## Synthesis and Characterization of 1,3- Oxazepine and Benz [ 1,2-e][1,3] Oxazepine-4,7-Diones

#### F.A.Hussein ,O. H. Aabid\*, and K. F. Ali

 Department of Chemistry, College of Education, University of Baghdad

\* Department of Chemistry, College of Science, University Of Baghdad

#### Abstract

N- Benzylidene m-nitrobenzeneamines (Schiff bases) were prepared by condensation of m-nitroaniline with aromatic aldehydes. These Schiff bases were found to react with maleic anhydride to give 2-Aryl-3-(m-nitrophenyl)-2,3- dihydro [1,3] oxazepine -4,7 – diones and with phthalic anhydride to give 2-Aryl-3 – (m-nitrophenyl) –2,3 – dihydrobenz [1,2-e] [1,3] oxazepine -4,7- diones which were reacted with pyrrolidine to give the anilide – pyrrolidides of maleic acid and phthalic acid.

#### Introduction

The 7-membered heterocyclic ring system: 1,3-oxazepine has already been reported in the literature(1-6).

Irradiation of 4-phenyl-2-oxa-3-azabicyclo[3.4.0]-hepta-3,6-diene in n-hexane gave 2-phenyl-1,3-oxazepine in 80% yield. Pyrylium tetraflurorborate underwent ring expansion on treatment with excess sodium azide in anhydrous 1,4-dioxane to give 58-96% substituted 1,3-oxazepine. Furthermore, thermal rearangment of ketovinylazirines gave substituted 1,3-oxazepine(7-10).

The discovery of the central nervous system (CNS) activity of 1,4benzodiazepine(11-12) encouraged further searching for new ways to build up this 7-membered heterocyclic ring system. The first of these ways was the one involving addition of maleic anhydride and phthalic anhydride to Schiff bases(13-15).

## Discussion

Schiff bases are prepared by condensation of m-nitroaniline with aromatic aldehydes to give N-Benzylidene m-nitrobenzeneamines according to well-known procedure(13) and identified by their m.ps, elemental analysis, IR, and UV spectra.



It is known that Schiff bases react smoothly with acid chlorides and anhydrides to give the corresponding addition products(13-15).

In this paper, the reaction of maleis and phthalic anhydrides with N-benzylidene m-nitrobenzeneamine is presented:



where: a) R=H b)R=3-NO<sub>2</sub> c)R=4-Cl d) R=4-Br e) R=2-Br f) R=2-OMe g) R=NMe<sub>2</sub>



[111]

where:

a) R=H b) R=4-Cl c) R=3-NO<sub>2</sub> d)R=4-Me e) R=2-OMe

The reaction is followed by the disappearance of (N=C) absorption band (1600-1610)cm, and the appearance of the absorption bands of the expected groups in IR spectra of 2-aryl-3-(-m-nitrophenyl) -2,3-dihydro [1,3] -oxazepine -4,7- diones [II] and 2- aryl -3-(-m-nitrophenyl)-2,3-dihydrobenz[ 1,2-e] [1,3] - oxazepine-4,7- diones [III].

Structure [II OR III] is a combination of both lactone and lactam in a 7-membered heterocyclic ring. This is indicated by the appearance of the characteristic (C=0) (Lactone / Lactam) absorption band at (1680-1700)cm in their IR spectra .

The UV spectra of 2-aryl-3(m-nitrophenyl)-2,3-dihydro [1,3]oxazepine-4,7-diones [II] and 2-aryl -3-(m-nitrophnyl)-2,3dihydrobenz [1,2-e] [1,3] - oxazepine -4,7 - diones and 2-aryl-3-(mnitrophenyl) -2,3-dihydrobenz [1,2-e] [1,3] - oxazepine-4,7-diones are identified by their elemental m.ps, tables (1,7),IR spectra tables (2,8)and UV spectra tables (3,9).

