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Abstract

The aim of this paper is to study some properties of fuzzy zariski
topology on spec(p) and find a subspace of it and defined a base for
this subspace .Also, we prove the fuzzy zariski topology is T)-space.

Preliminaries

Throughout this paper, R denotes a commutative ring with identity,
and I'is the unite interval [0,1], let p:R—I be a fuzzy subset of R (. If
xeR and te[0,1], then the fuzzy subset x; of R defined by x{y)=t if
x=y and x(y)=0 if x#y is called a fuzzy singleton (2). Let 1 be a fuzzy
set of R defined by p(x)=0 ¥xeR, then p is called empty fuzzy set
denoted by @ (1). Let p and p' be two fuzzy subsets of R, we say that
ucw’ if and only if p(x)<p/(x) VxeR (3), the intersection of pand p'
is defined by (LOPNX)=min{p(x),1 (%)} VxeR, and the union is
defined by (pop)x)=max {u(x),u'(x)} VxeR  (4). For te [0,1]
He={xeR, p(x)zt}is called a level subset of the fuzzy set p and if xep,
then x; cp (5). A fuzzy set p of R is called a fuzzy ring of R if and
only if Vx, yeR u(x-y) > min{u(x), p(y)} and pxy)= minfp(x) ,
W(y)} (6), if p is a fuzzy ring of R then a fuzzy ideal of W is a fuzzy set
8:R—I such that the following properties hold: VX, yeR 3(x-y)=
min{3(x), 8(y)}, 8(xy) }= min{u(x), 8(y)} and 8(x) < p(x) (7).
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Definition 1.1 (7):

A fuzzy ideal p of a fuzzy ring p is said to be prime if p#ig
(where Mp denotes the characteristic function of R, such that Ar(x)=1
¥ xeR ) and it satisfies:

min {p(xy),u(x).u(y)} < max {p(x), p(y)} Vx.y eR.

Proposition 1.2 (8):

Given a fuzzy ring p of R and a fuzzy set 3:R—I, thesetdisa
fuzzy ideal of p if and only if & is an ideal of p, , for all
te[0,min{8(0),p(0)}].

Proposition 1.3 (8):

Given a fuzzy ring p of R and a fuzzy set p: R—I, the set p is
prime fuzzy ideal of p if and only if p is a prime ideal of p , for all
te[0,min{p(0),n(0)}].

Defenition 1.4 (9):

Let i : R— I be a fuzzy ring , the set X = spec(p) = {plp isa
prime fuzzy ideal of p} is called the spectrum of p .

Defenition 1.5 (9) :

For each proper fuzzy ideal & of p ,let

L. V(8)={pe spec(w) |8 cp}.
2. X(8) =X ~V(d), the complement of V(8) in X.

Proposition 1.6 (8):
Let p: R—> 1 be a fuzzy ring , then :
1. (i) V(D)= spec (p)
(ii) V(p) =9, where & is empty set .

2. If 8, < 8;,then V(&) < V(81) ,V 81,02 fuzzy ideals of p.

3. V(UBilieA) = n{V(8)lieA},for any collection{ &|ieA } of
fuzzy ideals of p.

4. V(811 8;)=V(8)) UV (8y) for any fuzzy ideals 8;and & of p.

Definition 1.7 (9) :

Let p :R—1 be a fuzzy ring, let d be a fuzzy subset of p and (3)
the intersection of all fuzzy ideals &' of ., such that & &' . then () is
called fuzzy ideal of p generated by &-
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ie (8)=n{d": & is afuzzyideal of pand d c &'}

Proposition 1.8 (9):
Let p :R—>1 be a fuzzy ring, let 8 be a fuzzy subset of p then:
V(B)=V((8))

Theorem 1.9 (8):

Let pu: R — 1 bea fuzzy ring , let X = spec (p) . Let 7={X(8) :
X(8) = X~V(8) ,d is a fuzzy ideal of p} then the pair (spec(p), T )
is a topological space, which is called fuzzy zariski topology on
spec(p).

Lemma 1.10 (8):
V(8) is closed subset in the topological space (spec (n) , 7 ) for
any fuzzy ideal dof u.

