IBN AL- HAITHAM .J. FOR PURE & APPL. SCL. VOL.19(4) 2006

The Finite Element Neural Network And Its
Applications To
Forward And Inverse Problems

L.N.M .Tawfiq
College of Education, Ibn Al- Haitham , University of
Baghdad

Abstract

In this paper, first we reformulated the finite element model
(FEM) into a neural network structure using a simple two -
dimensional problem. The structure of this neural network 15 deseribed
, followed by its application to solving the forward and inverse
problems. This model is then extended to the general case and the
advantages and disadvaniages of this approach are described along
with an analysis of the sensitivity of the algorithm to errors in the
measurements. Consider a typical boundary value problem with the
governing differential equation: Ly = [, where L is a differential
operator, f1s the forcing function and o is the unknown quantity. This
differential equation can be solved in conjunction with boundary
conditions on the boundary I' enclosing the domain. A commonly
used approach to solve this problem is to use the finitc clement
approach.

Introduction

MNeural networks are connectionist models proposed in an attempt
to mimic the function of the human brain. A neural network consists
of a larpe number of simple processing elements called neurons(or
nodes)(1)(2). Neurons implement simple functions and arc massively
interconnected by means of weighted interconnections. These weights,
determined by means of a training process, determine the functionality
of the neural network .(3). The training process uses a training
databasc to determine the network parameters (weights). The
functionality of the neural network is also determined by its topology.
In addition, to input and output layers there are usually layers of
neurons that are not directly connected to cither the input or the

109

IBN AL- HAITHAM J. FOR PURE & APPL. SCL VOL.19(4) 2006

output, called hidden layers. The corresponding nodes are referred to
as hidden nodes. Hidden layers give the network the ability to
approximate complex, nonlinear functions. 4)
The advantages of using neural networks are numerous: neural
networks are learning machines that can learn any arbitrary functional
mapping between input and output, they are fast machines and can be
implemented in parallel, either in software or in hardware. In fact, the
computational complexity of neural networks is polynomial in the
number of neurons used in the network. Parallelism also brings with it
the advantages of robustness and fault tolerance. Efficient learning
algorithms ensure that the network can learn mappings to any arbitrary
precision in a short amount of time. Furthermore, the input-output
mapping is explicitly known in a neural network and conjugate
gradient procedures (5) can be used advantageously to perform the
INversion process.
- The Finite Element Method

Consider a typical boundary value problem with the governing
differential equation L = f where L is a differential operator, f is
function and ¢ is the unknown quantity. This differential equation can
be solved in conjunction with boundary conditions on the boundary I’
enclosing the domain. A commonly used approach to solve this
problem is to use the finite element approach.
The variational formulation of this approach determines the unknown
¢ by minimizing the functional (6): F(¢™) = % <L p=>-Ye<d,f>-1%
<f.p>
with respect to the trial function ¢, The minimization procedure starts
by dividing the domain of interest into small subdomains called
elements and representing ¢~ in each element by means of basis
functions defined over the element :

()= _:’ (ND* (dy)°...... [*], where(¢p™)* is the unknown solution

)

in element e, (N))° is the basis function associated with node j in
element e, ()" is the value of the unknown quantity at node j and n is
the total number of nodes associated with element e. In general, the
basis functions(also referred to as interpolation functions)can be
linear, quadratic or higher order basis functions. Higher order
polynomials, though more accurate, generally result in higher
computational complexity, and hence, linear basis functions are

110

IBN AL- HAITHAM J. FOR PURE & APPL. SCL YOL.19(4) 2006

commonly used. Once the domain is divided into smaller elements,
the functional can be expressed as: F(¢™) = :‘1 F(()%)[+5] ,

where M is the total number of elements and (")) represents the
value of the functional within element e

F(dD% =% o @) L(@d)dQ - Io° £(@)dQ.......... [1]
By substituting [*]in [1], we obtain the discrete version of the
functional within each element :

F{(Lb‘}ﬂ.} = 1 (dj-:]'l' J‘ﬂc NE LNul'dQ (bc 1 ¢:T J’ﬂn: N dO
where (...)"is the transpose of a matrix or a vector. This can be written
in matrix-vector form as: F (¢7)) = % ¢ K® ¢°- T be......... 2]
where K® is thenxn elemental matrix with elements
(Ki)®= [o° (Ni)Y° L(Nj)* dQ and b is an nx1 vector with elements
(b)) = Jo £(N;)*dQ . From [*#] and [2], we obiain: F = (1/2)d"K
b-ad'b[3]
where K is the NxN global matrix derived from the terms of the
elemental matrices for dilTerent elements, and N is the total number of
nodes. Equation [3] is the discrete version of the functional and can be
minimized with respect to the nodal parameters t by taking the
derivative of F with respect to ¢ and setting it equal to zero. The
resulting equation