It is noticeable that the values of C-Hstr (benzylic) absorption bands are rather high. This is, in fact, explained by the shift towards longer wavelengths, that takes place when the benzylic carbon is linked to

three electron –withdrawing groups, phenyl, CL and N as in the title compounds .

It is impressive to note that the two absorption bands at (1740 - 1780) cm and at (1800-1850) cm in the IR spectrum of pure maleic or phthalic anhydride have disappeared when the anhydride became part of the 7-membered heterocyclic ring of [1,3] – oxazepine –4,7-dione or benz [1,2-e] [1,3] –oxazepine –4, 7 dione. This may be attributed to the fact that [1,2-e] [1,3] –oxazepine –4,7-dione. This may be attributed to the fact that the combined (C=O) of the loctone and the (C=O) of the lactom . Absorb in the same region of the IR spectra of these cyclic products Moreover, the (C=O) group in the IR spectra of the title [1,3]-oxazepine-4,7-diones or benz[1,2-e][1,3]-oxazepine-4,7-diones or benz[1,2-e][1,3]-oxazepine-4,7-diones or benz[1,2-e][1,3]-oxazepine-4,7-diones or benz[1,2-e][1,3]-oxazepine-4,7-diones or benz[1,2-e][1,3]-oxazepine-4,7-diones or benz[1,2-e][1,3]-oxazepine-4,7-diones and 2-aryl-3-methyl-5,6-dihydro07H-pyrrolo[1,2-d][1.4]benzodiazepine-6-ones(8), absorbs in the same region (1680-1700)cm<sup>-1</sup>, thus confirming the assigned 7-membered ring structure.

The reaction of maleic anhydride or phthalic anhydride with various Schiff bases is a sort of cycloaddition reaction. Cycloaddition is a ring formation that results from the addition of  $\pi$  bonds to either  $\sigma$  or  $\pi$  bonds with formation of new  $\sigma$  bonds. This class of reactions and its reverse encompasses a large number of individual types. Huisgen (16) has formulated a useful classification of diverse cycloadditions in terms of the number of the new  $\sigma$  bonds, the ring size of the product, and the number of atoms in the components taking part in the cycloaddition. This cycloaddition reaction is classified as a 5+2 $\rightarrow$ 7, and it is one of the first cycloadditions of this type, although in principle, one would predict that the pentadienyl cation might add to an olefin through a (4n+2) transition state to yield the cycloheptenyl cation (17).

The mechanism of the reaction of maleic anhydride and phthalic anhydride with Schiff bases and evidence supporting the 7-membered heterocyclic ring system for the products have already been reported (13-15).

Previously, it was demonstrated that the basic hydrolysis of 2,3diaryl-2,3-dihydro-1,3-oxazepine-4,7-diones is unsuccessful due to the immediate reclosure on acidification. The reclosure is easily achieved due to the closeness of the involved COOH and OH groups within the cis configuration of maleic acid or phthalic acid moiety. The evidence supprting this stems from the fact that both the original 1,3-oxazepine-

4,7-diones or benz [1,2-e][1,3] oxazepine-4,7-dione and the assumed hydrolysis product have identical m.p., mixed m.p., and IR spectra.

In order to avoid reclosure, the original title compounds (II or III) are treated with pyrolidine to give the open-chain anilide-pyrrolidide derivatives of maleic acid or phthalic acid [IV, V].



Since none of the two nitrogen atoms in structure [IV or V] carries hydrogen, reclosure through elimination of water molecule to the cyclic structure is not expected.

Male- or phthal-N-( $\alpha$ -hydroxybenzyl) anilide-pyrrolidides are identified by their m.ps., elemental analysis table (4,10), IR spectra table (5,11) and UV spectra table (6, 12).

