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Abstract

In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear
Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is
considered in the Riemman-Liouville sense. The procedure is based on the application of (ET)
to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved
to show that this is computationally efficient and accurate.
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Introduction

Many fields of science and engineering are described by integro-differential equation of
fractional order such as, fluid mechanics, vis co-elasticity, diffusion processes, biology and so
on [1-4]. Several methods to solve VFIDEs have been proposed such as, expansion methods
and spline method [5], variation iteration method [6], Laplace decomposition method [7] and
Legender pseudo spectral method [8].
In recent years, Elzaki transform (ET) was introduced by Tarig Elzaki (2010) has been used to
find solutions of a wide class of differential, integral, partial differential and the integro-
differential equations, see [9-12].

In this paper, ET and some of its fundamental properties are used to solve LVFIDESs
with initial value problems:
t

D%y (1) =g(t) + [ k(x,1) y(r) dr L)
0
Subject to the initial conditions
D*“?y(t) =c, , z=1,2,...n , n-l<a<n , neN
where C, is a specified constant, o is a parameter describing the order of the time
fractional, g and k are known functions, y(t) is the unknown function and D% is the

fractional differential operator of order o.

The present paper has been organized as follows. In section 2, some definitions,
theorems and properties of the fraction calculus and ET are presented. In section 3, the
solution steps to solve LVFIDE by using ET are described. Finally, in section 4, some test
examples are solved.

Preliminaries

In this section, we present some basic definitions, some theorems and useful properties of the
fractional calculus and Elzaki transform, as well as we proved some theorems which are used
in this work.

Definition (1): [1, 13]
The Riemann—Liouville fractional derivative of order « , is defined to be for oo >0:

1 d"
I'mh—a) dx"

D*f (x)=D"D* " f (x) = j(x—t)”—“—lf (t) dt
0

X
orfor a<0: pof(x) = T [ (x—t) %L (1) dit
I'(—a) 5
where n—1<a<n
Definition (2): [6, 13, 14]

The Riemann — Liouville fractional integral operator of order o > 0 , of a function
feC,, u>-1 isdefinedas:

D “f(x)=J%f(x) = %a) j(x—t)‘*—lf(t)dt
0

It has the following properties:
For «, >0 and y> O
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1) 3% (x) = f(x) 2) 3938 f (x) = 39B § (x)
N INPF)=IPI%F(x) HDDUNF(X)=F(X), a>0

5) JGXY:HY—_'_]')X(X+Y 6) Daxyzny—wx'a"'y ,,Y:O’l’___
I'oa+y+1) I'-oa+y+1)
o o n Cy X a-k
NIT"Df(x)=f(X) — R
ér(a—k+1)
Definition (3): [11, 15]
Elzaki transform is defined by:

E[f(t)]=T (u) = u? If(ut) e ldt , ue (ki k)
0
Where the function f (t) in te set A defined by:

A:{f(t) I M, Ky, K, >o‘ f(t) <M e*i i te(—l)jX[O,oo)}

,where n—-1<a<n and D“'kf(0)= Ck

Definition (4): [15, 12]
Defined for Re(s) > 0, the Laplace transform (LT) is given by:

o]

L{f (1)} =F (s) = j f(t) e St dt
0
Some properties of ET are given by following theorems:

Theorem (1): [9, 15]
Let f(t)eA ={f(t)

IM, ky,k, >0 F (1)< M eV if t e (—1)ix [O,oo)}

with LT, F(s) then the ET, T(u) of f(t) is given by:
Tw=uF@) and F@E)=sT@
u S

Theorem (2): [9]

Let T(u) denote the ET of the f(t), the ET of the definite integral of f(t), that is
t

h(t) :'[ f(t) dt then E[h(t)]=uT(u)
0

Theorem (3): [9, 11, 15]

Let the ET, F(u) and G(u) of the functions f(t) and g(t) respectively, then the ET of the

convolution of fand g is:
t

(f*9) (1) =_f f(7) g(t-7) dr isgiven by E[(f*g) (1)] =% F(u) G(u)
0
Theorem (4): [1, 5, 13]

The LT of the Riemann — Liouville is defined as:
n -

o o o 1k d*k-1g0)
L{D%f (1)} = F*(s)=s"F(s) — st ————>7 forall aand n-1<a<n,neN
kZo dx k-1

Theorem (5):
If F(s)and T(u)are LT and ET of f(t) respectively, then
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E{D%f ()} = T*(u)=u F“(%) where F%(s)= L{D®f ()}