GF (8p=Kp-b=0............ [4]
can be solved for the nodal parameters ¢ -
d=K'b [5]

Boundary conditions for these problems are usually of two types:
natural boundary conditions and essential boundary conditions.
Essential boundary conditions (also referred to as Dirichlet boundary
conditions) impose constraints on the value of the unknown ¢ at
scveral nodes. Natural boundary conditions (of which Neumann
boundary conditions are a special case) impose constraints on the
change in ¢ across a boundary. Imposition of these conditions into the
finite element formulation is straightforward. Natural boundary
conditions are incorporated into the functional and are satisfied
automatically during the solution procedure.

These conditions are imposed on the functional minimization equation
[4], by deleting the rows and columns of the K matrix corresponding
to the nodes that are part of the boundary.

111

IBN AL- HAITHAM J. FOR PURE & APPL.SCI. VOL.19(4) 2006

‘*‘:uppose the given boundary condition is ¢= p on the boundary T" and
let the i" node represent the boundary T, Then, cquations [4] are
modified as follows:
b+ p, bj—b-Kipj#1 &Ki1, Kij—0,K;i«~—0,j#1.This
process can be repeated for cach node on the boundary I and the
resulting matrix can be solved as indicated in [5] to obtain the solution
subjeet to the Dirichlet conditions.
- The Finite Element Neural Network

The finite element model can be easily converted into a neural
network form. To see this, consider the simple two-dimensional
example: -V-(a V) + P =1f [***], with boundary conditions
o=ponlianda Ve fi+vy¢p=qonTl>, where a and p are constants
depending on the material, f is the function,I" = I'; + T; is the
boundary enclosing the domain, f; is its outward normal unit vector
and y, p and q are known parameters associated with the boundary.
Assume that the domain is divided into two elements with 4 nodes.
The clemental matrices K® and b® can be derived as (6):
(Kc)i_i o _[ne (o VINY . \FN':J' + B NS ch e L% 6]
and b5 = Jof INSAQ " oo, [7]
The global matrix equation can be assembled by combining the two
elemental matrices. To do this, we need the node-element connectivity
information given in table (1) This table contains information about
the various nodes that make up each element, as well as their position
in the element (often called the local node number).Each node also has
a global node number, indicating its position in the entirc finite
element model system. The columns in the table marked n(i.e.) refer
to the i" node in element ¢ and the value of n(i. e.) is the global node
number.For instance,node2 appears as the second node in element 1
and the third node in element 2
The connectivity array shown in Table(1) can be used to obtain the
global matrix K, by Combi- ning the appropriate members of the
elemental matrices. Consider node 2 as an example. Since node 2
appears as the second node in element | and the third node in element
2, we
combine the corresponding members (Ki:)' and (Ki3 3 of the
elemental matrices to obtain Ka= (K;;}i + {Kg)2 .This process is
repeated for each of the four nodes, giving :

112

IBN AL- HAITHAM J. FOR PURE & APPL.SCI. VOL.1 9(4) 2006

! -1 I . 1
Ay Kia Kia 0
K A2y Ki+ 'r‘:.%_% ’T‘L‘z + A i ‘i",‘:l‘l
"".:1 ""‘l: L) "-E?.I i] + "-i ’;*:21 :
T =) L
i|- :| I{Li‘__:l ‘:ll_: hl‘l -!

Similarly, the vector b is given by:

bl

by + by

b= by + b
by

In order to convert the FEM into ANN, we start by first separating
(K°); into two components: one component dependent on the
malerial properties o and B and the second

component independent of these material properties. This can be
achieved by rewriting [6] as:

(K =a Jo° VN . VN dQ + B [o® (N (N9 d2 ... [8]

