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Abstract

Discrete logarithms are applied  in many  cryptographic
problems . For instance , in public key, and for construction ol
sets with distinct sums of k-elements. The purpose of this paper
is to modify the method of information-hiding using  discrete
logarithms , introduce new properties of Sy — sets , usedthe direct
product of groups to construct cyclic group and finally, present
modified method for knapsack problem using each of discrete
logarithms and S, -sets.

Introduction

Let g be a prime power, then there exists a finite field GF(g).
The non - zero elements of GF(g) construct a cyclic multiplicative
subgroup which is generated by primitive element. Ior suitable
notation, one can use GF*(q) =<g», then for any element

u,u= ng GF *{q} is called the discrete exponentiation of basc g
to the power k. The discrete logarithm of u with respect to g is
that integer k, 1<k <q—1. One can write k= log:. The discrete
logarithm of u is sometimes referred to as the index of u.

In fact . the shortest way for constructing finite cyclic group is the
steps of building Galio field of prime power order, For this virlue,

Galio theory was considered the comer stone in cryptosystems. For
cryptographic application of Galio theory see (1) .
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Let fix) be irreducible polynomial over GF(p) modulo of degree n
hence an Element h € GF(p") can be regarded as polynomials h(s)
over GF(p) modulo ol degree less than n.

In 1976 Diffic and Ilellman (2) introduced the concept of
discrete logarithms Problem over finite field and therefore they
added a new direction in eryptography theory. The best known
algorithm for the casc g =p, runs in subsequential time and was
developed independently by Miller (3), Western (4), Merkle (5),
Pohlig (6) and Adleman (7). A subsequential extension of’ Addleman’s
algorithm was developed by Helman (8), then the latter modificd by
Blake (9). Copersmith (10) and Odlyzko (11) for the case g = p" for p
fixed and q growing.

The Adleman — Merkle algorithm for computing logarithms over
GF(p) relies on finding small-primes and elements that factor
completely into small primes (such that smooth element).

Hellman and Reneri (8) introduced the idea of virtual spanning
set for computing discrete logarithm over GF(p"), for n growing and
p fixed.

Elgamal (12) modified the above two works of quadratic field as the
algebriac structure.

Practically all knapsack public key cryptosystems have broken in the
few years, and so essentially the only public key cryptosystemes
that still have some credibility and are widely known are those
whose security depends on the difficulty of factoring integers (
the RSA scheme and its variants ) and those whose security depend
on the difficulty of computing discrete logarithms in finite ficlds
(13).

Instead of using discrete exponentiation module a prime, one could
possibly gain some speed by using addition on elliptic curves. For
these studies — see (14) .

All of the index-calculus algorithms known for compuling discrete
logarithms are forms of the index-calculus algorithms (ICA) (15).In
this ICA , the first stage computes the discrete logarithms of a set Q
of element in the field. Second , is to obtain a number of equations in
the logarithms of elements of Q. Third solved the resulting system
modulo the prime factors of p-1 .On the other hand, there is a good
technique for obtaining the equations - see(16,17,19,20) .

At this time, one can classify the works of solving discrete logarithms
over finite field GF(q), according to integer g, in to three types:
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First , the prime field GF(p) . Second , the quadratic field GF(p) .
Third , the field with characteristic two GF(2"). For the above works-
see (6,11,21,22,23,) , (24.25,26,27,28) , and (9,10,29,30) .

For application of discrete logarithms , Elgamal (12) used it in public
key cryptography. Odlyzko (31) modified Bose - Chowla (32)
method for construction of sets with distinct sums of k elements
subsets.

In section (2) of this paper, mathematical concepts of building of
discrete logarithms with programmed cxamples are discussed. The
direct product method used to construct cyclic group instead ol the
method of finite field.

Section (3) concerned with application of discrete logarithms in
steganography problem. Section (4) contains the  Sy-Sets with
examples. For more general case ,we introduce new properties of
Si-sets. In section (5) we show the encryption of Merkle - Hellman
(33) knapsack problem, and introduce a modified encryption using
S,-sets , discrete logarithms and knapsack  problem . Finally ,
section (6) was concerned with important comments.

2 Discrete Logarithms: The following are basic known definitions
and theorems for studying discrete logarithms:

Definition( 2.1 ): If K is a field extenuation of F, theelement k

& K is called algebraic over I if there exist a5,8y,....,a, € F notall

Zero,suchthat ap+ak+..+ak" =0.

