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Abstract
Let R be a commutative ring with identity, and let M be a unitary (left) R-

module. The ideal annp M = {r eRy;rm=0Y meM } plays a central

role in our work. In fact, we shall be concerned with the case where
annpM = anng(x) for some x € M such modules will be called

bounded modules.It turns out that there are many classes of modules properly
contained in the class of bounded modules such as cyclic modules, torsion-free
modules,faithful multiplication modules, prime modules and cyclic modules
over their endomorphism rings. Also, using boundedness of modules, we
showed that :

- The classes of injective modules modulo annihilator and quasi-injective
modules are equivalent.

- The classes of faithful modules and compactly faithful modules are
equivalent.

Introduction
Let R be a commutative ring with identity, and let M be a unitary (left) R-
module. M is called bounded R-module provided that there exists an element

xeM such that annpM = annp (x),where
annpM = {r eR,rm=0YVY me M}. (11, p.70).

Our objective is to investigate some of the properties of bounded modules
and to examine in particular when such modules are cyclic or torsion-free or
prime or cyclic module over their endomorphism ring. In the first section of
this paper, we give necessary and sufficient conditions in order that a bounded
module is cyclic or torsion-free or prime. The submodules of bounded modules
are studied in this section. It is shown that the class of bounded modules is not
closed under submodules in general. '
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Section two of this paper is devoted to discuss the concept of cyclic module
over its endomorphism ring and the concept of compactly faithful module. Our
main concern in this section will be studying the relation between injective
modules modulo annihilator and quasi-injective modules in view of bounded
modules, and the relation between faithful module and compactly faithful
module namely by using bounded modules.

§ 1: Bounded Modules

1.1 Definition: An module M is R- said to be bounded module if there exists
an element x€&M such that anngM =annp(x). Where

annRM:{reR;rm:O V me M}.(11,p.70).

FIRST , we state and prove the following lemma:

1.2 Lemma: If R is commutative ring with 1 and M is an R-module then
annp(x) = annp (Rx).

Proof: Since 1€ R, then x € Rx, hence anng(Rx) < annp(x). Let
t € annp(x), then tx=0. To prove t € anng (Rx)since tx =0, then
r(tx)=0=1¢(rx) Vr € R, hence #(Rx)=0, thus € annp(Rx),

which completes the proof.#
The following result is an immediate consequence of Lemma (1.2).

1.3 Corollary: Every cyclic R-module is bounded.

But the converse is not true in general, for example: The Z-module Q is
bounded but not cyclic.
Recall that an R-module M is said to be fully stable if

annyys(annp(x)) = (x) foreach x € M . (1, corollary 3.5).

In the next proposition, we give a necessary condition for bounded module
to be cyclic.

1.4 Proposition: If M is a fully stable bounded R-module, then M is cyclic
R-module.
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Proof: Since M is bounded R-module, then there exists x € M such that
anngM = anng (x), therefore, annyy (annp M ) =

anny(anng (x)), thus, M = annyy(ann r(x)). But, Mis fully stable,

implies that M = (x), which completes the proof. .#
Let R be an integral domain and M be an R-module. An element
x € M is called a torsion element of M if anng(x) # 0. The set of torsion

elements denoted by 7(M) is a submodule of M. If (M) =0, the R-module
M is said to be torsion-free (6, p.45).

1.5 Proposition: Every torsion-free R-module (where R is an integral
domain) is bounded.

Proof: Let M be a  torsion-free  R-module, then
annp(m)=0 VO0#£meM. But, anngM = (| annp(m). So,
meM

annp M = 0. Therefore, M is bounded .#

But, the converse of (1.5) is not true in general, for example: For each positive
integer n>1, Z, as a Z-module is bounded module but not torsion- free. .
However, we shall give, in the end of this section, a condition under which the
converse is true.

Recall that an R- module Mis called multiplication if for every submodule N of
M , there exists an ideal I in R such that N=IM, (14) . It is proved in ( 8,lemma
4.1) that a faithful multiplication module is torsion- free. We use this fact to
give the following consequence of (1.5).

1.6 Corollary: Let R be an integral domain and M be a faithful
multiplication R-module, then M is bounded.

1.7 Remark: Boundedness of the quotient module M/ N does not yield
boundedness of M itself in general as the following example shows:

Let M = @ Z p then M is not bounded Z-module. Let
P is prime

77



IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.19(3) 2006

N = &) Zp is a submodule of M and M =Z» @ N Note
P>2 is prime

that M/N = Z,is a bounded Z-module.
However, we shall, in the following proposition, give some restrictions
to treat such a case, but first we need to recall the following concept: A

submodule N of an R-module M is said to be pure if IM (1N = IN «for
every ideal / of R. In case R is a principal ideal domain (PID) or M is cyclic,
then N is pure if and only if #M (1N =¥N Vr € R, (13). The residual of

N in M denoted by [N : M= {r € R;rM < N}.