= (8% + B(T%); , where (S%; = [a® V(N%),.V(N%);dQ and (T%);
= Jo® (N%; .(N%; dQ

Rewriting the original equation as shown in [8] assumes that the
material properties are constant in an element. In general, this is not an
unreasonable assumption, since the elements are usually small enough
for this assumption to be true. Equations [8] can be converted into
ANN. The structure of this network is shown in fig. (1) The neural
network 1s a three layer neural network, with input, out - put and
hidden layers. The input layer has two groups of 2 neurons, with one
group taking the o value in each element as input and the second
group taking in the values of Bin each element as input. The hidden
layer hasl6 neurons that arc arranged in groups of 4 neurons. The
output of each group of hidden layer neuron is the corresponding row
vector of K. In the general case with M elements and N neurons in the
FEM mesh, the input layer has 2M neurons, with the inputs being the
material properties o and B in each of the M elements. The hidden
layer has N® neurons arranged in N groups of N neurons,
corresponding to the N* elements in the global matrix K. The weights

113

IBN AL- HAITHAM J. FOR PURE & APPL. SCL VOL.19(4) 2006

from the input to the hidden layer are set to the appropriate values of
(S5) and (T;) examples of these weights are shown in fig.(1) Each
neuron in the hidden layer acts as a summation unit, and the outputs of
the hidden layer neurons are the elements K;; of the global matrix K :

Kij = % (0)" +Be@)) wrovrerrrrrnnee. 9]

Where (wy)* = (8)° if nodes i and j are part of element e, and (wii)®
otherwise. Similarly, (gy)° = (Ty)® if nodes i and j arc part of
element e, and (gi)° =0 else.
Each group of hidden neurons is connected to one output
neuron(giving a total of 4 out put neurons) by a set of weights ¢, with
each element of ¢ representing the nodal values ¢; . Each output
neuron is also a summation unit, and the output of each neuron is
equal to by :
bi= %% Ky =X 0T (0 () Be (€)) v [10]
where the second part of [10] is obtained by using [9]. The number of
output neurons in the general case increases to N,
-Forward and Inverse Problem Formulation Using FENN
Applying the FENN to solve the forward problem is
straightforward. The forward problem involves determining the
weights ¢ given the material parameters. Given these values, the
procedure for solving the forward problem is as follows:
- Apply the material parameters o and B to the input neurons and
compute the output of each of the hidden neurons. Any natural
boundary conditions are applied as bias inputs to the hidden layer
neurons. Initialize the value of ¢ randomly for all the free weights, Fix
the values of the clamped weights according to the Dirichlet boundary
conditions. Let the value of ¢ at iteration t be denoted by o(t) .
- At iteration t, compute the output of the neural network:

OXO= I Ky 00) + i= 1,2 Nevvoror [11]
-

- Compute the error at the output of the neural network:

-

E(t) = ‘fzIIb—.E(t}H: vﬁ” (bi— (b)) = % EDE [12]

- Compute the gradient of the error with respect to the free hidden
layer weights :

114

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.19(4) 2006
&(0) =B / 6oy =- ¥V Ei (1) K py(0)=- g;(0)

-Update the frce weights using the conjugate gradient (CG)
equation :
Pt +1) = @iV +pi(t) , pi(0) = - (D) + Bi py(t-1) o [13]

where Bj = Ag(t-1)" g®) / g(t-1)" g(t-1) eovvrrreeo . [14]
Repeat steps 2-5 till convergence is achieved. The convergence
criterion considered

here is that the output error must fall below a threshold.

The same ANN can be applied easily to solve the inverse problem.
The inverse problem involves determining the material propertics «
and B, given the measurement ¢ and b. We apply the following
algorithm to solve the inverse problem :

- Initialize the values of a and B. Let a(t)and P(t) denote the values
of the material properties at ileration t. Fix the weights between the
hidden layer and the output layer neurons to the measurement Q.

- Al iteration t, apply a(t) and B(t) at the input layer of the FENN,
Compute the output of the network using equations [9] and [10]. Call

this output b(t).
- Compute the error at the output :

B = % [b-boll = % 2N (bi- Gw)? = (D

- Compute the gradient of the error due to « (t) and B(1) :
go = 6L(0)6oe , po= - go ,g(t) = SE(tV6o, = - Z:J Ei(2;] @ (wip)®, p(t) =

-8() + Bup(t-1)
0 =BE(0)3Ps , po =~ Lo DEW/OBe = -L ¥ E(T™ o) (2)): p(1) = - &(V)

+ B p(t-1) ...[15]
- Update the values of a(t) and (1) using the CG equation :

ae(tHl) = 0e(t) +1p(t) & Pe(t+1) = Belt) + fip(t)

