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Abstract 
        An R-module M is called a 2-regular module if every submodule N of M is 2-pure 
submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, 
[1]. 
        This paper is a continuation of [1]. We give some conditions to characterize this class of 
modules, also many relationships with other related concepts are introduced. 
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0- Introduction 
        Throughout this paper, R is a commutative ring with identity and all R-modules are 
unitary. A submodule N of an R-module M is called 2-pure submodule if for every ideal I of 
R, I2MN = I2N. If every submodule of M is 2-pure, then M is said to be 2-regular module. 
This work consists of two sections. In the first section we give some properties of 2-regular 
rings. Next we present a characterization of 2-regular modules. In the second section we 
illustrate some relationships between the concept 2-regular modules and other modules such 
as semiprime divisible, projective and multiplication modules. 
 
 

1- 2-Regular Modules 
        In this section, we first define 2-regular rings and study some of its properties. Next we 
consider some conditions to characterize 2-regular modules. 
 

Definition (1.1): [1] 
        An ideal I of a ring R is called 2-pure ideal of R if for each ideal J of R, J2  I = J2I. 
If every ideal of a ring R is 2-pure ideal, then we say R is 2-regular ring. 
 
Remarks and Examples (1.2):   
(1) It is clear every (von Neumman) regular ring is 2-regular ring, but the converse is not 

true, for example: the ring Z4 is 2-regular ring, since every ideal of Z4 is 2-pure. But Z4 is 
not regular since the ideal {0, 2}  is not pure because {0, 2} {0, 2} {0, 2}  , on the other 

hand {0, 2} {0, 2} {0}   implies {0, 2} {0, 2} {0, 2} {0, 2}   . 
(2) It is clear that {0} and R are always 2-pure ideals of any ring R. 
(3) Every field is 2-regular ring. 
(4) Let R be an integral domain. If R is 2-regular ring, then R is a field. 
Proof:   
        Let I be an ideal of R. Since R is 2-regular ring then J2  I = J2I for every ideal J of R.            
If we take J = I implies I2 = I3. Thus for each element 0  a  R, < a >2 = < a >3, hence              
a2  < a >3. Let a2 = r a3 for some r  R, then a2(1 – ra) = 0 but R is domain and a  0 
implies 1 – ra = 0, thus 1 =  ra. Therefore  a  is an invertible element of R. Thus R is a field  
 

(5) If R is a 2-regular ring then every prime ideal of R is a maximal ideal. 
Proof:   

        Let I be a prime ideal of R. Since R is a 2-regular ring then 
R

I
 is 2-regular by 

[1,Cor.3.2]. But 
R

I
 is a domain since I is a prime ideal. Thus 

R

I
 is a field by the above 

remark. Therefore I is a maximal ideal. 
 

(6) Every 2-regular ring is nearly regular, where a ring R is called nearly regular if 
R

J(R)
 is 

regular ring, see [2], where J(R) = the intersection of all maximal ideals of R. 
Proof:   
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        Let R be a 2-regular ring. Then 
R

J(R)
 is 2-regular by corollary (1.2.3). So by above 

remark (5), every prime ideal of 
R

J(R)
 is a maximal ideal and since 

R
J 0

J(R)

 
 

 
, therefore 

by [3], 
R

J(R)
 is regular. 

Proposition (1.3):   
        Let M be 2-regular R-module then for every element x of Mand every element r  R,             
r2x = r2tr2x for some t  R. 
Proof:   
        Let x be an element of M and r be an element of R. Since r2x  r2M and r2x  < r2x > 
implies r2x  r2M  < r2x >. But M is 2-regular, then r2M< r2x >=r2 < r2x >. Thus,                
r2xr2 < r2x > implies r2x=r2t r2x for some tR. 
 
Proposition (1.4):   
        Let M be a module over principal ideal ring R. If for every element x of M and every 
element r  R, r2x = r2tr2x for some t  R implies M is a 2-regular module. 
Proof:   
        Let N be a submodule of M and I is an ideal of R. First, to prove r2M  N = r2N for 
every element r  R. Let x  r2M  N implies x  r2M, x  N. Thus x = r2m for some              
m  M. Then x = r2tr2m for some t  R by hypothesis. Hence x  r2N. But R is a principal 
ideal ring. Therefore I2M  N = I2N. 
 