In other words , k is the roots of a non zero polynomial in  F[x]
(the sct of all polynomials where its coefficients belongtoF ) .

Definition( 2.2 ): A group (G,*) is called cyclic if all elements
of G can be generated from clement g€ G . In this case it is written
G=<g>

Theorem( 2.1 ) (34): Let x be algebraic over F and let r(x) be
an irreducible polynomial of degree n over F with x as a root. Then
fixl=Ffxlir{x)

Theorem( 2.2 ) (34): Let GF *(p") be the set of non zero elements in
the Galio field GF(p"). then (GF*(p"),.)is a cyclic group of order (p" —
i i

Definition( 23): A generation g of the cyclic group (GT*(p")
,.)is called a Primitive element of GF*(p"), and for notation,
GF*(p") = <g= for proofs of above the theorems and for other details
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of constructing finite ficld-see(34) .We now come to business of
making more mathematically prices the idea that construct a
multiplicative cyclic group Ifrom finite ficld this is a discrete
exponentiation (logarithm) approach for enciphering (deciphering)
syslems as follows:

Procedure ( 2.1 ): ( cyclic group )

1-Ireducible polynomial: Take  f(x)= x>+m mod P,

provided
that f(t)=0forallieZp

2- Ficld Extension: Put ¥ = a + bot where ab € Zp, &> = —mmod

p and
write y=(a,b).
3- Tow Operations Field: Define

(a,b) (c,d) = (ac+a’bd,ad+bc) modp.

(a,b)+(c,d) =( atb,c+d ) mod p.
4- Primitive Elements: check if {a{,,bﬂ)’:z'2=1 for minimum (p* — 2)
and then

write  g= (a.8,) .

5- For Cyclic Group G=<g>: Compute g" for x=1 To (p” -2
6- For Discrete Logarithm: y
If yis given, compute g * (x=2top — 1), and check ifg "= vy,
then write x.
For illustrating the above concepts , one can take the following
examples :
Example(2-1) For encoding over GF (7 = {1, 3],
f{x} — x? + 3 where ( ¥1.¥2) is the cipher of arbitrary values of x :

% iyl iy * Y Ys |
I 1 k] a0 13 T3
o 3 1 25 1 8
251 7 13 212 i} 11
226 5 7 230 B a2
246 6 1 257 4 12
283 1 7 285 1 1
| 288 l 0 101 13 9
173 & 1 5 10 15
44 1 & | 252 & 0
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Example(2-2) For decoding y = ( y1.y2) over GF*[pzj =g )=,
f(x}=x2 +m; x=logy;g=(a,b)

P a b m ¥ | A X
3 1 1 1 2 2 5
17 1 3 3 1 1 276
3 I 1 1 2 0 4
3 1 1 1 1 0 8
5 1 3 3 4 3 17
5 1 3 3 2 3 8
7 1 2 1 2 2 18

Example{l—ﬁ): For finding primitive elements (generators) g = (a,b)
over GF*(p)), f(x)=x*+m

P |a b m P a b m

3 11 1 1 11 1 4 1

5 |1 | 1 2 5 O | 3 2 |
17 |1 |2 1 17 |1 3 |1
Example(2- 4) : For decoding y over GF*(p) = <g >, x = logy
mod p )

P g [y [x P lg |y X |
17 3 |9 2 31 3 15 21
23 I 101 |2 99 51
23 3 |20 |13 101 |2 43 42
31 3 |29 |9 101 |2 7 9
| : 101 |2 55 37

X

Example(2-5); For encoding over GF*( 101 )=<2>;y=g" mod

p

x |y Ix Iy |x |y [x ly ¥ Iy |

1 2 14 22 |97 38 (50 | 100 10 14

2 |4 15 |44 |98 | 76|51 |99 |11 28

3 |8 |16 [88 [99 | 51|52 [97 12 |56
4 |16 |17 [75 | 100 1153 [93 13 |11
Example(2-6): Lor cnmputing penerators g over GF*(p)=<g>
g [P lg Iis g P g
312 |7 (35 | 13 %’g';’};lmuu 31 | 3,11,12,13,17
5 | 23 I].1 2,678 |17 14’ fanteimr 10T | 23:7.8.1812
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Note ( 2.1 ): One can note that when we hope to construct a cyche
group , we use the method of finite field . The difficulties and
complexities  are represented in  finding and  solving the
irreducible  polynomial. To overcome these difficulties and
complexities, we suggest to use the following theorem for
constructing a cyclic group:

