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Abstract

Let L be a commutative ring with identity and let W be a unitary left L- module. A
submodule D of an L- module W is called s- closed submodule denoted by D <;c W, if D has
no proper s- essential extension in W, that is , whenever D < W such that D <;; H< W, then D
= H. In this paper, we study modules which satisfies the ascending chain conditions
(ACC) and descending chain conditions (DCC) on this kind of submodules.
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Introduction

Throughout this paper, L represents a commutative ring with unity and W be a left unitary
L- module. It's well known that “a submodule D of W is called small denoted by D<< W if
and only if D + U = W implies U=W for each U submodule of W (U<W)” [2], and “a
submodule D of an L - module W is called an essential submodule of W and denoted by
D<¢W if every non-zero submodule of W has non-zero intersection with D [3], while “a
submodule D of an L- module W is said to be a closed submodule of W if D has no proper
essential extension inside W, that is if D<, H< W then D=H” [3]. As a generalization of
essential submodules , in [4] “Zhou and Zhang” introduced the concept of s- essential
submodule , where “a submodule D of an L-module W is said to be an s -essential submodule
of W denoted by D<;e W if DNNH=0 with H is a small submodule of W implies H= 0. “Mehdi
Sadiq and Faten” in [1] introduced and studied the notion of s- closed submodules, “a
submodule D of an L- module W is called s-closed submodule denoted by D<,. W, if D has
no proper s- essential extension in W, that is , whenever D < W such that D<;,; H< W , then
D=H.
This paper consists of two sections. In section one, we give some other properties and
examples of s-essential submodules and s- closed submodules. In section two, we study
chain conditions (that is ascending and descending chain conditions) on s-closed submodules.

1. S-Essential Submodules and S- Closed Submodules
Definition 1.1 : [4]
A submodule D of an L-module W is said to be an s- essential submodule of W denoted by
D <, W if DNH= 0 with H is a small submodule of W implies H= 0.
Remarks and examples 1. 2 :

1) It's clear that every essential submodule is an s- essential submodule, hence every
submodule of Z -module Z, Z}} ( where P is a prime number, neZ.) is s- essential.
2) If W is an L- module such that (0) is the only small submodule then every submodule

is s- essential submodule in W.
In particular , for each submodule of semisimple module ( or free Z -module ) is s- essential.
Hence it's clear that every submodule of Z -module Zg is s- essential, however they are not
essential. Also every submodule of the Z- module Z @ Z is s- essential submodule.
3) Let A be a submodule of an L -module W, then there exists a closed submodule H of
W such that A<, H, it is clear by [3, Exc.13, p.20], hence A< H.
4) In Z,4 as Z- module, we have <2>, <3>, <4>, <6>, <12>, and Z,4 are s- essential
submodules in Z4, but <8> is not since <8>N<6> ={0} while <6> = 0 is a small submodule
in Zoa.
5) For a nonzero R-module W, W <, W.
6) The two concepts essential and s- essential are coincide under the class of hollow
modules, by[1, Remark (2.3)], where “an L -module W is called Hollow if every proper
submodule of W is small”. [5]
Proposition 1. 3 :

Let W be an L-module and let S<,c T<M and S’ <cc T"< W, then SN S' < T N T".
Proof:

LetU<<TNT and (SN S)NU=(0), hence SN(S'NU)=0.
ButU<<(TNT")implies U<<T"and U << T.
As S'NU cU<<T, then S’NU<<T. But S < T, hence S'NU= 0.
It follows that U = 0 since S'<sc T' and U << T".

The following result follows by Proposition 1.3 directly.

Mathematics |228
https://doi.org/10.30526/30.3.1618




2017 ale (3) 232l ( 30) sal
Ibn Al-Haitham J. for Pure & Appl. Sci.

Akl 548 pall o glall gl () Alae

Vol.30 (3) 2017

Corollary 1.4

Let C, D be submodules of W such that C<,W and D< W. Then CND <,; W, [4,
proposition 2.7(1)(b)] .
Proposition1.5:

Let W=W:®W,, and let A = A;PA, <. BiPB,, where B;< W; and B,< W,. Then A<
B; and A< B,.
Proof:

Suppose A; is not an s-essential submodule in B; So there exists a nonzero small
submodule D; in B; such that A;ND;=(0).
Since D:@(0) is a small submodule in B;@B; and (A1PA,) N (D1P(0)) = (A1NDy) D
(A2Nn(0)) = (0).
Then A1@DA; is not an s-essential submodule in B;@B, which is a contradiction.
Thus A; < B; and by the same way of proof that A, <s Bo.

