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Abstract

An R-module M is called a 2-regular module if every submodule N of M is 2-pure
submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, X/M~N = I°N,
[1].

This paper is a continuation of [1]. We give some conditions to characterize this class of
modules, also many relationships with other related concepts are introduced.
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0- Introduction

Throughout this paper, R is a commutative ring with identity and all R-modules are
unitary. A submodule N of an R-module M is called 2-pure submodule if for every ideal I of
R, PMNN = I2N. If every submodule of M is 2-pure, then M is said to be 2-regular module.
This work consists of two sections. In the first section we give some properties of 2-regular
rings. Next we present a characterization of 2-regular modules. In the second section we
illustrate some relationships between the concept 2-regular modules and other modules such
as semiprime divisible, projective and multiplication modules.

1- 2-Regular Modules

In this section, we first define 2-regular rings and study some of its properties. Next we
consider some conditions to characterize 2-regular modules.

Definition (1.1): [1]
An ideal I of a ring R is called 2-pure ideal of R if for each ideal J of R, J*> N 1 =JI.
If every ideal of a ring R is 2-pure ideal, then we say R is 2-regular ring.

Remarks and Examples (1.2):
(1) It is clear every (von Neumman) regular ring is 2-regular ring, but the converse is not
true, for example: the ring Z4 is 2-regular ring, since every ideal of Z4 is 2-pure. But Z4 is

not regular since the ideal {0,2} is not pure because {0,2} " {0,2} ={0,2}, on the other
hand {0,2}-{0,2} = {0} implies {0,2} n{0,2} #{0,2}-{0,2}.
(2) Itisclear that {0} and R are always 2-pure ideals of any ring R.
(3) Every field is 2-regular ring.
(4) Let R be an integral domain. If R is 2-regular ring, then R is a field.
Proof:
Let I be an ideal of R. Since R is 2-regular ring then J> N I = J?I for every ideal J of R.
If we take J = I implies I*> = I>. Thus for each element 0 # a € R, < a >> = < a >3, hence
a’ e <a>* Leta’=r a’ for some r € R, then a’(1 — ra) = 0 but R is domain and a # 0
implies 1 —ra =0, thus 1 = ra. Therefore a is an invertible element of R. Thus R is a field

(5) IfRis a2-regular ring then every prime ideal of R is a maximal ideal.
Proof:

Let I be a prime ideal of R. Since R is a 2-regular ring then % is 2-regular by

[1,Cor.3.2]. But % is a domain since I is a prime ideal. Thus % is a field by the above

remark. Therefore I is a maximal ideal.

1S

(6) Every 2-regular ring is nearly regular, where a ring R is called nearly regular if ]

regular ring, see [2], where J(R) = the intersection of all maximal ideals of R.
Proof:
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Let R be a 2-regular ring. Then J(II{{) is 2-regular by corollary (1.2.3). So by above

remark (5), every prime ideal of

1S a maximal ideal and since J l =0, therefore
J(R)

by [3], Jg)

Proposition (1.3):

Let M be 2-regular R-module then for every element x of Mand every element r € R,
r’x = r’tr’x for some t € R.
Proof:

Let x be an element of M and r be an element of R. Since r’x € *M and r’x € < r’x >
implies r’x € ™ N < r’x >. But M is 2-regular, then r’MN< r’x >=r> < r’x >. Thus,

r’xer® < r’x > implies r’x=r’t r’x for some teR.

is regular.

Proposition (1.4):

Let M be a module over principal ideal ring R. If for every element x of M and every
element r € R, 1’x = r’tr’x for some t € R implies M is a 2-regular module.
Proof:

Let N be a submodule of M and I is an ideal of R. First, to prove M N N = r°N for
every element r € R. Let x € ™M N N implies x € r*M, x € N. Thus x = r’m for some
m € M. Then x = r’tr’m for some t € R by hypothesis. Hence x € r°N. But R is a principal
ideal ring. Therefore I’M N N = I>N.

Proposition (1.5):

Let M be a cyclic R-module. If for every element x of M and every element r of R,
r’x = r’tr’x for some t € R, implies M is a 2-regular module.
Proof:

Let M = Rm be a cyclic module for some m € M. Let N be a submodule of M and I is an
ideal of R. Lety € P M N N theny € I’ M and y € N. Thus y = r’m = r’tr’m e r°N for some t
€ Randr € L. Therefore y € I°’N implies M is 2-regular.

The proof of the following result is similar to that of propositions (1.3) and (1.4).

Corollary (1.6):

Let R be a 2-regular ring then for every element a € R, a*> = a’t a* for some t € R, and
the converse is true if R is a principal ideal ring.

Proposition (1.7):

Let R be a principal ideal ring and M be an R-module. The following statements are
equivalent:
(1) M is 2-regular module.

2

is 2-regular for every element x of M.
arRm(x)

(3) For every element x of M and every element r of R, r’x = r’tr’x for some t € R.
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Proof:
(1) = (3) It follows by Proposition (1.3).
(3) = (1) By Proposition (1.4).