Theorem ( 2.3 )( 16 ) :Let G;,Ga....,G, be groups. For (a;,az,...,a5)

M
and (by,by,...bp)in [ | G; define (araz.....) (b1,ba,...by) to be (a; br,a
i=l
ba,....a; by) Then HG’,- is a group (external direct product) .
Example (2,7) : For insiance , one can take the additive cyclic group
Zx 73=<(1,1)>
= {(1,1),(0.2),(1,0),(0,1),(1,2).(0,0)} Where :

X 1 2 3 4 5 6

y @h @2 100 D (2 |00

For more clearness , one can take a=(0.2) ,andb=(1,0).So Ina

=2, Inb=3 From the other hand , ab = (1.2) and In (a,b) = 5 which

assertthatlnab=Ina+Inbis true.

3-Application of Discrete Logarithm in Steganography:

Steganography or information hiding is the art of passing

information ina manner that the wvary existence of the message

is unknown (35) . One can summarized steganography method as

follows:

1. Embedded <Data type> : something to be hidden in something

else

2. Stego: the output of hiding process : something that has the

embedded message hidden in it.

3. Cover: An input with an (original) form of the stego message. In
some applications, such cover message is given from the outside

, in others, it is during the hiding process.

4. Stego key: Additional secret data that may be needed in the

hiding process. In particular , the same key is usually needed to

extract the embedded message again.

5. Embedding process: The process of hidding the embedded

message is called embedding process.
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6. Extracting process: Getting the embedded message out of the

stego message again.For other details-see ( 36,37 ) .

Following , a proposed method for information — hiding using discrete

logarithms:

Procedure ( 3.1 ) ( information — hiding using discrete logarithms )

1. Construct a prime field 7, = <g=

2. Using discrete exponents method over Zp for Ciphering plain

text.

3. For compression data, use the code word C(p) of plain text word
P=p; p2..pasuch thatC(p)=ncyecaforn 23 .

4. Write the cover text.

5. Send the original text among the cover text.

Example ( 3.1 ) : For illustration, we take the following example

which introduced in (38)

For encoding:

1-Take Zyp; = <2>

2- compression the data : 135y is 3te 3at 3ad 7se of 13cg in a 3wy

Swh Shs 3te 9ee of 3te 13c¢n In 8ct to 12¢y , Swe 3te Sey is 7ad to 6dt

9it 3ad 6my 8ms 7wt 5bn 4ae to 7ve Ten sy 8ps 10gd by 12¢m 3te

4gl of 13sy is to 4he 7me 6ie Sor 8hs Tme In a 3wy 4ul 4ds 3nt Saw

Jay Sey to 4en 6di 41t Ste is 6sd 6st Tme Tpt .

3.Cod message became:139810, 0798, 039532, 030295, 030216,

079832, 4464, 130827, 0722, 02, 035510, 055554, 055498, 039532,

093232, 4464, 039532, 130822, 0722, 080895, 9544, 120810, 055532,

039532, 053210, 0798, 070216, 9544, 061695, 090795, 030216,

061110, 081198, 075595, 050422, 040232, 9544, 077732, 070822,

089810, 088898, 102716, 0410, 120811, 039532, 042756, 4464,

139810, 0798, 9544, 045432, 071132, 060732, 054449, 0385498,

071132, 0722, 02, 035510, 049395, 041698, 032295, 050255, 030210,

053210, 9544, 043222, 061695, 049595, 059532, 0798, 02, 069816,

069895, 071132, 078895.

4.Write any cover text, then send our code message among the cover

fext .

Note( 3.1 ):Clearly, discrete logarithm used for decoding each code

word where the first two digit represent length of plain word .

Note( 3.2 ): There is a good available in MATLAB dealing with string

text (message) numbers and the length of the word .
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Note( 3.3 ): Because of the wide arca of Galio field, one can use
permutation group before the assignment of discrete exponent code
word .