Proposition 1.6 :

Let W be a faithful multiplication finitely generated (denoted by FMFG) L- module, and
U a submodule of W. Then U <, W if and only if there exists an s -essential ideal E of L such
that U = EW.
Proof:
(=) Let U<e W . As W is a multiplication L- module, so U= EW for some E < L. To prove
that E < L, assume J is a small ideal of L and E N J =0, hence ( E N J )W = 0. Then by [6,
Th. 1.63i), p. 759] EW N JW =0, thatis U N JW =0 .
But by [8, prop.1.1.8] JW is a small submodule of W and U <, W, so JW = 0. Hence J= 0 (
since W is a faithful module ) . Thus E < L.
(<) To prove U <, W. Assume V is a small submodule of W, hence V = JW for some J << L.
ifUNV=0,then EW NJW =0and so (ENJ)W=0. Hence E N J =0 since W is faithful.
Thus J= 0 because E < L. It follows that V=0 and U < W.
Theorem1.7:

Let W be a FMFG L- module. Then I<s J< L if and only if IW<s JW.
Proof:
(=) Let U be a small submodule in JW< W, so U< W. Thus U= KW for some K< L. As
KW<JW then K<J, by [6, Th.3.1]
To prove K is a small submodule inJ, let K+H = J, so KW + HW = JW. That is HW =JW
(since KW = U which is a small submodule in JW). Hence HW =JW and so H=J, that is K is a
small submodule in J.
If IW NU = 0, then IW N KW =0. Thus (INK)W = 0, so INK=0 (since W is faithful
multiplication).
But 1<, J and K is a small submodule in J, hence K= 0. It follows U= 0, thus TW<, JW.
(<) If IW<s JW to prove I<e J< L. Let K be a small submodule of J.
Assume INK = 0, then (INK) W =0, so IW N KW =0.
Let KW +H = JW. Since W is a multiplication module , thus H = CW. Hence KW + CW =
JW.
Since KW is a small submodule in JW , then CW = JW and hence C =J. Thus H = JW and
KW is a small submodule of JW.
Now, IW N KW =0 and KW is a small submodule in JW implies KW = 0 (since IW<, JW)
and so K=0. It follows 1< J.

Recall that , “a non-zero L-module W is called small -uniform (shortly, by s -uniform) if
every nonzero submodule of W is s -essential. A ring L is called s-uniform if L is an s-
uniform L-module”. [9]
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Corollary 1.8

Let W be a FMFG L-module. Then W is s-uniform module if and only if L is s-uniform
ring.

Definition 1.9 : [1]

A submodule D of an L -module W is called s-closed submodule denoted by D <;c W, if D
has no proper s -essential extension in W, that is , whenever D <W such that D <¢c K < W,
then D = K. An ideal E of L is called an s-closed, if it's an s- closed submodule in L. Where
every s- closed submodule in W is closed in W but the converse is not true.

Examples 1. 10:

1) In Zy as a Z-module. Zy; and <8> are the only s-closed submodules while
<2>,<3>,<4><6> and <12> are not because they have a proper s-essential submodule which
IS Z4. All submodules of Z,4 have the following properties.

A<Zy, A<<Zy4 A< Zy A< 2y
<0> v x x

<2>
<3>
<4>
<6>
<8>
<12>
on

x| N K| \| X| x| ¥
N AVEIRNENENAN
AN NR IR RS

Similarly, <4>,<6> and <8> are not small submodules in <2> in Zy4 but <12> is a small
submodule in <2> and <4>N<12>={0} thus <4> is an s-essential submodule in <2>, so it is
not an s-closed submodule in <2>.
2) If W is a simple module , then <0> and W are s- closed submodules.
3) Let W be an L-module. If every submodule of W is s-closed (hence every submodule
is closed), then W is semisimple module, however the converse is not true, for example in Zg ,
Zs is a Z- module is semisimple but the submodules <0>, <2>, <3> are not s- closed.
Proposition 1. 11 :

Let W be an L-module such that the s-essential submodules satisfy transitive property.
Then for each A < W, there exists an s-closed submodule such that A <s H.
Proof:

Let S={K<W : A <, K}. V= since Ae V. So by “ Zorn’s Lemma” S has a maximal
element say H.
To prove H is an s -closed submodule in W. Assume H <, D < W.
Since A <, H and H < D, then A <, D (by transitive property), and soD e S.
Hence H = D ( by maximality of L ). Thus H is an s-closed submodule.