1.8 Proposition: Let N be a pure submodule of an R-module M such that
M/N is a bounded R-module and annp M =[N : M'] .Then, M is bounded.

Proof: Since M/N is a bounded R-module, then there exists X € M / N
such that anng M /| N = annp(X) where X = x+ N . But,
anngM | N = [N : M]and [N:M]=annpM by hypothesis. Hence,
annp M = annp(X).
It is left to show that anng (X) = anng (m) forsome me M
Let » € annp(X) ,then rX = 0 implies that ¥x € N ,so

rx € N(1#M and by the purity of N, we get thatrx € ¥N . Therefore,
rx=ry for some y€ N that is r(x—y)=0.Let m=x—y, then

rm =0 yields r € anng(m) and hence anng(X) < anng(m) .Also,
ift € anng (m) , thentm =0=1¢(x—y), implies that t&x—¢y € N and
hence tx € N ,s0 fx = 6, thus 7,€ ann,(X) . #

1.9 Lemma(8): Let R be a (PID) and M be an R-module. If M/N is a
torsion-free, then N is pure.

Proof: Assume that N is not pure in M, that is, there exists # € R such that
rM (YN # rN that means#¥M (1N & N then there exists
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xerM [N and x&rN jthus, x=rme N and m¢& N hence
rm+ N =N then r(m+ N)= N implies that
m+NeT(M/N)=0=N .Thus, me N which is a contradiction.
Therefore, N is pure. #
1.10 Corollary :Let M be a faithful R-module (where R is a (PID)) and N be

a submodule of M such that M/N is torsion-free. Then M is bounded.
A submodule N of an R-module M is called bounded if N is a bounded

R-module, that is, N is bounded if there exists X € N such that
anngp N = annp (x).

It is not necessary in general that every proper submodule of a bounded module
be bounded, as it is shown in the following example:

1.11 Example :Let R'u: {f f:R—> Ris map} we define + and .

on R as follows:

(f +8)(x) = f(x)+g(x)andVx € R (f.g)(x) = f(x).g(x)
(R,+,) Vf, g € R, is acommutative ring with identity where / : R —> R
such that /(x) =1 Vx € R is the identity element of R.

Let M=R as an R-module, then M is bounded R-module by (1.3). Let
Vxg[-nn| N = {f € R; f(x)=0 } where 7> 0 is an integer depending
on f. To prove N
is a submodule of M. N © M and N # @ since the zero map is in N. Let

f,g €N then there exists nm non-negative integers such that

Vxe[-nn] f(x)=0 Vxe[-mm]g(x)=0 .
Ifn>mthean£[—n,n] (f—g)(x)=f(x)—g(x)=0.
Thus, f—g€N

Let 7€ R and f € N then there exists an integer # > 0 such that
Vx &[-nn] (h- f)x)=h(x)- f(x)=0 Vxg[-n,n] f(x)=0
then i+ f € N, thus, N is a submodule of M.
We claim that anngN ={0} .L et h€ R and. h # Othen
h(a) # 0 forsome a € R .Define f : R — R such that:
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0 if x#a
f(x)= where b #0

b if x=a
hence f € R and Vx ¢ [— n,n| £(x) =0 where n>a .Therefore,
feN and (h-f)a)=h(a): f(a)#0 Hence anngN = {0}

While for each ' € N ,ann, f # {0} Forif f € N then f(x)=0
Vx ¢ [—- n, n] n is non-negative integer. Define /1: R — R such that:
0 Vxe[-nn]

xeR 5 h(x)= and x # 0
x if xe[-n.n]

then #€ R and: (h- f)(x)=h(x)- f(x)=0 implies that % € ann, f.
Therefore, N is not bounded R-module. #

However, we give in the next proposition a condition under which the class
of bounded modules is closed under submodules. But, first we need to recall
some definitions: An R-module M is said to be uniform module if every non-
zero submodule of M is essential (2), Where N is called essential in M

provided that N (1 K # O for every non-zero submodule K of M (2).
An ideal I of R is called prime if for each a,be R,abe l implies
thatae I or bel (13,P.38)

1.12 Proposition: Let M be an R-module and 0 # x € M such that:
- Rxis an essential submodule of M.
- anng(x) isa prime ideal of R, and

- annpM = annp(x). Then every submodule of M is bounded.