Proposition (1.5):   
        Let M be a cyclic R-module. If for every element x of M and every element r of R,            
r2x = r2tr2x for some t  R, implies M is a 2-regular module. 
Proof:   
        Let M = Rm be a cyclic module for some m  M. Let N be a submodule of M and I is an 
ideal of R. Let y  I2M  N then y  I2M and y  N. Thus y = r2m = r2tr2m  r2N for some t 
 R and r  I. Therefore y  I2N implies M is 2-regular. 
 
 
        The proof of the following result is similar to that of propositions (1.3) and (1.4). 
 
Corollary (1.6):   
        Let R be a 2-regular ring then for every element a  R, a2 = a2t a2 for some t  R, and 
the converse is true if R is a principal ideal ring. 
 
Proposition (1.7):   
        Let R be a principal ideal ring and M be an R-module. The following statements are 
equivalent: 
(1) M is 2-regular module. 

(2) 
R

R

ann(x)
 is 2-regular for every element x of M. 

(3) For every element x of M and every element r of R, r2x = r2tr2x for some t  R. 
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Proof:   
(1)  (3)  It follows by Proposition (1.3). 
(3)  (1)  By Proposition (1.4). 

(1)  (2)  Let r + 
R

ann(x)   
R

R

ann(x)
 where x  M and r  R.  

Since M is 2-regular, then r2x = r2tr2x for some t  R. Thus r2 – r2tr2  
R

ann(x)  implies 

R

R

ann(x)
 is 2-regular. 

(2)  (1)  Let x  M and r  R. Since 
R

R

ann(x)
 is 2-regular, then r2 + 

R
ann(x)  = (r2 + 

R
ann(x)  

(t + 
R

ann(x) )(r2 + 
R

ann(x) ) for some t  R. Thus   r2x = r2tr2x implies M is 2-regular. 

 
 
        We have the following results: 
 
Corollary (1.8):   
        Let R be a principal ideal ring. Then R is 2-regular if and only if all R-modules are            
2-regular. 
Proof:   

()  Let R be 2-regular ring and M is an R-module. Then 
R

R

ann(x)
 is 2-regular for every 

element x  M by [1,Cor.(3.3)]. Therefore M is 2-regular by proposition (1.7). 
()  Assume all R-modules are 2-regular. Thus R is 2-regular R-module. By Proposition 

(1.7), 
R

R

ann(x)
 is 2-regular for some every element x  R, so if take x = 1  R implies 

R

R R
R

ann(x) 0
 
 

, therefore R is 2-regular. 

 
Corollary (1.9):   
        Let R be a principal ideal ring. Then R is a 2-regular if and only if R is 2-regular                 
R-module. 
Proof:   By the same argument of Corollary (1.8). 
 
Corollary (1. 10):   

        Let R be a principal ideal ring. If 
R

R

ann(M)
 is 2-regular then M is 2-regular R-module. 

Proof:   
        Let x be a non-zero element of M. Since 

R R
ann(M) ann(x) , there exists an epimorphism 

f: 
R R

R R

ann(M) ann(x)
  defined by f (r + 

R
ann(M) ) = r + 

R
ann(x) . Therefore 

R

R

ann(x)
 is 2-regular 

by [1,Cor.(3.3)]. Then M is 2-regular by Proposition (1.7). 
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2- Regular Modules and Other Related Modules  
        In this section, we study the relationships between 2-regular modules and other modules 
such as semiprime, divisible, projective and multiplication modules. 
        Recall that a proper submodule N of an R-module M is called a semiprime submodule if 
for every r  R, x  M, k  Z+ such that rkx  N implies rx  N implies rx  N, see [4]. 
Equivalently, a proper submodule N of M is semiprime if for every r  R, x  M such that r2x 
 N implies rx  N, see [5]. 
        An R-module M is called semiprime if <0> is a semiprime submodule of M. 
 
        The proof of the following result follows by [5]. 
Proposition (2.1):   
        Let R be a principal ideal ring and M is an R-module. If every proper submodule of M is 
semiprime then M is a 2-regular module. The converse is not true, for example: The module 
Z4 as Z-module is 2-regular but <0> is not semiprime. 
 
 
        The following proposition gives a partial converse of proposition (2.1). 
 
Proposition (2.2):   
        Let M be 2-regular and semiprime R-module then every proper submodule of M is 
semiprime. 
Proof:   
        Let N be a proper submodule of M and r2x  N where r  R, x  M implies                        
r2x  r2M  N = r2N since M is 2-regular. Then r2x = r2n for some n  N, thus                        
r2(x – n)  <0>. But <0> is semiprime, hence rx = rn  N. Therefore N is semiprime 
submodule of M. 
 