#### Experimental

Melting points were recorded with Gallenkamp Melting point apparatus and were uncorrected. Elemental analyses were carried out in Mousil University on Carlo Erba Type 1106 CHN Elemental Analyzer. IR spectra were recorded with PYE UNICAM SP-300 Infrared Spectrophotometer in (KBr) ND UV-Visible spectra were recorded (in methanol) on Schimadsu Recc-160 spectrophotometer.

#### N-Benzylidene arenamines :

N-Benzylidene arenamines were prepared by condensation of subtitled aniline and aromatic benzaldehydes in hot ethanol and recrystallized from the same solvent according to a previously published procedure(9). They are characterized by their m.ps, elemental analyses, IR spectra and UV-Visible spectra.

2-Phenyl -3-(m-nitrophenyl)-2,3-dihydro[1,3] -oxazepine -4,7diones or 2-phenyl -3-(m-nitrophenyl)-2,3-dihydrobenz[1,2e][1,3]- oxazepine -4,7- diones

In a(100ml) round bottom flask, equipped with double surface condenser fitted with Calcium chloride guard tube, was placed with a mixture of (0.01) mole of N-benzylidene m-nitrobenzenamine and (0.01) mole of maleic anhydride or phthalic anhydride suspended in (50ml) of dry benzene. The reaction mixture was refluxed in a water bath at 90 C<sup>o</sup> for 2hrs. The solvent was removed and the resulting yellow crystalline solid was recrystallized from dry 1,4-dioxane.

This experiment was repeated using different N-benzylidene nitrobenzenamines in order to obtain other 1,3-oxazepine -4,7-dones.

#### Reaction of pyrrolidine with 2-aryl-3-(m-nitrophenyl)-2,3dihydro[1,3] -oxazepine -4, 7- diones or 2-aryl -3-(m-nitrophenyl) - 2,3- dihydrobenz[1,2-e][1,3] -oxazepine -4,7-diones

To a mixture of 0.005 mole of 2-aryl-3-(m-nitrophenyl)-2,3dihydrobenz[1,2-e] [1,3] –oxazepine –4,7-dione suspended in dry 1,4dioxane was added an excess (0.02 mole) of dry pyrrolidine. After (10min) of stirring the mixture was heated to (80  $^{\circ}$ C) in water bath for (30 min) then left to cool to room temperature and the separated crystalline solid was filtered and recrystallized from 1,4- dioxane.

Several other derivatives of male – or phthal – N- ( a-hydroxybenzyl) anilide – pyrrolidides were obtained following the same procedure and using the same amounts of pyrrolidine and the chosen 2-aryl-3-(m-nitrophenyl)-2,3-dihydro-1,3-oxazepine -4,7-diones.

## References

- 1. Streith, J.; Luttringer, J.P. and Nastasi, J. (1971). J.Org. Chem., <u>36</u>: 2962-67.
- 2. Yamada, S.; Ishikawa, M. and Kaneko, C. (1972). J.C.S. Chem. Commun., 1093 –4.
- 3. Muski, T. and Sukua, H. (1973). Tet . Lett., 1835-55.
- 4. Desbene, P.L. and Cherton, J.C.(1984). Tetrahydron, 40, 3559.
- 5. Takashi, T.; Takeo, T.; Toshio, M. and Yashizo, S.(1978). Heterocycles, 11: 331-6.
- 6. Tyoji, K.; Kuniyoshi, I. and Takashi, T. (1987). Chem. Pharm. Bull., <u>35</u> :(8) 3166-74.
- 7. Le Roux, J.P.; Roux, J.C.; Cherton, J.C. and Beshon, P.L.(1975). Thermal rearrangment of Tetraphenyl –(z)-Ketovinylazirine, C.R Acade. SC. Paris, series C37-a.
- 8. Akai, T.M.; Kumagai, T. and Seshimoto, O. (1979) Pure and Appl . Chem ., <u>49</u> :287-308(1979).
- 9. Mente, P.G.; Harold Hein, W. and Scharnoubim Gamal, R . (1968). J.Org. Chem., <u>33</u> :(12), 4547-8.
- 10. Bellamy Francois, D. (1978). Tet. Lett., 46:4577-80.
- 11. Aiello, E.(1979). Cirilamo Cirrincion ((Poly cConensed Nitrogen Heterocycles, VII.5,6-dihydro –7H-Pyrrolo[1,2-e] [1,4] benzodiazepine –6-Ones. A novel series of annelated 1,4-Benzodoazepine)) J. Heterocyclic Chem., <u>16</u>: 209.
- 12. Cheesman, G.W.H. and Greenbreg, S.G. (1979). J. Heterocyclic Chem. <u>16</u>: 241.
- 13. Hussein, F.A. and Abid Obaid, H. (2001). Iraqi Journal of Chemistry., <u>27</u> No.(2).
- 14. Hussein, F.A. and Abid Obaid, H. (2001). Iraqi Journal of Chemistry, <u>27</u> No.(4) 943-957.
- 15. Hussein, F.A. and Abid Obaid, H. (2001). Iraqi Journal of Chemistry, <u>27</u> No.(3).
- 16. Huisgen, R. (1968). Angew Chem.Internat . Edit , 7: 321.
- 17. Robert, M. M. and Charless, W.J. (1975). Organic Chemistry, a problems approach , W.A. Benjamin Inc., p.527.