Proof: Let N be a submodule of M. Then, there exists 0 #f € R, txe N
and #x # 0. Hence anng(x) < anngN C annp (tx)

Let » € anng (tx)then r(x) = 0= (r¢)x implies that 7t € annp(x) .
But, & anng(x) , therefore, ¥ € annp(x). Implies that
r € annp N .Therefore annp N = annp (tx) which completes the proof.#
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1.13 Corollary: If M is a bounded uniform R-module such that anng M

is a prime ideal of R, then every submodule of M is bounded.
Recall that an R-module M is said to be a prime module if

annRM =anngN for every non-zero submodule N of M (7). It is clear
that every prime R-module is, bounded module, but the converse need not be
true in general, for example :Let M =Z @ Z,, as a Z-module M is a

bounded module but not prime module since annyM =0, but
annz (0@ Z,))=nZ #(0).

However, we give the following partial converse :

1.14 Proposition : Let M be an R-module and 0 # x € M such that:

- Rx is an essential submodule of M.

-annp (x) isa prime ideal of R, and

-annpM = annp(x). Then, M is a prime R-module.

Proof : Following what's in the proof of proposition (1.12), we get that :
annpN = anng (tx) C annng (x) = annp M Hence

anngN = anngM for every non-zero submodule N of M. So, M is a prime
R-module. #

1.15 Corollary :If M is a bounded uniform R-module such that anng M

is a prime ideal of R, then M is a prime R-module.
The condition ann RM is a prime ideal of R in corollary (1.3.2) cannot be

dropped. For example: Zg as a Z-module is a uniform bounded Z-module,

which is not, prime Z-module. In fact, anny Zg = 8Z is not a prime ideal of

Z.In the following proposition, we give a condition under which the converse
of proposition (1.5) is true:

1.16 Proposition :If R is an integral domain and M is a faithful uniform
bounded R-module, then M is torsion-free.

Proof: By corollary (1.15) and [5,remark 1.1(2)]. #

Next ,we study the direct sum of bounded modules .
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1.17 Proposition: Let M; and M, be two bounded R-modules. Then,
M| ® M is abounded R-module.

There exists X € M7 such that anng M| = annp (x). Also, there exists
y € M5 such that anng M = anng(y). So, (x,y)e M| ® M. We
claim that anng (M| ® M5 )= ann 2 (x, y)). Let r(x,)=(0,0), so
(rx,ry) =(0,0). 1t follows that 7x =0 and ry =0, thatis » € anng (x)
and r € anng(y), therefore, ¥ € annp M7 and ¥ € annp M. Now, if
(m,m')ye M]® M,, then r(m,m'")=(rm,rm")=(0,0)implies that
r € anng (M| ® M») .Therefore, anng (M7 ® M) = annp((x, y)),

which completes the proof. #

1.18 Corollary: A finite direct sum of bounded R-modules is bounded.
However, an infinite direct sum of bounded R-modules need not be
bounded, for example: Zp as a Z-module is bounded for all primes P, but

@ & p is not a bounded Z-module. In addition, direct summand of a
P is prime

bounded module need not be bounded in general. For example:
et M=Z®Z p®© as a Z-module, M is bounded since

annz M =0 = annz ((1,0)), but Z poo is not bounded Z-module.

1.19 Proposition: Let M be an R-module and let / be an ideal of R, which is
contained in ann RM . Then, M is a bounded R-module, if and only if M is a

bounded R//-module.
Proof: 1If M is a bounded R-module, then there exists X € M such that

annp M = annpg(x), we claim that anng ) ;M = annp 1 (x).

Let ¥+ [ eannp;7(x),s0o (r+1)x=0,but (r+I)x=rx =0, that is
r € annp(x), therefore, ¥ € anng M , implies that rm=0 YV me M .
Then, (r+1)m=0YV me M, therefore, r +1 € annp; ;M , thus, M
is bounded R/I-module.
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‘Next, if M is a bounded R//-module, then there exists x € M such that
annp /M = annp;1(x), we claim that anng M = annp(x).

Let reanng(x), so rx=0, but rx=(+1)x=0, that is
r+1eannp;;(x), therefore, r+Iecanng;;M, implies that
(r+I)ym=0Y meM. Then, rm = 0 YV meM, therefore,

r € annpM ,so Misa bounded R-module. #
we discuss the localization of boundedness in the following result:

1.20 Proposition: If M be a finitely generated bounded R-module and S be
a multiplicatively closed subset of R, then M is a bounded Rs-module.