 
        Before we give a consequence of Proposition (2.2), we need the following lemma: 
 
Lemma (2.3):   
        Let M be 2-regular and semiprime R-module then J(R)M = <0>. 
Proof:   
        Let r  J(R) and x  M then r2x=r2tr2x for some t  R since M is 2-regular, r2x(1 – r2t)=0 
implies 1 – r2t is invertible in R. Then r2x = 0, but M is semiprime thus rx = 0. Therefore 
J(R)M = <0>. 
        Recall that an R-module M is called semisimple if every submodule of M is a summand. 
The sum of all simple submodules of a module M is called the socle of M is denoted by 
Soc(M), moreover if Soc(M) = 0 , then M has no simple submodule and if Soc(M) = M then 
M is semisimple module, see [6]. 
        A commutative ring is a local ring in case it has a unique maximal ideal, see [7]. 
 
Corollary (2.4):   
        Let R be a local ring and M is 2-regular and semiprime R-module then M is a 
semisimple and hence is regular. 
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Proof:   

        Since R is a local ring, then 
R

J(R)
 is a simple ring and hence is semisimple. By [6], 

Soc(M) = 
M

ann(J(R))  = {m  M; mJ(R) = 0}. But J(R)M = <0> by lemma (2.3), thus                

Soc(M) = M. Therefore M is semisimple. 
 
 
        Now, we have the following: 
 
Proposition (2.5):   
        Let N be a semiprime submodule of an R-module M and K is a 2-pure submodule of M 

containing N, then 
K

N
 is semiprime submodule in 

M

N
. 

 
 
Proof:   

        Let r2(x + N)  
K

N
 for some r  R and x + N  

M

N
.  

Then r2x  K, imples r2x  r2M  K = r2K since K is 2-pure in M. Let r2x = r2m for some m 
 K. Thus r2(x – m) = 0  N implies r(x – m)  N since N is semiprime submodule in M, 

hence r(x + N) = rm + N  
K

N
. Therefore 

K

N
 is semiprime submodule in 

M

N
. 

 
Corollary (2.6):   
        Let N be a semiprime submodule of an R-module M and K is a 2-pure in M with N  K 
then K is semiprime submodule in M. 
Proof:   

        Let r2x  K for some r  R and x  M. Thus r2(x + N)  
K

N
, but 

K

N
 is semiprime in 

M

K
 

by Proposition (2.5) therefore r(x + N)  
K

N
. Hence rx  K, that is K is semiprime in M. 

 
 
        Let R be an integral domain, an R-module M is said to be divisible if and only if rM = M 
for every non-zero element r of R, see [8]. 
        An R-module M is said to be a prime module if 

R R
ann(M) ann(N)  for every non-zero 

submodule N of M, see [9]. 
 
Proposition (2.7):   
        Let M be a module over a principal ideal domain R and N is a divisible R-submodule of 
M then N is a 2-pure submodule in M. 
Proof:  Since N is divisible then for each rR, r2N=N. Therefore N  r2M = r2N. 
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Remark (2.8):   
        The converse of proposition (2.7) is not true, for example: the submodule {0, 2} of the 

module Z4 as Z-module where {0, 2} is 2-pure in Z4, but is not divisible since there exists            

2  Z and 2{0, 2} = {0}. That is 2{0, 2}  {0, 2} . 
 
 
        The following proposition gives a condition under which the converse of proposition 
(2.7) is true. 
 

Proposition (2.9):   
        Let M be divisible module over a principal ideal domain R and N is a 2-pure in M then N 
is divisible. 
Proof:   
        Assume N is 2-pure in M, let m  N and r  R. Since M is divisible implies m = r2x for 
some x  M. But m = r2x  r2M  N = r2N  rN. Therefore N = rN. 
 
 
        As an immediate consequence we have the following: 
 
 
 
 

Corollary (2.10):   
        Let R be a principal ideal domain and every proper submodule of an R-module M is 
divisible then M is 2-regular. The converse is true if M is divisible. 
Proof:   
        Follows by Propositions (2.7) and (2.9). 
 
Corollary (2.11):   
        Let R be a principal ideal domain and M is 2-regular and divisible R-module then M is 
prime module. 
Proof:   
        By above corollary (2.10), every submodule N of M is divisible. Thus rN = N for every         
r  R. Therefore 

R R
ann(N) ann(M) 0   . Hence M is prime module. 

 
Corollary (2.12):   
        Let R be a principal ideal domain and M is 2-regular injective R-module then M is prime 
module. 
Proof:  Clear 
 
 

        We give the following theorem. 
 