1) = (2) Letr+ arén(x) €

where x e M andr € R.
ann(x)

Since M is 2-regular, then r’x = r’tr’x for some t € R. Thus 1* — r’tr* e ann(x) implies

is 2-regular.
agn(x)

2)=> (1) Letx e Mandr € R. Since is 2-regular, then r* + ann(x) = (1 + ann(x)

agn(x)

(t+ all}n(x) )12 + agn(x) ) for some t € R. Thus 12x = r*tr’x implies M is 2-regular.

We have the following results:

Corollary (1.8):
Let R be a principal ideal ring. Then R is 2-regular if and only if all R-modules are
2-regular.

Proof:

(=) Let R be 2-regular ring and M is an R-module. Then is 2-regular for every

ann(x)

element x € M by [1,Cor.(3.3)]. Therefore M is 2-regular by proposition (1.7).
(<) Assume all R-modules are 2-regular. Thus R is 2-regular R-module. By Proposition

R
1.7 arRln(x)

R R
argn(x) <0>

is 2-regular for some every element x € R, so if take x = 1 € R implies

=~ R, therefore R is 2-regular.

Corollary (1.9):

Let R be a principal ideal ring. Then R is a 2-regular if and only if R is 2-regular
R-module.

Proof: By the same argument of Corollary (1.8).

Corollary (1. 10):
Let R be a principal ideal ring. If

is 2-regular then M is 2-regular R-module.

agn(M
Proof:
Let x be a non-zero element of M. Since alr}n(M) c algn(x) , there exists an epimorphism
R

defined by f (r + arRm(M)) =r+ argn(x) . Therefore is 2-regular

: -
arRm(M) arRm(x) a;Rm(x)

by [1,Cor.(3.3)]. Then M is 2-regular by Proposition (1.7).
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2- Regular Modules and Other Related Modules

In this section, we study the relationships between 2-regular modules and other modules
such as semiprime, divisible, projective and multiplication modules.

Recall that a proper submodule N of an R-module M is called a semiprime submodule if
for every r € R, x € M, k € Z" such that '*x € N implies rx € N implies rx € N, see [4].
Equivalently, a proper submodule N of M is semiprime if for every r € R, x € M such that r’x
€ N implies rx € N, see [5].

An R-module M is called semiprime if <0> is a semiprime submodule of M.

Ainlail) 548 yuall o lall Sl ol Alae
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The proof of the following result follows by [5].
Proposition (2.1):

Let R be a principal ideal ring and M is an R-module. If every proper submodule of M is
semiprime then M is a 2-regular module. The converse is not true, for example: The module
Z4 as Z-module is 2-regular but <0> is not semiprime.

The following proposition gives a partial converse of proposition (2.1).

Proposition (2.2):

Let M be 2-regular and semiprime R-module then every proper submodule of M is
semiprime.
Proof:

Let N be a proper submodule of M and r’x € N where r € R, x € M implies
”x € ™ N N = °N since M is 2-regular. Then r’x = r’n for some n € N, thus
r’(x — n) € <0>. But <0> is semiprime, hence rx = rn € N. Therefore N is semiprime
submodule of M.

Before we give a consequence of Proposition (2.2), we need the following lemma:

Lemma (2.3):

Let M be 2-regular and semiprime R-module then J(R)M = <0>.
Proof:

Letr € J(R) and x € M then r’x=r’tr’x for some t € R since M is 2-regular, r’x(1 — r’t)=0
implies 1 — r’t is invertible in R. Then r’x = 0, but M is semiprime thus rx = 0. Therefore
J(R)M = <0>.

Recall that an R-module M is called semisimple if every submodule of M is a summand.
The sum of all simple submodules of a module M is called the socle of M is denoted by
Soc(M), moreover if Soc(M) = 0, then M has no simple submodule and if Soc(M) = M then
M is semisimple module, see [6].

A commutative ring is a local ring in case it has a unique maximal ideal, see [7].

Corollary (2.4):
Let R be a local ring and M is 2-regular and semiprime R-module then M is a
semisimple and hence is regular.

239 | Mathematics



2015 ple (3) 22211 28 aladll

- Ainlail) 548 yuall o lall Sl ol Alae
Ibn Al-Haitham Jour. for Pure & Appl. Sci.

VYol. 28 (3) 2015

Proof:

Since R is a local ring, then

is a simple ring and hence is semisimple. By [6],

Soc(M) = all:l/[n(J(R)) = {m € M; mJ(R) = 0}. But J(R)M = <0> by lemma (2.3), thus
Soc(M) = M. Therefore M is semisimple.

Now, we have the following:
Proposition (2.5):
Let N be a semiprime submodule of an R-module M and K is a 2-pure submodule of M

. K . . . M
containing N, then N is semiprime submodule in N

Proof:

Letr’(x +N) € % forsomer €e Randx + N € %

Then r’x € K, imples r’x € "M n K = 1’K since K is 2-pure in M. Let r’x = r’m for some m
€ K. Thus r’(x — m) = 0 € N implies r(x — m) € N since N is semiprime submodule in M,

hencer(x + N)=rm + N € % Therefore % is semiprime submodule in % .