| 2-Arvl-                                                         | Table (1) N                   |
|-----------------------------------------------------------------|-------------------------------|
| ÿ                                                               | 5                             |
| Arvl-3- (m-nitrophenvl)-2.3-dihvdro-1.3-oxazepine-4.7-dione(II) | Melting points, po            |
| 2.3-dihvdro-1                                                   | ercentage yie                 |
| Ļ                                                               | ld,                           |
| -oxazepine                                                      | molecular                     |
| -4.7-dione()                                                    | e yield, molecular formula an |
| Ξ                                                               | 0                             |
|                                                                 | l elemental                   |
|                                                                 | l analysis of                 |
|                                                                 | ť                             |



|                  | 5                  |         | Viala 0/  | ME                                                               | Calc. |      |       | Found |      |       |
|------------------|--------------------|---------|-----------|------------------------------------------------------------------|-------|------|-------|-------|------|-------|
| comp.            | N                  | IVI.F C | I leiu 70 | IVI.F                                                            | C%    | H%   | N%    | C%    | H%   | N%    |
| IIa <sup>-</sup> | Π                  | 193     | 78        | C <sub>19</sub> H <sub>12</sub> N <sub>2</sub> O <sub>5</sub>    | 65.52 | 3.45 | 8.05  | 65.60 | 3.65 | 8.11  |
| IIIb             | 3-NO2              | 200     | 72        | C <sub>19</sub> H <sub>11</sub> N <sub>3</sub> O <sub>7</sub>    | 58.02 | 2.80 | 10.69 | 58.65 | 2.85 | 10.80 |
| IIc              | 4-C1               | 198     | 71        | C <sub>19</sub> H <sub>11</sub> N <sub>2</sub> O <sub>5</sub> Cl | 59.69 | 2.88 | 7.33  | 60.05 | 2.91 | 7.48  |
| IId              | 4-Br               | 194     | 70        | $C_{19}H_{11}N_2O_5Br$                                           | 53.27 | 2.57 | 6.54  | 53.51 | 2.62 | 6.63  |
| lle              | 2-Br               | 196     | 71        | C <sub>19</sub> H <sub>11</sub> N <sub>2</sub> O <sub>5</sub> Br | 53.27 | 2.57 | 6.54  | 53.54 | 2.63 | 6.65  |
| IIf              | 2-OMe              | 184     | 69        | C <sub>20</sub> H <sub>11</sub> N <sub>2</sub> O <sub>6</sub>    | 63.49 | 3.70 | 7.41  | 60.42 | 3.81 | 7.35  |
| llg              | 4-NMe <sub>2</sub> | 198     | 65        | C <sub>21</sub> H <sub>17</sub> N <sub>3</sub> O <sub>5</sub>    | 64.45 | 4.35 | 10.74 | 65.02 | 4.43 | 10.83 |

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.