Proof:-
From definition(3) we have:

E[D%f(t)]=T% (u) = u? T[D“f ut)] et dt
0

Now, let w = ut then we get:

T (U) = u j D% (w)] e ™Y dw = u Fa(%)
0

Theorem (6):

The ET of the Riemann — Liouville fractional derivative is defined:

n-1 a-k-1

a
u k=0

Proof:-
At first from the above theorem we have:

E[D*f ()]=T% (U) = uF*(*)
u
And using theorem (4) with S = 1 we obtain:
u
n-1

TeU) = u (%)“F(%) _y (%)
k=0

K d a‘k'lf(o)
dx(l'k'l
Then by theorem (1), we get:
n-1 a-k-1
T(l(u) — T(u) _ z ul- k d kfg-o)
u® ko dx®

Theorem (7):

Let T(u) be ET of the f(x), then ET for f(x) = eX erf(~/x) is given by:
u?Ju
1-u

Proof:-
The proof of this equation is easy, by using table of LT, [16] and theorem (1) as

T(u) =

follows: | {ex erf (+/x) }: ﬁ
2
and T(U)ZUF(E):U : - v
u 1 (1 -1) 1-u
u u

Applications to (LVFIDE)
Recall equation (1), the LVFIDE with initial value problems:
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t

D*y (t) =g(t) + [ k(x1) y(1) dr
0

Subject to the initial conditions

D*?y(t) =¢c, , z=1,2,..,n , n-l<a<n , neN

The first step, we apply ET on both sides we have:
t

E [D“y(t)} =Efgt)] + E| [ k(x1) y(z) dt
0

Can easily be transformed into its ET using theorem (6), equivalent to:

T (u) ;
—~_C=G(u) +E || k(x1)y(z) dr
u® 0
n-1 a-k-1
where C = Z ul'kw , T(u) and G(u) are ET for y(t) and g(t) respectively.
dX(X'k'l
k=0
The general Elzaki solution is:
t
T() = u®C + u*G(u) +u*E [j k(x,t) y(t) dt:| (2)
0

The second step is to find ET of integral in above equation which depends on the type
function K (X, 1) (kernel of the integral equation) as follows:

A. If the kernel is constant that is, k(x, t) =R, then by using theorem (2) we have:

t
E[I R y(7) dt:| =R uT(u) (3)

0
where T(u) isthe ET of y(t).

B. If the kernel is deference that is, k(x, t) =k(x — 1), by theorem (3) we get:
t
E [j K(x - 1) y(z) dt:| ~ 1wy *T) 4)
u
0
where K(u) and T(u) are ET of the functions k and y respectively.

C. If the kernel is any function, we represent the solution as an infinite series, that is:

[0.0]
y® = D yi(®)
i=0
The ET of the integral is become:
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t t 0
E [j k(x,7) y(7) dt:|— E [j k(x,t) X yi(T) dti| (5)
0 0 i=0

The third step, we substitute either eq.(3) or eq.(4) or eq.(5) into eq.(2), we will get: either,
T@) = u*C + u*G(u) + Ru**t T()

Then the general Elzaki solution:

T - o0
1-Ru
or

T() = u*(C + G(u)) + u*? Ku) *T()
Then

(6)

u*(C + G(u))

T(u) - a-1
1-u K(u)

)

or

00 t 00
E {Z yi(t)} = u%(C + G(u)) + U* E |:I k(x,t) D, yi (1) d‘t:|
i=0 0

i=0
Matching both sides of this equation yields the following iterative relations:

E [y,(®] = u*c + G(u)) ®)

_ t
E [y,0] = u* E {j K(x.7) Yo (1) dt
0

_ t
Ely,®]=u*E [] k(x,1) y,(x) dr
O —

In general,

t
E [yi+1(t)]= u® E [j k(x,1) y;j(t) dr:|, i=0,1,... (9)
0

The fourth step, we apply inverse ET of either eq.(6) or eq.(7) or (eq.(8) and eq.(9)) give the
general solution for (LVFIDE):

either  y(t) = T2 u?(C + G(u)) (10)
1-R ua+1

I a)
1-u*?1 K

o yo® =E 1 |u%(C + G(u))|= P@) 12)
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t
with vy, (1) = E-! [u“ E |:I k(x,7) y;(v) dr ﬂ, i=0,1,... 13
0

The function P(t) defined in eq.(12) can be decomposed into two parts:

P(t) = Py(t) + Pa(t)
So, the modified recursion relation is obtained

Yo(t) = P (V)

V

t
yi(t) =P, () + E™* {u“ E [j k(x,1) y, (1) dt H (14)

0

t
Vi) = El[ua E{[ k(1) Y, (0) drﬂ, i=1,2,..