The following proposition has been given in [1], we will mention it with its proof for the
sake of completness.
Proposition1.12:

Lea A be a submodule of B, and let B an s-closed submodule of W, then (B/A) is an
s -closed submodule of (W/A).
Proof:

Assume (B/A) < (C/A) where (C/A) < (W/A). Let t : W — (W/A) be a natural projection
map.
Then B=r~1(B/A), and so by [4, prop.27(2), p.1054] B < C.
But B is an s- closed submodule in W. Thus B=C.
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It follows that (B/A)=(C/A)and (B/A)is an s-closed submodule in (W/A).
Proposition 1. 13 :

Let A <B < W such that A is an s -closed submodule of an L-module W. Then B <, W if
and only if > < .
Proof : (=) See [1, coro.2.7]
(<) Suppose%ssc¥ and let B < H < W. Since A <, W and A <B then%fse% implies
B < W by [1, Remarks and Examples 2.2(6)]. That is A <s B by [1, propo.2.8].

To prove A <s H, suppose that A<, C for some submodule C of H. As A is an s- closed

submodule of W, thus A = C . Hence A is an s -closed submodule of H and B < H, that is
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Esse %, by [1, Remarks and Examples 2.2(6)]. But E <sc %, o) % = %. Then B =H which means
B <cW.

Proposition 1. 14 :

Let W be a FMFG L-module, and C< W. C is an s-closed submodule in W if and only if C

= HW for some s-closed ideal H in L.

Proof:

(=) Let C< W, then C = HW. To prove H is an s-closed ideal in L .

Assume H<i J. Hence HW< JM by (Th. 1.7) , thus C<, JW so C = JW that is HW =JW.
Since W is FMFG module so H =J, hence H is an s -closed ideal in L.

(<) Similarly.

2. Ascending (Descending) Chain Conditions on S-Closed Submodules

In this section, we study modules with chain conditions on s -closed submodules.
Definition 2 . 1 : An L-module W is said to have the ascending (descending) chain condition,
briefly ACC (DCC) on s-closed submodules if every ascending (descending) chain Ajc A,
... (A12 Az D...) of s-closed submodules of W is finite. That is there exists ke Z, such that
A, = A for all n>k.

Recall that, “a Noetherian module is a module that satisfies the Ascending Chain
Condition on its submodules. Also, an Artinian module is a module that satisfies the
Descending Chain Condition on its submodules”. [3]

Remarks 2. 2:

1. Every noetherian (respectively artinian) module satisfies ACC ( respectively DCC )
on s -closed submodules.

2. If W satisfies ACC ( respectively DCC) on closed submodules, then W satisfies ACC
(respectively DCC) on s -closed submodules.

Proof: It is clear since every s -closed submodule in W is closed submodule in W.

The converse is true if W is hollow by Remark 1.2(6) or uniform module , where “ a
uniform module is a nonzero module W which is every non-zero submodule of W is essential
in W” . [3]

Recall that, “an L-module W is called chained if for all submodules C and D of W either
C<DorD<C".[7]

Proposition 2 . 3 : Let W be a chained L -module, and let A be an s-closed submodule of W.
If W satisfied ACC ( respectively DCC) on s -closed submodules, then A satisfies the ACC
(respectively D CC) on s-closed submodules.

Proof: Assume W satisfies ACC on s-closed submodules and A; ¢ A, < ... be ascending
chain of s- closed submodules of A. Since A is an s-closed submodule of W and W satisfy
chained condition, so by [1, prop.2.11, p.345] A; is an s-closed submodule of W for each i =
1, 2, ... . Hence A; < A, < ... be ascending chain of s-closed submodules of W. But W
satisfies ACC on s- closed submodules , thus keZ, such that A, = A for all n>k. That is A
satisfies ACC on s- closed submodules.
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Similarly, if W satisfies DCC on s- closed submodules, then A satisfies DCC on s- closed
submodules of A.

Proposition 2. 4 : Let W = W;@W, be an L-module satisfies ACC (respectively DCC) on s-
closed submodules. Then W; and W, satisfy ACC (respectively DCC) on s- closed
submodules.

Proof: Suppose W satisfies ACC (respectively DCC) on s-closed submodule and A; < A,
...(respectively A; © A; D...) be ascending (respectively descending) chain of s-closed
submodules of W;. Thus AW, Ao W, ... are s-closed submodules of W1@W, by [1,
prop.2.5]. That is Ai W, < AP W, < ... (respectively A1 Wo o AP Wro...) is a
chain of s-closed submodules of W, but W satisfies ACC (respectively DCC) on s-closed
submodules. So there exists ke Z, such that Ay W, = Ax @ W, for all n > k. So A, = A for
all n>k. Hence W, satisfies ACC (respectively DCC) on s-close submodules. By the same
way of proof, W satisfies ACC (respectively DCC) on s-closed submodules.