VOL.19 (3) 2006

VOL.19 (3) 2006

| Comp.                       | IIa       | IIb       | IIc       | IId       | Ile       | fllf      | III               | 112       | BII                    |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------|-----------|------------------------|
| C-H str.<br>Benzylic        | 3230      | 3240      | 3240      | 3240      | 3235      | 3230      |                   | 3235      |                        |
| CH str.<br>Diefinic         | 3180      | 3178      | 3170      | 3180      | 3180      | 3180      |                   | 3180      |                        |
| C-H str.<br>Aromatic        | 3035      | 3040      | 3045      | 3045      | 3040      | 3040      |                   | 3040      |                        |
| C=O str.<br>Lactone/ Lactam | 1690      | 1695      | 1690      | 1690      | 1690      | 1690      |                   | 1690      |                        |
| C=C str. Olefinic           | 1605      | 1605      | 1605      | 1605      | 1610      | 1610      |                   | 1605      |                        |
| C=C str.<br>cromatic        | 1560.1535 | 1570.1540 | 1580.1540 | 1580.1540 | 1580.1540 | 1580.1540 |                   | 1580.1540 |                        |
| C-NO: Aromatic              | 1510.1340 | 1510.1340 | 1520.1340 | 1515.1340 | 1520.1340 | 1510.1340 |                   | 1510.1340 |                        |
| C-H bend<br>Benzylic        | 1425      | 1425      | 1425      | 1415      | 1420      | 1420      |                   | 1425      |                        |
| C-O str. Lactone            | 1250      | 1250      | 1250      | 1250      | 1250      | 1250      |                   | 1250      |                        |
| Cis=CH bend                 | 840       | 840       | 840       | 840       | 845       | 845       |                   | 845       |                        |
| Others                      | -         | -         | C-CI:720  | C-Br:445  | C-Br: 445 | C-H str.  | Aldih. :2900.2820 | C-N: 1350 | C-H etr Aldih 200 2820 |



Table (3) The UV-Visible absorption maxima of 2-aryl-3-(m-nitrophenyl)-2,3-

dihydro-1,3-oxazepine-4,7-diones (II)



[11]

| Compound | UV-Visible absorption maxima $\lambda/nm$ |
|----------|-------------------------------------------|
| IIa      | 312, 253, 231                             |
| IIb      | 350, 340, 257, 232                        |
| IIc      | 325, 267, 232                             |
| IId      | 350, 318, 253, 231                        |
| IIe      | 349, 315, 250, 230                        |
| IIf      | 318, 260, 230                             |
| IIg      | 360, 325, 260, 232                        |

Table (4) Melting points, percentage yield, molecular formula and elemental analysis of N-( $\alpha$ -hydroxybenzyl)-nitro-anilide-pyrrolides.(III)