- Repeat steps 2-5 till convergence. Again, the algorithm converges
when the error

falls below a threshold. Note i, computed as [14]

115

IBN AL- HAITHAM J. FOR PURE & APPL. SCL VOL.19(4) 2006

- Advantages and Modifications

The major advantage of this formulation of the FENN is that it
represents the finite element model in a parallel form , enabling
parallel implementation in either hardware or software. Further,
computing gradients in the FENN is very simple. This is an advantage
in solving both forward and inverse problems using CG methods (7)
(8). The expressions for the gradients(shown in the previous
subsection) also indicate that the gradients can be computed in
parallel, enabling even faster solution of both the forward and
inverse problems. Secondly, the network has been derived to make
the solution of inverse problems tractable. A major advantage of this
approach for solving inverse problems is that it avoids inverting the
global matrix in each iteration. This results in considerable
computational savings. In addition, the approach lends itself easily to
solution of the forward problem. This is in contrast to other
approaches described in the literature, where the networks are derived
to simplify the solution procedure for the forward problem, and
need considerable modification to solve the inverse problem. The
FENN also does not require any training , since most ol its weights
can be computed in advance and stored. The weights depend on the
governing differential equation and its associated boundary
conditions, and as long as these two [lactors do not change, the
weights do not change. This approach also reduces the computational
effort associated with the network.
The major drawback of the FENN is the number of ncurons and
weights necessary. Towever, the memory requirements can be
reduced considerably, since most of the weights between the input and
hidden layer are zero. These weights, and the comresponding
connections, can be discarded. Similarly, most of the elements of the
K matrix are also zero. The corresponding neurons in the hidden layer
and the associated connections can also be discarded, reducing
memory and computation requirements considerably. Furthermore,
the weights between cach group of hidden layer neurons and the
output layer are the same (o).
-Sensitivity Analysis of the Inverse Problem
Intuitively, an error in the measurement ¢ will result in an error
(which can be large for ill-posed problems) in the estimate of the
material parameters « andp.In order to quantify the ecrror in the
material parameters, we assume that ¢; = ¢; + Ag; is the measured

116

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.19(4) 2006

value of the potentials where @; is the true value of the potential and
Aw; is the error in the measurement at node j. Let dq(n) and Pe(n) be
the corresponding estimated values of the material parameters in
element e at iteration n. We assume that : d.(n) = w.(n) + d.(n) where

{n) i the corresponding estimate of a when the measurement error

in @; is zero. Similarly, lot f(n) = Pe(n) + e.(n) .Then, define the
output of th-: FENN as :
bi(n) = ,1 (E‘ de(n) (Wi)° + Be(n) (g3)°) &;

= 2O acm) (v + Bl ()" + 8cln) (w)" +) (€3 0 + A0y
=20 o) (wi)® + Belm)(@i)" e + XX 0 (m)(wi) +Pe (n)(ei)

)AQ; + .‘—'ITN (E;M Be(m)(wi)® + ee(n)(zi)”) (5 + Ag;)

= bi(n) +jr¢'|. { T oe(m)(w rj:I 2 ﬁe{n}{gu})&q}J + Z (Z f’t{n)(wﬂ +

£o(n)(2i) N @i+Ap)

where bi(n) = 2;' (E,IM ae(m)(wy)® + Be(n)(gy)®)pj is the output of the
e

FENN when the measurement noise is zero. The corresponding sum-

squared error at the output of the FENN is

E(n) = ‘/;E (Fin))® where Fi(n) =b; - bi(n)

= bimbim) 3" (X ae(m)wy)*+ e(n)(g)")Agy - T (XM Belm)(wi)®

T&{nifgu))05 + Apj)
=Ei(n) - 2 (Zk ae()(Wi)" + Pe(n)(gi;) Jmm Z t’ ¥ Se(n)(wy)’ +

g (n) (gu)) (@ + Agy)
and Ei(n) is the error at the FENN output when the measurement
noise is zero. Then, the CG update equations for & and are given by:

(te(n) = de(n-1)+np(n-1} [16a]

Be () =Pc m-1)+7p(n-1) ceeennnnn, [16b]
The search direction in [16] can be obtained from [135] .
-Applications