Corollary (2.6):

Let N be a semiprime submodule of an R-module M and K is a 2-pure in M with N < K
then K is semiprime submodule in M.

Proof:

Letr’x € K forsomer € R and x € M. Thus r’(x + N) e %, but % is semiprime in %

by Proposition (2.5) therefore r(x + N) e % Hence rx € K, that is K is semiprime in M.

Let R be an integral domain, an R-module M is said to be divisible if and only if tM =M
for every non-zero element r of R, see [8].
An R-module M is said to be a prime module if arf}n(M) = arf}n(N) for every non-zero

submodule N of M, see [9].

Proposition (2.7):
Let M be a module over a principal ideal domain R and N is a divisible R-submodule of
M then N is a 2-pure submodule in M.

Proof: Since N is divisible then for each reR, r’N=N. Therefore N N r*M = r°N.
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module Z4 as Z-module where {0,2} is 2-pure in Zs, but is not divisible since there exists
2 € Zand 2-{0,2} = {0}. That is 2-{0,2} # {0,2}.

The following proposition gives a condition under which the converse of proposition
(2.7) is true.

Proposition (2.9):

Let M be divisible module over a principal ideal domain R and N is a 2-pure in M then N
is divisible.
Proof:

Assume N is 2-pure in M, let m € N and r € R. Since M is divisible implies m = r’x for
some x € M. But m=r*x € XM N N = 2N c rN. Therefore N = rN.

As an immediate consequence we have the following:

Corollary (2.10):

Let R be a principal ideal domain and every proper submodule of an R-module M is
divisible then M is 2-regular. The converse is true if M is divisible.
Proof:

Follows by Propositions (2.7) and (2.9).

Corollary (2.11):

Let R be a principal ideal domain and M is 2-regular and divisible R-module then M is
prime module.

Proof:
By above corollary (2.10), every submodule N of M is divisible. Thus tN = N for every
r € R. Therefore agn(N) = arRm(M) =< 0>. Hence M is prime module.

Corollary (2.12):

Let R be a principal ideal domain and M is 2-regular injective R-module then M is prime
module.

Proof: Clear

We give the following theorem.

Theorem (2.13):
Let R be any ring. The following statements are equivalent:
1) (19 R is 2-regular R-module for any index set A.

(2) Every projective R-module is 2-regulaar module.
Proof:
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(1) = (2) Let M be projective R-module then there exists a free R-module F and an R-
epimorphism f : F—— M, and F = (JAD R where A is an index set. We have the following short

exact sequence

0——kerf i\(JABR " M >0

Where i is the inclusion mapping.
Since M is projective, the sequence is split implies that (19 R =z ker f @ M. But (?R is 2-regular

R-module. Therefore by [1,Cor.(3.4)] M is 2-regular module.

(2) = (1) Assume that every projective R-module is 2-regular module. Since R is projective
R-module, then @R is projective because the direct sum of projective modules is projective.

Therefore GA-) R is 2-regular R-module for any index set A.

Recall that an R-module M is called multiplication module if for every submodule N of
M there exists an ideal I of R such that N =IM, see [10]
We have the following:

Proposition (2.14):
If M is a finitely generated faithful multiplication R-module. The following statements
are equivalent:
(1) R is 2-regular ring.
(2) M is 2-regular R-module.
Proof:
(1) = (2) Let N be a submodule of M and I is an ideal of R. Since
PMAN=I’MnNIM for some ideal J of R

=M since M is faithful multiplication, see [10]
= (PHM since R is 2-regular

=I*(JM)

=I°N

Therefore M is 2-regular.
(2) = (1) LetIandJ be ideals of R. Since
PADM=I’M N IM because M is faithful multiplication
=I2(JM) since M is 2-regular
= (IP’hHM
Thus I> » J = I?J since M is finitely generated faithful multiplication, see [10]. Therefore R is
2-regular ring.

Recall that an R-module M is said to be I-multiplication module if each submodule N of
M of the form JM for some idempotent ideal J of R, see [11].
It is clear that every I-miltiplication module is multiplication but not the converse.
Clearly the two concepts multiplication and I-multiplication modules are equivalent over
regular rings. However we have the following:

Proposition (2.15):
If M is [-multiplication and 2-regular R-module then M is regular module.

Proof:
Let N be a submodule of M and I is an ideal of R. Since
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IMNAN=IMnJM

=IM N J*M for some idempotent J = J?
= J(IM) since M is 2-regular

= (PHM since R is 2-regular

~ 1()°M)

— 1JM)

=IN

Therefore M is regular module.

Proposition (2.16):
If M is [-multiplication and 2-regular R-module then every submodule N of M is
[-multiplication as R-module.
Proof:
Let N be a submodule of M and K is any submodule in N, then K is a submodule of M
and K = IM = I’M for some idempotent ideal I of R. Since
K=NnK
=NnIM
=I°N because M is 2-regular
=IN
Thus N is [-multiplication R-module.
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