Proof: Since M is a bounded R-module, then there exists X € M such that
annpM = anng(x), so (annRM)S = (annp (x))S. But, M is finitely
generated, thus, anng Mg = annp » ((x)g) by (7, proposition3.14,

p.43).
It is left to show that the localization of a cyclic R-module is cyclic Rs-module.

a
Let ke(x)g, then k=—j;ae(x)and seS, that is

S
k= % =§% e(%}, implies that (x)S & (“l{)
Also, if h e(f), then h=%-%=?€(x)s(since ux € (x)and

X X
tes), that is (TJg(x)S. Implies that (x)S =[T] Therefore,

anng Mg = ann ((x) )= anng| = |, hence Mj is a bounded Rs-
RgMs Rg\X)s R | 7 > bence,
module. #

1.21 Corollary: If P is a prime ideal of R and M is finitely generated
bounded R-module, then Mp is a bounded Rp-module.
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S: 2 Boundedness and Injecativity:

1.22 Definition :An R-module M is called cyclic over its endomorphism

ring provided that there exists an element X € M such that each element
m € M canbe writtenas m = f(x) forsome f € Endp(M)(11).

In the following two remarks we show that theise are plenty of such modules:

2.2 Remark :Every cyclic R-module M is cyclic over Endp (M) .

Proof: Let M be a cyclic R-module. Then, M =(x)= Rx for some
x€ M .ltcanbe easily checked that M ~ R/ annp(x) Let
R = R/anny(x) then=Rx = {(r +ann,(x))x:re R} . {re:reR}=Rx=M.

So, M is a cyclic R -module. On the other hand y End R(M)~R (15), so
the result follows. #

2.3 Remark:IfM =R® A 4 is any R-module, then M is a cyclic
End p (M) -module generated by (1,0) where 1 is the identity element of R.
Proof 1et m € M .Since R is a free R-module with basis {1}, then there

exists an R-homomorphism /2 : R — R @ A such that h(l) =m by
(17 «Propo.4,p.162). Let 0 : R@ A —> R be the natural projection. Let
f = hopthen f = EndR(M)and

f(],O) = h(p(l,O)) = h(l) = M which was what we wanted. #

In the following proposition we shows that the class of bounded
modules contains the class of cyclic modules over their endomorphism rings:

2.4 Proposition :Let M be an R-module, if M is cyclic over End p (M)
.Then, M is a bounded R-module.
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Proof: Since M is cyclic over End p (M )then, there exists x € M such
that for each m € M there exists f € Endp (M) such that m = f(x). We
claim that anng M = annp(x) .

Let » € ann,(x)then ¥x = 0. So, f (rx)=0=rf(x) = rm .Therefore,
rm=0 Vme M thatis r e ann,M.thus, M is a bounded R-module. #

But, the converse of (2.4) is not true in general. However, we were not able to
give an example of bounded module, which is not cyclic over its
endomorphism give an example . On the other hand, we give in the following
remark a condition under which the converse is true:

2.5 Remark :Every bounded fully stable R-module M is cyclic over
Endp(M).

Recall that M is called an injective R-module if for any two R-modules 4, B
and for any monomorphism f:A4-— B and any homomorphism

g:A—> M here exists a

homomorphism /#: B — M such that hof = g [16, p.219]. An R-

module M is called quasi-injective if for every submodule N of M, every R-
homomorphism of N into M can be extended to an R-endomorphism of M (12).
The following lemma is needed:

26 Lemma (10) : LetM be an R-module. If xe M and
,annpM = annp(x), then for every y € M there exists an R-
homomorphism f : Rx — Rysuchthat f(x)=y .
Proof: We define f: Rx — Ry such that f(rx)=ryVreR .fis well-
defined for if #x = rpx for some 71,7 € R , then, (11 —77)x =0 that
is,)] —r € anng(x), hence r, —r, € ann,M, therefore, (n-m)y=0
«VyeM thatisc ny=ryy thus.
Let nx,mx,rx € Rx,t e R. _
fx+nx)=f((n+n)x)=(+r)y=ny+ry=fhx)+ f(rmx)
J(t(rx)) = f((rr)x) = (tr)y = t(ry) = tf (rx).