VOL.19 (3) 2006



| Comp  | Ø                  | MDC    | Yield | ME                                                               | Calc. |      |       | Found |      |       |
|-------|--------------------|--------|-------|------------------------------------------------------------------|-------|------|-------|-------|------|-------|
| comp. | 7                  | IT.I C | %     | INT*L                                                            | C%    | H%   | N%    | C%    | H%   | N%    |
| IIIa  | П                  | 210    | 76    | C <sub>21</sub> H <sub>21</sub> N <sub>3</sub> O <sub>5</sub>    | 63.80 | 5.32 | 10.63 | 64.06 | 5.45 | 10.95 |
| IIIb  | 3-NO2              | 232    | 70    | C <sub>21</sub> H <sub>20</sub> N <sub>4</sub> O <sub>7</sub>    | 57.27 | 4.55 | 12.73 | 57.11 | 4.58 | 13.03 |
| IIIc  | 4-C1               | 230    | 70    | C <sub>21</sub> H <sub>20</sub> N <sub>3</sub> O <sub>5</sub> Cl | 58.74 | 4.66 | 9.79  | 58.90 | 4.70 | 10.00 |
| IIId  | 4-Br               | 223    | 70    | C <sub>21</sub> H <sub>20</sub> N <sub>3</sub> O <sub>5</sub> Br | 53.05 | 4.21 | 8.84  | 53.11 | 4.12 | 9.01  |
| IIIe  | 2-Br               | 224    | 72    | C <sub>21</sub> H <sub>20</sub> N <sub>3</sub> O <sub>5</sub> Br | 53.05 | 4.21 | 8.84  | 53.30 | 4.37 | 9.12  |
| IIIf  | 2-OMe              | 218    | 71    | C22H23N3O6                                                       | 62.12 | 5.41 | 9.88  | 62.50 | 5.40 | 10.03 |
| IIIg  | 4-NMe <sub>2</sub> | 243    | 67    | C23H26N4O5                                                       | 60.01 | 5.94 | 12.79 | 61.00 | 6.01 | 13.03 |

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.

Table (6) The UV-Visible absorption maxima of male N-(α-hydroxybenzyl)-m-nitroanilide-pyrolidides (IV).



| Compound | UV-Visible absorption maxima $\lambda$ /nm |
|----------|--------------------------------------------|
| IIIa     | 280, 235, 220                              |
| IIIb     | 305, 255, 235                              |
| IIIc     | 286, 232, 219                              |
| IIId     | 285, 231, 220                              |
| IIIe     | 295, 235, 220                              |
| IIIf     | 300, 245, 231                              |
| IIIg     | 305, 254, 230                              |

| IIe        | IId                                                           | IIc                                                           | IIb                                                              | Ila                                                           | pi   | Comn.   | 0,N 0=C |
|------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|------|---------|---------|
| 2-OMe      | 4-NMe <sup>2</sup>                                            | 3-NO2                                                         | 4-C1                                                             | II                                                            | ;    | R       | A/ 3    |
| 203        | 216                                                           | 210                                                           | 191                                                              | 170                                                           |      | MPC     |         |
| 59         | 57                                                            | 50                                                            | 50                                                               | 57                                                            |      | Vield % | Q       |
| C22H16N2O6 | C <sub>23</sub> H <sub>19</sub> N <sub>3</sub> O <sub>5</sub> | C <sub>21</sub> H <sub>13</sub> N <sub>3</sub> O <sub>7</sub> | C <sub>21</sub> H <sub>13</sub> N <sub>2</sub> O <sub>5</sub> CI | C <sub>21</sub> H <sub>14</sub> N <sub>2</sub> O <sub>5</sub> | TATA | ME      | Y       |
| 65.35      | 66.19                                                         | 60.14                                                         | 61.76                                                            | 67.38                                                         | C%   | Calc.   |         |
| 3.96       | 4.56                                                          | 3.10                                                          | 3.19                                                             | 3.74                                                          | H%   |         |         |
| 6.93       | 10.07                                                         | 10.02                                                         | 6.86                                                             | 7.99                                                          | N%   |         |         |
| 65.40      | 66.35                                                         | 60.22                                                         | 61.93                                                            | 67.48                                                         | C%   | Found   |         |
| 4.13       | 4.69                                                          | 3.20                                                          | 3.13                                                             | 3.81                                                          | H%   |         |         |
| 7.10       | 11.03                                                         | 10.14                                                         | 7.03                                                             | 7.58                                                          | N%   |         |         |

2-aryl-3-m-nitrophenyl-2,3-dihydrobenz[1,2-e][1,3]-oxazepine-4,7-diones(III) Table (7) Melting points, percentage yield, molecular formula and elemental analysis of