Recall that , “ a submodule C is fully invariant in W if f(C) < C for all f € Endr(W)”. [3]
Proposition 2. 5 : Let W = W;W, be an R-module where W; and W, are s-closed
submodules of W . Then W satisfies ACC (respectively DCC) on nonzero s- closed
submodules if and only if W; and W, satisfy ACC (respectively DCC) on nonzero s-closed
submodules, provided that every s- closed submodule of W is a fully invariant.

Proof:

(=) See proposition 2.4.

(<) Suppose W; and W, satisfy ACC (respectively DCC) on s-closed submodules, to prove
W satisfy ACC (respectively DCC) on s-closed submodules. Let and A; < A, < ...
(respectively A; o A; D...) be ascending (respectively descending) chain of s-closed
submodules of W.

Let 7 : W — W; be a projection map for each i = 1, 2. Suppose that A; = (Ai N W1) @ (A
NWy) by [10, Lemma.2.1].

Note that, Ai W; and W, are s-closed submodules of W, for each i. Thus by [1, Remarks and
Examples 2.2 (3)] (Ai N W3) and (Ai NW,) are s-closed submodules of W. Since (Aj N W3) <
Wi W, so by [1, prop.2.8, p.345] (Ai N W) is an s-closed submodule of W and (Ai NW)
is an s-closed submodule in W; for each i = 1,2, ... . In fact if Aj N W;=0 foralli=1,2, ...
and j = 1,2 then A;y = (Ai N W1) @ (Ai N W) = 0 which is a contradiction with our
assumption. That is A; N W;j are nonzero s-closed submodules in W for eachi =1, 2, ... and
j =1, 2. So we have the following ascending (respectively descending) chain of nonzero s-
closed submodules in Wj, (A1 N Wj) < (A2 NW)) < ... (respectively A1NW; 2 A2 NWj D...)
for each j = 1, 2. But W; satisfies ACC (respectively DCC) on s-closed submodules for each
J =1, 2. Thus there exists kjeZ. such that A, N W; = Ay N W; ,forall n=k; and j =1, 2. Let
k =max { ki, k2 }, 50 An = (An N W1) @ (An NW2) = (Ak N W) @ (Ax NW3) = A for all
n>k. Hence W satisfies ACC (respectively DCC).

Remark 2.6 :

We can generalize proposition 2.5 for finite index | of the direct sum of L-modules.
Proposition 2. 7 : Let A < B < W such that A is an s-closed submodule of an L- module W.

W satisfies ACC (respectively DCC) on s-closed submodules if and only if va satisfies AC
C (respectivelyDCC) on s-closed submodules.

Proof: (=) Suppose W satisfied ACC on s- closed submodules, and let %g % C ..., be
ascending chain of s-closed submodules of \;_v’ then B; is an s-closed submodule of W by
(proposition 1.12) . Thus there exists k € Z, such that B, = B for all n>k . Hence % = % for

all n>k .That is% satisfies ACC on s-closed submodules.
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(<) Suppose % satisfies ACC on s- closed submodules. Let A — A; € A, < ... be a chain of
s-closed submodules of W. Since A c A;and A < A, , ... and A is an s-closed submodule of

W, then by [1, coro.2.7, p.345] % is an s-closed submodule of W for each i. Thus we have %

A
C—Z

C ... is an ascending chain of s-closed submodules of < hence by our assumption

%satisfies ACC on s-closed submodules so there exists k € Z, such that % = % for all n>k.
That is A, = A for all n>k which means W satisfied ACC on s-closed submodules.
By the same way we can prove that W satisfies DCC on s-closed submodules if and only if %

satisfies DCC on s-closed submodules.

Proposition 2. 8 : Let W = W; @ W, be an L-module and L = ann(W;) + ann(W5). Then W
satisfies ACC (respectively DCC) on s- closed submodules if and only if Wy and W, satisfy A
CC (respectively DCC) on s- closed submodules.

Proof: (=) see proposition 2.4.