Theorem 1.11 (8):

The subfamily { X(x)| xeR,t € (0,1]} of T is a base for 7.
(where x; is a fuzzy singleton of p ).
Some Results On Fuzzy Zariski Topology On Spec(u)
Proposition 2.1 :

V() N V(y) = V((x +y)) , where x,y €R and t €(0,1].

Proof :
Let peV(x) nV(y) < peV(x) and peV(w)
xS p and yi< p (by defenition
1.5)
S XEM and ye p
and since o isaprimeideal of R ,and x,y eR we have
&Sx+yep
S (xtyhcp
S peV({(x+y))
Hence, V(x)) nV(ye )= V({(x+y ). u

Proposition 2.2 :
Vx ) v V(yi)=V({(xy)) , where x,y eR , t €(0,1] .
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Proof :
Let peV(x) UV(y) © peV(x) or peV(y)

<xicpe o ycpe (bydefinition 1.5)
X E M and ve p

Since p, is a prime ideal of R ,and x, y €R .Thus
S XY EN
& (xXyhc p
<= peV((xy))

Hence, V(x)UV(y) = V((xy)). ®

Theorem 2.3 :
X(x)=2 if and only if x is nilpotent element, where x € R and
te(0,1]

Proof :

Suppose X(x:)= , this means X~V(x,)=& (by definition 1.5) then
V(x;)=X which implies x; cp for all pe X , and therefore xe g ,which
is a prime ideal of p; (by proposition 1.3) .

Hence xe N{p| o is a prime ideal of 1}, and since
~{al p is a prime ideal of p}= r(1,) = the set of all nilpotent element
Hence x is nilpotent element.

Conversely, assume that x is a nilpotent element.
Let pespec(p) , then g is a prime ideal of p, (by proposition 1.3 ), and
so xep. Therefore xicp for all peX, thus V(x)=X which implies
X(x)=2 .m

Theorem 2.4 :

If X(x=X then x is a unit, where xeR and te(0,1].
Proof :

Since X(x)=X=spec(p) then V(x,)=& which implies x,zp for all
peX, that is mean 3y R such that o(y)< x(y),and by definition of
fuzzy singleton we have p(y)<t if x =y or p(y)< 0 if x £y (which is
not posipole), thus p(x)<t so that x¢ i

Hence xEu{pll A is a prime ideal of i },consequently, x is a unit.
w
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Now, we define a subspace of X=spec() and prove it is a compact
space.

Proposition 2.5:

Let X=spec(n),T={X(8) =X~V(B) & is a fuzzy ideal of u},let
A={peX ‘ Imp ={a,l},ae(0,1]}, and let T’={X(6]mA|X(§)e T} then
1" is a topology on A and the pair (A4, 7") is a subspace of (X, 7).
Proof:

To prove (A,7") is a topological space, we must prove 7" is a
topology on 4, that's mean we must satisfy the following conditions:
1. O, Ae I"(where & is the empty set).
2. {X(&) NmAIN{X(@B) nA}el” for each X)) NnA ,

X(5)NAe T

3. u{X(®)nA I ie A} e 7" for any family {X(8;) nA I ieA}inT"

Now, 1. Consider the fuzzy ideals @ and p of p . Since
X(®)=e T'(by theorem 1.9), then X(P) NAeT’, implies DeT'.
Since X(p)=XeT (by theorem 1.9), then X(u)nAe7” , implies
XnAe T, thus D,4e T,

2.LetX(8:)NA, X(B2)NnAe T"we must
prove{ X(3) )NA}IN{X(8;)NA}e T
Now,

{X(@)NA} N{X(82)nA} ={X(81) N X(32)}N A,
Since X(6)NX(8)=X(81"d2)e T (by theorem1.9),then X(&;Mnd;)nA
€ I". Thus {X(8)) nA}N{X(52) NA}e T"

3.We must prove U{X(8) nAlieA}e 7, for any family
{(X(@)NAlieA}e T,

Since U{X(5)lieA}=X(<Ud; >lieA)e T (by theorem 1.9 ), then
VLX) nAlieA} = X(<Us >lieA)nd e T