Thus, fis an R-homomorphism
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f(x)= f(l.x) =1.y = y which completes the proof. #
Now , we state and prove the following result :

2.7 Proposition :Let M be a quasi-injective bounded R-module, then M is
cyclic over Endp(M).

Proof: Since M is bounded R-module, then there exists x € M such that

ann, M = ann,(x), therefore, for every m € M there exists an R-

homomorphism f : Rx — Rm such that m = f(x) by Lemma (2.6).
Since M is quasi-injective, we have the following diagram:

g "
Rx G Ry
/
/
f /
/
/
A J ’I g
/
Rm F
7
/
/
I /
/
¥
v
M

Suchthat go j=io f where i: Rm—> M and j:Rx —> M are

inclusion maps .Let y € RX then (g o _])(y) = (i o f)(y) s0
g(j(») =i(f(y)), therefore, g(y) = f(y) ,thus, g / Rx = f implies that
feEndp(M) #

Using boundedness, we get the following result :

2.8 Proposition: If M is a bounded faithful R-module, then R can be
embedded (as an R-module) in M.

Proof:  Since M s bounded faithful R-module, then
anngM =0 = annpg(x) forsomex € M Let oc: R —> M be such that
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oc (r)=rx forall ¥ € R .It is easily checked that oc is a well-defined R-
homomorphism.
Also, Ker oc= {r € R;oc (r) =0} = {r e Ryrx =0} =annp(x)=0
Thus, oC is a monomorphism. Hence, the result follows# .
It is well known that if M is injective - R / anng M module, then M is quasi-
injective R-module (10, p.149). However, the converse is not true in general,
for example: Let M = . @ Z pas a Z-module <M is semisimple

P is prime

module and hence is quasi-injective, but not injective module over

Z | anny ( @ Zp)=Z.
P is prime

In the following proposition we show that the converse of the above fact is
true in the class of bounded modules:

2.9 Proposition: If M is a bounded quasi-injective R-module, then M is an
injective - R/ annp M module.

Proof: Since M is a bounded R-module, then M is a bounded R/ann,M —
module by proposition (1.19) and since M is faithful R/ann,M —module,
hence there exists a monomorphism oc: R/ annpM — M such that
o (F)=rx YF e R/anngM , ¥ =r +annpM by proposition (2.8).
Let //annpM be an ideal of R/annpM where 1 is an ideal of R

containing  anmyMand f:1/anngM — M be  anR/ann,M -
homomorphism. Consider the following diagram:

() ———> I/armRM—M> R/ ann, N
. M

-
-
-
-

M a-”
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Since M is a quasi-injective R-module, then M is a quasi-injective
R/anny,M —module by (3 <Lemma 2). Therefore, there exists an
R/ann,M —homomorphism say g: M — M such that the preceding
diagram is commutative, that is, . go oc oi = f Now, letc¥ € I/ann,M,
then =7g(x) =7m f(F) = (ge x 0i)(F) = g(=< (i(¥))) = g(¥x),
where g(x)=m. Thus, M is injective R/annpM -module by
(9, Theorem 6, p.5).#

2.10 Corollary: A faithful bounded R-module M is quasi-injective if and
only if M is an injective R-module.

Recall that an R-module M is called compactly faithful if R can be embedded

in M" for some positive integer n, where M "is a direct sum of n-copies of
M, (11, p. 67). Clearly,

every compactly faithful module is faithful. However, the converse is not true
in general as seen in the following example:

Let M = ® Z p as a Z-module M is faithful, but not compactly
p is prime

faithful because the ring Z cannot be embedded in any finite sum of copies of

the Z-module @ Zy,
p is prime

In the the following proposition we show that the converse holds in the class
of bounded modules:

2.11 Proposition :Every bounded faithful module is compactly faithful.

Proof:Follows immediately proposition (2.8). #

Under the circumference of finite generation of modules, the two concepts of
faithful and compactly faithful are equivalent.

2.12 Proposition :Every finitely generated faithful R-module is compactly
faithful.
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Proof: Let M be a finitely generated faithful R-module. Let {xl ghE xn} be

n
a generating set for M. Therefore, 0 = ann RM =) ann R (xl-).
i=1

Let m=(xy, -, X, )€ M" then annp(m)=0 . But Rm isa
1 n R

submodule of M" and R/annp(m)~ Rm .So,R ~ Rm which

completes the proof.#

An R-module M is called Noetherian if and only if every submodule of M is
finitely generated [6, proposition 6.2, p.75].

Corollary : If M is a Noetherian faithful R-module, then M is compactly
faithful.
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