(<) Let E; < E; < ... be an ascending chain of s- closed submodules of W (Since L =
ann(Ws) + ann(W5), every submodule E; of W has the form N;@K; for some N; < W; and K; <
W,). Hence by [1, prop.2.5] N; is an s- closed submodule in W; ,and K; is an s- closed
submodule of W, for all i= 1, 2, ... .So N; < N, < ... is an ascending chain of s- closed
submodules of W; and K; ¢ K; ... is an ascending chain of s- closed submodules of Wo.
Since W and W, satisfy ACC on s- closed submodules, then there exists t, r € Z. such that
Nt =N and K, = K, foreachi=1, 2, ... . Take s = max {t, r}, hence NsPKs < Ns:iD Ky,
foreachi=1,2, .... That is W satisfies ACC on s- closed submodules.

By the same way we can prove that W satisfies DCC on s- closed submodules if and only if
W, and W satisfy DCC on s- closed submodules.

Proposition 2. 9 : Let W be an L-module such that the sum of any two s- closed submodules

of W is again an s- closed submodule. If A is an s- closed submodule of W such that A and %

satisfy ACC (respectively DCC) on s-closed submodules, then W satisfies ACC (respectively
DCC) on s- closed submodules.

Proof: Assume B; < B, < ... be ascending chain of s -closed submodules of an L-module W,
then by [1, Remaks and Examples 2.2(3), p.343] Bi N A is an s-closed submodule of W, for
eachi=1,2, ..., but (BiNA) c A, thus BiNA is an s-closed submodule of A, foreachi=1, 2,
..., by [l, prop. 2.8, p.345].

Also, B; + Alis an s - closed submodule of W (by our assumption), hence Bi+A

A

isans - closed
submodule of % , foreachi=1, 2, ..., by proposition 1.12.

Now consider the two following two ascending chain of s-closed submodules of A and %z
BLNAcB,NAc...,and %gmg ..., but A and%satisfy ACC on s-closed

submodules. Therefore , there exists ki, ko € Z, such that B, N A = Bxs N A, for each n > k;,
By+A _By+A

; . B+A B
and AB X AB , for each n > k,. By isomorphism theorem — 25 [2, Th. 3.4.3, p.
+
56] , SO nT = Bﬂﬁ
Hence, Br - Pl , which means B, N A = Bk, N A, for each n > ky. Let k = max{ ki, k

B,NA Byp,NA
}, thus B, N A =Bk N A for eachn > k and B, N A = BN By, for each n > k.
Now, foreachn>k, B,=B,N (B, + A) =B,N (Bk+ A) =B N (B + A) = Bk.
Thus, M satisfies ACC on s-closed submodules.

By a similarly proof W satisfies DCC on s-closed submodules.
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Proposition 2. 10 : Let W be a FMFG L-module. Then W satisfies ACC (respectively DCC)
on s- closed submodules if and only if L satisfies ACC (respectively DCC) on s- closed
ideals.
Proof: (=) Suppose W satisfies ACC (respectively DCC) on s- closed submodules. To prove
L satisfies ACC (respectively DCC) on s- closed ideals. Let 1 c lbc...(I1 21l ... )bean
ascending (respectively descending) chain of s-closed ideals of L. Thus by (proposition 1.14)
A= I1W < Ay = bW < ... (respectively A3 = 1W o A, = LbW o ...) is an ascending
(respectively descending) chain of s-closed submodules of W. But W satisfies ACC
(respectively DCC) on s-closed submodules, so there exists k e Z. such that A, = A for all
n>k, hence I,W = LW for all n>k, that is I, = I for all n>k . So L satisfies ACC (respectively
DCC) on s- closed ideals.
(<) Similarly.

Recall that, “an L- module W is called a scalar module if every L- endomorphism of W is
a scalar homomorphism, that is for each 0 # fe End(W), there exists 0 # se L such that
f(a)=sa for all acW”. [11]
Corollary 2. 11 : Let W be a FMFG L-module. Then W satisfies ACC (respectively DCC) on
s- closed submodules if and only if End(W) satisfies ACC (respectively DCC) on s- closed
ideals.
Proof: (=) Since W be a FMFG L-module, then W is a scalar module by [11, Coro.1.1.11],

End(W) = L by [12, Lemma 6.2]. But ann(W) = 0, so End(W) = L. Hence the result

ann(M)
follows by proposition 2.10.

(<) Similarly.

Future works:

1. Give an example shows that every noetherian (respectively artinian) module satisfies
ACC (respectively DCC) on s -closed submodules.

2. Give an example shows that the converse of (Remark 2.2(2)) is not true in general.

3. Give an example shows that the converse of (Proposition 2.4) is not true in general.
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