Theorem (2.13):   
        Let R be any ring. The following statements are equivalent: 
(1) 


R is 2-regular R-module for any index set . 

(2) Every projective R-module is 2-regulaar module. 
Proof:   
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(1)  (2) Let M be projective R-module then there exists a free R-module F and an R-
epimorphism f : F  M, and F  


R where  is an index set. We have the following short 

exact sequence  
i0 ker R M 0ff


     

Where i is the inclusion mapping. 
Since M is projective, the sequence is split implies that 


R  ker f  M. But 


R is 2-regular 

R-module. Therefore by [1,Cor.(3.4)] M is 2-regular module. 

(2)  (1)  Assume that every projective R-module is 2-regular module. Since R is projective 
R-module, then 


R is projective because the direct sum of projective modules is projective. 

Therefore 

R is 2-regular R-module for any index set . 

 
 
        Recall that an R-module M is called multiplication module if for every submodule N of 
M there exists an ideal I of R such that N = IM, see [10] 
        We have the following: 
 

Proposition (2.14):   
        If M is a finitely generated faithful multiplication R-module. The following statements 
are equivalent: 
(1) R is 2-regular ring. 
(2) M is 2-regular R-module. 
Proof:   
(1)  (2)  Let N be a submodule of M and I is an ideal of R. Since  
I2M  N = I2M  JM          for some ideal J of R 
               = (I2  J)M           since M is faithful multiplication, see [10] 
               = (I2J)M                since R is 2-regular 
               = I2(JM)            
               = I2N 
Therefore M is 2-regular. 
(2)  (1)  Let I and J be ideals of R. Since  
(I2  J)M = I2M  JM          because M is faithful multiplication 
                = I2(JM)               since M is 2-regular 
                = (I2J)M 
Thus I2  J = I2J since M is finitely generated faithful multiplication, see [10]. Therefore R is 
2-regular ring. 
 
 

        Recall that an R-module M is said to be I-multiplication module if each submodule N of 
M of the form JM for some idempotent ideal J of R, see [11]. 
It is clear that every I-miltiplication module is multiplication but not the converse. 
Clearly the two concepts multiplication and I-multiplication modules are equivalent over 
regular rings. However we have the following: 
 

Proposition (2.15):   
        If M is I-multiplication and 2-regular R-module then M is regular module. 
Proof:   
        Let N be a submodule of M and I is an ideal of R. Since  
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IM  N = IM  JM           
              = IM  J2M          for some idempotent J = J2 
              = J2(IM)               since M is 2-regular 
               = (I2J)M                since R is 2-regular 
               = I(J2M)            
               = I(JM) 
               = IN 
Therefore M is regular module. 
 
Proposition (2.16):   
        If M is I-multiplication and 2-regular R-module then every submodule N of M is            
I-multiplication as R-module. 
Proof:   
        Let N be a submodule of M and K is any submodule in N, then K is a submodule of M 
and K = IM = I2M for some idempotent ideal I of R. Since  
K = N  K  
    = N  I2M  
    = I2N               because M is 2-regular 
    = IN 
Thus N is I-multiplication R-module. 
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  II 2-المقاسات المنتظمة من النمط  
  

 نھاد سالم عبد الكريم
 جامعة بغداد /كلية العلوم /قسم الرياضيات

 
  غالب أحمد حمود

   جامعة بغداد / )ابن الھيثم(كلية التربية للعلوم الصرفة /قسم الرياضيات 
  

 2015/حزيران/7،قبل البحث في:2015/نيسان/ 28استلم البحث في:
 

 
  خلاصةال

اذا كان كل مقاس  2 –بأنه منتظم من النمط  Mحلقة إبدالية ذات محايد. يقال ان المقاس  Rإذ  Rمقاسا ً على  Mليكن         
اذا حقق  Mفي  2-بأنه نقي من النمط Nإذ يقال عن المقاس الجزئي  2-ھو مقاس جزئي نقي من النمط Mجزئي في 

N2N = IM2I  لكل مثاليI  فيR ،[1] .  
تمييزاً  . في القسم الاول من ھذا البحث أعطينا [1] 2-في ھذا البحث نستمر بدراسة مفھوم الانتظام من النمط        

وانواع اخرى من  2-. في القسم الثاني درسنا العلاقة بين المقاسات المنتظمة من النمط2-للمقاسات المنتظمة من النمط
  المقاسات.

  
  
  

، المقاسات الجزئية النقية، 2 –، المقاسات النتظمة من النمط 2 –المقاسات الجزئية النقية من النمط  : الكلمات المفتاحية
  المنتظمة.المقاسات 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    