VOL.19 (3) 2006

## IBN AL- HAITHAM J. FOR PURE & APPL. SCI.

| IIe          | IId          | IIc          | IIb          | IIa          | Comp.                              |
|--------------|--------------|--------------|--------------|--------------|------------------------------------|
| 3215         | 3210         | 3210         | 3200         | 3190         | C-H str.<br>Benzylic               |
| 3030         | 3030         | 3030         | 3030         | 3030         | C-H str.<br>Aromatic               |
| 1700         | 1700         | 1690         | 1685         | 1630         | C=0<br>Lactone/<br>Lactam          |
|              |              |              |              |              | str.                               |
| 1600, 1490   | 1600, 1490   | 1600, 1490   | 1600,1485    | 1600,1480    | C=C str.<br>Aromatic               |
| 1410         | 1410         | 1405         | 1400         | 1400         | C=C<br>bend<br>benzylic            |
| 1285         | 1280         | 1300         | 1310         | 1300         | C-O str.<br>Lactone                |
| 840, 780     | 835, 740     | 820, 790     | 830, 740     | 815, 735     | C-H<br>bend<br>aromatic            |
| 1520<br>1340 | 1520<br>1340 | 1520<br>1340 | 1520<br>1340 | 1520<br>1340 | C-NO <sub>2</sub> str.<br>aromatic |
| C-Br: 445    | C-Br:445     | C-CI:720     | 1            |              | Others                             |

 Table (8) Major IR Absorption (cm<sup>-1</sup>) of 2-aryl-3-m-nitrophenyl-2,3-dihydrobenz[1,3-e][1,3] 

 oxazepine-4,7- diones(III).

- (H - (a)

## IBN AL- HAITHAM J. FOR PURE & APPL. SCI.

VOL.19 (3) 2006

Table (9) The UV-Visible absorption maxima of 2-aryl-3-(m-nitrophenyl) -2,3- dihydro-1,3-oxazepine-4,7-diones (II)



| Compound | UV-Visible absorption maxima $\lambda/nm$ |
|----------|-------------------------------------------|
| IIa      | 312, 253, 231                             |
| IIb      | 350, 340, 257, 232                        |
| IIc      | 325, 267, 232                             |
| IId      | 350, 318, 253, 231                        |
| IIe      | 349, 315, 250, 230                        |
| IIf      | 318, 260, 230                             |
| IIg      | 360, 325, 260, 232                        |



#### IBN AL- HAITHAM J. FOR PURE & APPL. SCI.

analysis of N-( $\alpha$ -hydroxybenzyl)-nitro-anilide-pyrrolides.(III)  $P = \bigcap_{k=1}^{N} \bigcap_{k=1$ 

Table (10) Melting points, percentage yield, molecular formula and elemental

| -     | a                  | MDC      | Yield | ME                                                            | Calc. |      |       | Found |      |       |
|-------|--------------------|----------|-------|---------------------------------------------------------------|-------|------|-------|-------|------|-------|
| Comp. | Ν                  | IVL.F CO | %     | IVI.F                                                         | C%    | H%   | N%    | C%    | H%   | Nº%   |
| IIIa  | П                  | 213      | 61    | C25H23N3O5                                                    | 67.42 | 5.17 | 9.44  | 67.61 | 5.25 | 9.61  |
| IIIb  | 4-C1               | 143      | 53    | C25H22N3O5CI                                                  | 62.63 | 4.59 | 8.77  | 62.75 | 4.69 | 8.90  |
| IIIc  | 3-NO2              | 230      | 52    | C <sub>25</sub> H <sub>23</sub> N <sub>4</sub> O <sub>7</sub> | 61.22 | 4.49 | 11.43 | 61.36 | 4.61 | 11.5  |
| IIId  | 4-NMe <sub>2</sub> | 245      | 60    | C <sub>27</sub> H <sub>28</sub> N <sub>4</sub> O <sub>5</sub> | 66.22 | 5.71 | 11.48 | 66.50 | 5.85 | 11.63 |
| IIIe  | 2-OMe              | 234      | 60    | C26H25N3O6                                                    | 65.68 | 5.20 | 8.84  | 65.64 | 5.35 | 9.03  |