0

The solution depends on the choice of Py(t) and P(t). We will show how to suitably choose
P1(t) and Py(t) as well as testing the method by some examples in the next section.

Test Examples
In this section, we present some test examples to show the effectiveness of the ET method for
solving LVFIDE's.

Example (1):
Consider the following linear LVFIDE [5]

X
DOSy(x) = = 4+ eX erf(Vx) —eX +1+ [yt d

A TTX 0

with D %°y(0) =¢c;, =0

since a=05 and n-1<a<n , then n=1

Applying (ET) of the above equation and since k(x, t) =1, then by using eq.(10) we have the
solution:

YO = T {u°-5(c + G(u))} 15)

1- yls

where C = uD%°y(0) =0

and G(u) = E {L + eX erf(J/x) — e +1}

Trx

from appendix given in [11] ( ET of some functions) and theorem (7) we have:
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2 2
G(u)=u\/U+U\/U—u L2 = UWu-u”
1-u 1-u

Substituting in eq.(15), we obtain:

yx) = T1 u® —utJu | T u?
(1- uw@- uJu) 1-u

Vol.30 (2) 2017

X

Again from appendix given in [11], we get the exact solution: y(x) =e

Example (2):
Let us consider the following LVFIDE with difference kernel

D®y (x) =g(x) + j e* Lyt dt (16)
0

where g(x) = x5+ x31+3x2 +6x+ 6 6%

1'(14/5)
with initial conditions: DYy (0) = c,=0 and D“"/Sy(o) =C, =0

Take the (ET) of eq.(16) and since k(x, t) is difference kernel, so by eq.(11) yields:

@n

- [1e o)

1-uYs K(u)

where C=uc; + ¢, =0 .

G(u) = E[Q(X)]—({ulg/5 +u’+utr ud e u? - u’ }

1-u
e yle/5 _ 424/5 _ ;6
1-u

U2

1-u

and  K(u) = E[eX]:

Now, eq.(17) can be written in the form:

5 .6 36/5
y(x) =T+ LU ”u/s :T—1[6u5]
Q-w (- )

Upon inverting, we get the exact solution: y(x) = x® .
Example (3):

Consider the following LVFIDE
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t

D%5y (1) =_1_556t2 VE 4 [ @+0® y(r) do
0

with initial conditions: ¢; = v .

Applying the ET to both sides of above equation as well as using eq.(12) and eq.(13) give:
Yo(® =E~*|u®*(C + G(u)) |

t
yi.i() = ETTu%E {j (t +1)° y; (x) dr:| ,i=0,1,.
0

where C =uD*°y(0) =uc, = ux

and  G(u)= E[_1—556t2 Jt } _—561(7/2) uY/2

15

Then yo() =E~1 {\/Euy2 _ S0 TI(7/2) {g/z) uﬂ
_ 1 mrap,
-t 45

= P() = Pl(t) + P2(t)
So we have the following relations:

1
t) = —
Yo () 7t
t
y, () = — 281;—(57/2)t3+E_1 u%s E [j (t+ )7y, (1) dr] (18)
0
and
[t
yis1® = ETL U E|[ (t+0)° y,(@ de ||, i=12..
0

Now, we find the ET of integral in eq.(18) we have:

t
El] (t+0)° \/1— dr | = E[5—6t2 \/f} _96T(7/2) \;9/2 Then
0 T 15 15

Y1 (t) = -

That is
yl(t) =0 and Yi+1(t) =0 i:1,2,...

28 1(7/2) o g-1[56 L(7/2) 5
45 15

Therefore, the solution is obtained to be and its exact solution:
o0
1
1) = ()= — -
y(t) E yi(®) NG

i=0
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Conclusions

The properties of the Elzaki transform are used to solve and to get the general solution of
linear Volterra fractional integro-differentioal equations. The fractional derivative is
considered in the Riemman-Liouville sense. The results of illustrate examples as well as the
simplicity of the algorithm and obtained exact solution show efficiency and accuracy of the
method also show that it is a special case of the analysis methods. Finally, the proposed
approach is very powerful to find analytical solution of linear problems in fractional calculus
field.
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