4-New properties of Sy-sets:

Let (G.t) be abelian group , then the subset § is Sy-sets if the sums of
any elements with length k sclected from S are all distinct .Si-sets
was introduced by Bose and Choowla (32). They construct Sg-scts in
additive group modular 7 , .Sy-sets used in combinatorial and
graph theory , for instance , each of Klove (39), and Brouwer (40)
used Sy-sets in calculating lower bounds for constant weight codes.
Furthermore, Chunge (41) used Si-sets in diameter and
cigenvalues.

Indeed , the good modification of Bose-Chowla construction was
introduced by Odlyzke (15). In this modified work, it was showed that
for each Kk = 2. an infinite number of values m exists to that a set S
with distinct k-sums exists inside Z 5, . And the notation ol Sy-sets was
extended to nonabelian group. They introduce a 8-clements S;-set in
Z1ss while Bose-Chowla supplied a 6-clements S;-set .

Following the known basic concepts of Si-sets:

Definition (4.1): Let ScZ, . Ifevery non zero elementsin Zn

has a unique representation a-b mod m , a€S5,b€S, then S is

called perfect difference set.

Definition (4.2): Let § G ,G is abelian finite group. If the sum of
any k elements selected (with replacement) from S is not equal to sum
of any other k element of S, then S is called S¢-set in G.

Theorem (4.1)(1):For every integer k = 2 and every prime P so that k
divide P-1, there exists an Si-set of cardinality P inside Zy where

m =Pk - | ,such that S = PS
Theorem (4.2)(1):For each integer K 2 2, and every prime P with k

divide P-1, a non abelian group G of order |G|=(P* ~1)k exist
(P=1)

which contains Sy-set, S ol cardinality ——

Theorem (4.3 ),(1)): Let g be a prime power. Then there exists a set S
of cardinality q + 2 inside the dihedral group Dy, of order 2m, where
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3
~1
m= (i —) . such that the products xy with X,y €S, X #y,are

(q-1)
distinet.(In particular, Xy # yx forx #y).
Example(4-1) The following examples are of Si-set with cardinality
L

Set k P m |
{1.2,4}:{3.5.6} 2 2 7
{1,3,4},{4.5,7} 2 3 8
10,1,3,9};{0,12,10,4} 2 | 3 | 13
12.5,6}:47.8,11} 2 3 13
{1,2,5.10,25,501 3 5 124
11,2,5,10,25,50,94,125} 3 5 156

Remark (4.1)(42): There is a b injection between any two of the
following sets:

a) The set of k-letter words with distinct letters on an alphabet m
letters.

b) The set of injection ol an k-set into an m-set.

¢) The set of distributions of k-distinct objects into m distinct boxes
such that every box contains at most one object,

d) The of k- permutations of m symbols taken at a time.

The cardinality of cach of these sets is [ m(m-1)...(m -k +1)] .
Remark (4.2): The multiplicative symmetry condition in Theorem (1)
is necessary but not sufficient. For example one can take the set § =
{0,2.6} in Zg:

Clearly 38 = S, but S is not S;-set because ithas 0 1 0 =0 and 2+ 6=
0in ?.g_

The following are new proposed properties of Sg-set.

Proposition ( 4.1 )z If S is Sy-set in abelian group G, then S is Sy-set.

1
Proof : Clearly ‘S ]l = |S| since S is Sy-set , then by Theorem (1) : PS
=8, and if u €S we have pu=v €S then T
To prove [:n.l_l 5

=§ Ry -1 -1 -1 _ g1

pu”l =(up )" =(up)” =(pu)” =v_ €8

Proposition ( 4.2 ): Let S be not Sy-set in Cabelian group G, then 2
is not Sy-set.
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Proof: Suppose W = S is Sy-sct , then by proposition (1) W™ = S is
Sy-set and that is contracting with the hypothesis .
Proposition ( 4.3 ): Let S be Sgset , and a#b,a#0, then

a+beS!.
Proof: Since S is a new element, for instance if iSI =3, then we have

three elements, cach represents a sum of two distinct elements. So
a+bgS=>c=a+bgS=Pc=Pa+Pb=>Pc=a+b=>Pc=cgS
In the same way = Pc”' = ¢l eg!

Then each of ¢ and ¢ has multiplictive symmetry with respect to P .

So

ceS Lo hes.