E

|    | -    |
|----|------|
|    | b    |
|    | e    |
|    | 1    |
|    | L)   |
|    | -    |
|    | h    |
|    | e I  |
|    | M    |
|    | J    |
|    | or   |
|    |      |
| ~  | ~    |
| ЮН | A    |
|    | SC   |
|    | or   |
|    | pt   |
|    | 10   |
|    | n    |
|    | C    |
|    | B    |
| -  | 5    |
| 10 | 0    |
|    | f    |
|    | 1    |
|    | Q    |
|    | -    |
|    | y    |
|    | Ir   |
|    | 20 X |
|    | Y    |
|    | Je   |
|    | nz   |
|    | y    |
|    | Ť    |
|    | Ŗ    |
|    | ė.   |
|    | =    |
|    | 0.   |
|    | in   |
|    | H    |
|    | d    |
|    | 1    |
|    | y    |
|    | ro   |
|    | lic  |
|    | lic  |
|    | le   |
|    | S    |
|    |      |
|    |      |



|                                        | IIIa         3400           IIIb         3380 | Comp. O-H str                   |
|----------------------------------------|-----------------------------------------------|---------------------------------|
|                                        | 3200                                          | str. C-H str.<br>Benzylic       |
| 2940<br>2935                           | 2920                                          | c str.                          |
| 1690<br>1690                           | 1680<br>1690                                  | C=O str.<br>39amide             |
| 1590, 1500<br>1590, 1490<br>1590, 1480 | 1580,1470<br>1580, 1490                       | C=C str.<br>Aromatic            |
| 1520, 1340<br>1520, 1340<br>1520, 1340 |                                               | C-NO <sub>2</sub> :<br>Aromatic |
| 1380<br>1390<br>1390                   | 1390<br>1390                                  | C-H bend<br>Benzylic            |
| 1260<br>1280<br>1270                   | 1280<br>1270                                  | O-H bend                        |
| C-CI:735<br>C-Br:440<br>C-Br: 440      | 11                                            | Others                          |

 $(\mathbf{v})$ 

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.19 (3) 2006

0=0

Z O C O

Table (12) The UV-Visible absorption maxima (in methanol) of the Derivatives of phthal N-( $\alpha$ -hydroxybenzyl)-anilide-pyrolidides (V)



| Compound | UV-Visible absorption maxima λ/nm |
|----------|-----------------------------------|
| IIIa     | 254, 361                          |
| IIIb     | 252, 370                          |
| IIIc     | 260, 362                          |
| IIId     | 263, 380                          |
| IIIe     | 258, 370                          |

مجلة ابن الهيثم للعلوم الصرفة والتطبيقية

المجلد 19 (3) 2006

# تحضير وتشخيص 3,1- أوكسازبين و بينز [1,2-e] [1,3] - او کساز بین 4,7 - دایون

فهد علي حسين ، محجبيد حسن عبد الله فهد على قسم الكيمياء ، كلية التربية – ابن الهيثم ، جامعة بغداد \*قسم الكيمياء ، كلية العلوم، جامعة بغداد

#### الخلاصة

تم تحضير عدد من n- بنزليدين-بنزين أمين (قواعد شيف) بتكاثف ميتا-نيتروأنلين مع الالديهايدات الاروماتية. فوعلت قواعد شيف هذه مع انهيدريــد المالييـك فاعطت 2–اريـل-3-(ميتـا-نيتروفنيـل)-2,3 ثنـائي هيـدروبنز [ 3,1 1,2-e ] اوكسازيبين – 7,4 - دايون . فوعلت الاخيرة مع البيروليدين الجاف فاعطت مــشتقات الاننيليد – البيروليديد لحامض المالييك وحامض الفثاليك .