 1IN
which a linear encoding is used in copjunction with a array
representation

The representation of the neura] network in a liberalized form
allowed the development of efficient forms of crossover operations
and the introduction of strategy 10 reduced the complexity of
solutions, whereas the array of pointer description allowed to control
the cannectivity properties of the network.

The method was applied to evolve feed forward networks for a
variety of binary classification problems showing promising results.
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Table :(1-1) The results of (XOR) problem for new method
4.1 The best solutions for (N-patity) problems:-
4.1.1. XOR problem :-

Hidden

The t rati newvrons Connections ;

_Enfypn genil;a 2 Min/ave./ma Min/avg./ma effort S:rl:l::fdn
Crossover ' *
Semi one- 45 3250 2 QL 7.576 350 Yl 0
crossover
Semi 1wo- 39 3l 205453 W T7.571 6 350 %100
CLosSsaver

Table: (1-2) The results of 3-parity problem for new method
4.1.2. 3-parity problem:-

The type | generation | Hidden peureons Connections elffort | Solut
of 5 | Minfavg./max Minfavg./ma fons

crossover X found

Semi one- 60 57 4.0 / 3 17 7 16 50 T 9490 |

Crossover | 2

Semi two- 69 4 7 3.5 7 3 17 / 16 ¢ 310 %95

Crossover - 12
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Table: (1-3) The results of 4-parity problem for new method

4.1.3.4-partty problem

Table:(1-4)The results of XOR-pari

4.2.The best solutions

The type ]generaﬁ Hidden Connections Solutions
of ons Heurons Minfavg./max found
|_erossover Min/favg./max
Semi onc- 100 | 8 / 6.5 / 3 48 /7 42.0 3160 %12
Crossover 30
Semi two- 100 | 9 / 7.0 / 5 54 /0 42.0 300 %15
CTOSSOVEr 30

ty problem for (Poli&Pujol)
for (N-parity ) problems for tow searcher (Poli&Pujol)

[Po] 98]:-
4.2.1.XOR problem:-

The type of | generatio Hidden Connection | effort | Selution

Crossover ns neurons 5 s found

Min/avg./ma | Min/avg./m
X ax

End  node- H6 3 /1241 LA 3.575 | 40,200 [00%
end node
End node- 67 10 / 2.0/ | /[ 5.5/ 5| 39,800 100%
not end node I
Not end 69 6/ 1.5/ 1 6.2 f 5 |40.000 100%
nede-end
node 18/
Semi gne- 43 8 /1.8 1|11 /3575 | 40,200 100%
Crossover

174




IBN AL- HAITHAM J. FOR PURE & APPL. SCI

Table: (1-5) The results of 3-parity problem for (Poli&Pu jol)

4.2.2.3-parity problem:-

VOL.21 (3) 2008

The type | generati | Hidden Connections effort | Solut |
of ens | neurons Min/avg./max fans
crossover Min/avg./max foun
d
End nodeg- 935 9.f 220 ¥ | 35 0.7 7 72,000 98%
end node
End node- i 03 10/ 2.0/ 1] 31 J10.3 7 78.800 93 %
not end
node
Not  end 105 6 /2.0/ 1 24 flo.of 7| 152,000 Q3%
node-end
node
Semi one- 69 10 /337 L[ 36 [13.6 { 7| 141.000 32%
Crossover
l
Table: (1-6) the results of 4-parity problem for (Poli&Pujol)
4,2.3 4-parity problem :-
The type | generat Hidden Connection effort Soluti
of IoNs neurons “ ons
Crossove Min/favg./max Min/ave./m found
r ax
End |36 9 /5.2] 2 {14 720,000 23%
node-end
node 42 /26.5
End 121 8 /5.3 2 ! 14 884 400 19%
node-not .
end node 37 /26.1
Not end 1[2 5/ 5.0/ 5 [ 22| 5.,472,0 2%
node-end 00
node 28 /25.0
Semi 130G 6 /6.0 6 { 29| 12,025, 2%
one- 800
Crassover 29 {'29{]
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Table: (1-7) The results of 5-parity problem for (Poli& Pujol)
4.2.4.5-parity problem:-

The type of | gener | llidden {onnectiony eflfart m=olutio
Crossover ation | ncurnns Minfavg./m ns
§ | Min/avg./max 28X found
End node<end 149 7{6.7/6 38/37.3/37 5,350, 3%
node 400
Cnd node-nel 179 5/5.0/5 33/33.0/33 | 106,524 | %
end node 00
Not end node- 188 T[7.0f7 38/38.0/38 | 18,500 0%
end node A0
Semi une- 190 917.516 43/40.0/37 | 20,500 0%
Crossover IRV
N1 I B ‘Sn_]rlhl ‘ 8o G 411 “01| .. ‘Dn ‘
t t b T
INPUT 1LAYER HIDPEN LAYER OUTPUT LAYER
FIRST SECOND THIRD
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: Fig.{l) ¢ The general structure of the represcndation of three layered NNs by our new form
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