Proposition ( 4.4 ): Sy-set in Zy, is equivalent to perfect difference set.
Proof: Let e Z, ,then a =a —d;a,d €S

Anda—-d =c-biffa+tb=c+d

That means the sum of two elements in S are distinet if the differences
in S are distinct.

Example(4-1)For illustration above Properties, one can take S =
(13,4} in Zs . Clearly S is Sy-set in Zs ,and $” = {7,54} . Also 8™ is
Sq-zetin Zs.

Notice | +3=4e8;1+4=5e8"3+4=7¢S8" andin
additive Zg |

Where 1 -3=6,3-1=2,1-4=5,4-1=3,3-4=7,4-3=1
are all different .

5- Merkle — Hellman Knapsack Encryption :

The arca of “clectronic mail” may soon be uponus: we must
ensure that two properties of the current “Paper mail” system are
preserved : (a) messages are private, and (b) messages can be signed
(43).The development of cheap digital hardware has freed it from the
design limitations of mechanical computing and brought the cost of
high grade cryptographic devices down to where they can be used in
such commercial applications as remote each dispenses and computer
terminals
(2) .In this section, modified algorithm for encryption 0 —1 vector
message is presented. Knapsack problem, discrete logarithms, and 5;-
set were connected in one procedure.

First Merkle — Hellman Knapsack Encryption (44) must be presented:
Procedure ( 5.1) (Merkle — Hellman Knapsack )
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For Encryption:

1. An integer n is fixed as a common system parameter.

2.Choose super increasing sequence (a1,8,,....,a,) and modulus M such
that

M>a +a;+..+ta,;andby>by+by+ ... +b_,fori=1,2,....n.
. Select random integer W, 1< W <M —1such that g <d (W, M) =

. Compute b = W.a mod M.
. A’s public key is (by,bz,....ba); A’s private key is (M, W.a).
. Message X = (X1,X2.....Xn) 18 bit vector.
. Cipher text Y = x;b; + Xaba +. ..+ Xpby
For Decryption:
1- Compute d = Wy mod M
2- Computc a=W"'.b mod M
3- Deduce x from Y = xja; + %283 +... + X,a, as follows:

Function x = INF (y.a)

Fori=nTo | step-1

Ify>=a Thenxi=landy =y - a;
Else x; =0.

The following is a proposed procedure where Sp-set used as a super
increasing set:
Procedure ( 5.2 ) (Discrete Logarithms & S;- Set & Knapsack):
For Encryption:
1. Construct A = Sy-sel over Z:; =<a>0e A, A=(3;,8,....,80)-
2. Check if A is Knapsack set (super increasing).
3. Check if (a;.a2,.....82) <P .
4, Choose W such that. ged (W.P) = L.
5. Compute B = WA mod P where B = (by,ba,....bg).
6. Message X = (X1,X2,....Xn).
7
8

] Th oL e — Ll

.Compute y=x.B modP .

. Compute d=a mod P .
For Decryption:
1- Compute y = log,d modP.
2- Compule Z. = Wl*y modP.
3- Compute A = W'*B modP.
4- Check if A is Sy-setover Zp .
5- Compute the plain message X = INF(Z.A) .
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Example (5-1):_For taking Z;Q =<2>, W=3, n=5,A=(1.2,

7, 14, 25 ), then W' =20, B = (3,6,21,42,16), therefore the
following table represents the message word x , the discrete exponent
code d , and ordinary code y.

X d y L
(0,0,0,0,1) 46 16 25
(1,0,0,0,0) 8 3 1

(1,1,0,00) | 40 9 3
(1,0,0,0,1) 14 19 26
(1,1,0,0,1) 11 25 28
(0,0,1,0,0) |56 21 7

0,1,00,00 |5 6 2

0,1,1,00) |44 27 9 J

6-Conclusion : The powerful of discrete logarithms appears when
it is used in information—hiding problem. In proposed modilied
stenography method , one can not need any special dictionary
between sender and receiver. Furthermore, discrete logarithm give
more complexity when it used in zero one knapsack problem. For
more creditability, S,-set used as a super increasing set in  zero —
one knapsack problem. New properties of Si-sct s were proved, All
Pervious studies of cryptosystems used the method of Galio finite
field for construction of cyclic group .Here we use the direct product
of two cyclic groups to construct a cyclic group .
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