Therefore 7" define a topology on A4 and the pair (4, 7" ) is a
topological space which is subspace of (X, 7). H

roposition 2.6 :

Let X=spec(u),7={X(d) =X~V(8)| § is a fuzzy ideal of p},

let A={peX|Imp ={]o;,l },a€(0,1]} be a subspace of X, then the
subfamily {X(xp) NA|xeR, Pe(a,1]} of 7"is a base for 4.
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Proof :

Let X(8)nAeT, for some X(3)e7 since the subfamily
{X(x) | xeR, te(0,1] }is a base for 7 (by theorem 1.11), then
X(B)NA =(UX(xp) | xp=B)NA, where Be(0,1]

= U(X(xp) NA | X8)

now, if P>o., then X(xp) NA #J

if p<a, then X(xp) NA =L
Thus X(8) NA = U(X(xp) NA| X8 and B>at)

Hence, the subfamily {X(xp) NA|xeR, Ppe(a,1]} is a base for 4.
| |

Theorem 2.7 :

Let o.e[0,1) and let A={peX | Imp={a,l}}, then the subspace 4
is compact.
Proof :

To prove 4 is compact, we must prove any open cover of 4 1s
reducible to a finite sub cover of 4.
(By proposition 2.6 ) we show that the family {X(xg) NA | xeR,
Be(a,1]} constitutes a base for 4.
Now, let {X((x;)) M AlieA, tekc(a,1]} be any covering of 4
Let B =supft | tek L. Then{X{(xi)p) M Aﬂ ieA}is also a cover of A.

Now, 4=UiX((x)p) ~ AlieA}

= (U{X((xdp) [ ieA} N 4

= (X~V(U{(x)p|icA})n A

= A~(V({ux)plieAh N A
this shows that V ({U(x)slieAD N A=D
Now, V({uxis |i=1,2,...,n}) N A= because if
EIpeV({u{xi)gi i=1,2,...n }) NA hold, then
U {(xidp |i=1.2,....n} < p and Im p={a,1} which imply,
(x)p(x)<p(x) for all xeR and forall i=1,2.....n .And by definition of
fuzzy singleton we have: B<p(x) if x=xi and 0< p(x) if x #xi for all i
=12,..n.Thus B< pxi)foralli=1.2,...n ,and since B> o, then
o(xi)=1, for all i=1,2,..,n . But then p=Ag which is contradiction (by
definition 1.1).
Thus the family {X((x)s) N Ali=12,.n}covers A. Hence 4 is
compact. ®
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Theorem 2.8 :
The space X=spec(p) is a 7;-space.

Proof :

To prove X is Ti-space, that's mean we must prove for any
distinct points p1.0; of X, there exists an open set in X containing
o but not o, and an open set in X containing o, but not py.

Let p1,02€X such that g2, then either pyzp or ;@

Let ;izm, then ;2 V(p)) (by definition 1.5) implies peX(p) and
prEX(p1) but X(o) is open in X, thus there exists an open set X(po)
containing 2 but not p,.

And similarly if oz . ]

Theorem 2.9:
The space(X= Sepc(p), 7') is a Tj-space if and only if each peX , p
is closed subset of X.

Proof:

Let (X, 7) be a T-space and consider any prime fuzzy ideal psX.
We show that {p} is closed by showing X~{ o} is open .

Let p”#p be any prime fuzzy ideal in X, since X is 7T}-space then (by
theorem 2.8 ) there exists two open sets X{(p”), X(0) such that o’ X(p)
and pe X(p), and peX(p’) and p2X(p’).

Since pg X(p) then X(p) =X~{p}, therefore (by theorem (10) : the set
U is open in (X,7) < for each x€U there exists an open set V(x)c U)
thus X~{p} open and, consequently,{ o} is a closed subset of X.

For the converse, let each pc X be closed subset of X and show
that (X,7) is T)-space . Thus, let g, meX such that p #0; . Then
since {m} is closed , X~{} is open and contains p; but not m,and
since{ o} is closed , X~{p} is open and contains g, but not ;.

It follows that (X= Sepc(u),7’) is a T}-space.
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