- One Dimensional Problems - Forward Model Results

117

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.19(4) 2006

The finite element model neural network(FENN) was tested using a
one-dimensional version of Poisson’s equation, which is a special case
of [##*]: Ve (eVp)=p ... [17]
For a one-dimensional problem, this reduces to:
-(0/0x) (e Bpidx) =p [18]
Several different examples based on [18] were used to test the
performance of the FENN on the forward problem. The first problem
that was tested was :
& / &x* = 0 x€[0,1] ,with the boundary conditions:p(0)= Oand o(1)=
K .K€I-{0}
The analytical solution to this problem is :

¢ =£(x s, X€[0,1]

. otherwise

The FENN was tested by setting ¢ = 1,p = 0 and K = 1.The domain of
interest [0,1] was divided into 10 elements (with 11 nodes) and the
weights for the [irst layer of neurons were pre-computed. The results
for this problem are shown in fig. (2) The solid line shows the
analytical solution while the stars show the result determined by the
FENN. This results also obtained using 10 elements and 11 nodes.
The second example that was tested was the onc-dimensional
Poisson’s equation with & =1 and p = -10 with the same boundary
conditions as above :
p(0)=0and @(1)=K, K € [-{0} . Again, the domain of interest was
divided up into ten elements. Similarly, for p =10 and K = 5, the
analytical solution is :

o =[5+ 10x, x€[0,1]

0 , otherwise

and a comparison of the analytical solution (squares), the FEM
solution and FENN solution for this problem is shown in Fig. (3).
Again, the initial solution is indicated by the dashed line with the
triangles.
These results indicate that the FENN is capable of accurately solving
for the potential @. The algorithm also converged in relatively few
iterations (approximately 500 iterations on average for all problems)
and the sum-squared error over all the out- put nodes was less than
0.0001 for all sets of results.
As mentioned above, onc advantage of the FENN approach is the
mput - first hidden layer nodes can be computed once. The only
changes necessary to solve the different

118

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.19(4) 2006

problems are changes in the input (g) and the desired output (p).

- One Dimensional Problems - Inverse Model Results

The FENN was also used to solve several simple inverse problems
based on Poisson’s equation and Laplace equation. In all cases, the
objective was to determine the value of & for given values of p and o
.The results of this exercise are summarized below. The first problem

involves determining ¢ given p =1 and o = x , x € [0,1] .The
analytical solution to this inverse problem is :
==, R0 I01] and BE R onvisimamey [19]

As seen from [19], this inverse problem, and all the others that follow,
have an infinite

number of solutions and we expect the solution procedure to
converge to one of these solutions depending on the initialization. Fig.
4(a) and (b) show the two solutions to this inverse problem for two
different initializations(shown using triangles): € = x and ¢ = 1+ X,
respectively. The solution converges to € =1- x and & = 2- x
respectively and the FENN solution is seen to match the analytical
solution exactly. In order to further test the algorithm, the same
problem was solved using four more initializations. The first two
initialized € to a constant value and the results are shown in Fig. (5)
Similarly, Fig. (6) shows the results for a random initialization. In this
case, the analytical result was obtained by drawing a straight line
between the first and last values of . Similar results are presented
in Fig.(7) for the inverse problem when p = -1 and ¢ = x, x € [0,1].
The analytical solution is: e = K+ x, x € [0,1] and K € R. The FENN
results indicate that the algorithm converges to £ = x and & =1+ x for
the initialization solutions & =1-x and &€ = 2- x, respectively . The
results presented for the inverse problem indicate that the solution is
not unique and depends on the initialization. In order to obtain a
unique solution, we need to impose constraints. For the second order
differential equation [18] we need to constrain the value of € at a
known node on the sample in order to obtain a unique solution.

This is usually possible to assign in practice. This approach was
applied to determine € every- where given that ¢ and f arc specified
as follows in [18] : p =x*, x € [0,1] and

= -2K - 2sin(x) - 2xcos(x) , K€ R. The analytical solution for this
equation is & = sin(x) + K. '

To solve this problem, we set K =1 and clamp the value of e at x =0 :
e(x=0)=K.

119

IBN AL- HAITHAM J. FOR PURE & APPL. SCL. VOL.19(4) 2006

The results of the inversion are shown in fig. (8 - 9). fig. 8(a) shows
the comparison between the analytical solution and the FENN result
. The initial value of & was selected randomly and is shown in the
figure as a dashed line. This result was obtained using 11 nodes and
10 elements in the corresponding finite element mesh. Fig. (8b) shows
the error in the forcing function f at the FENN output. The squares
indicate the desired value of f while the circles show the actual
network output. This resull indicates that, though the error in the
function is small, the error in the inversjon result is fairly large.
Similar results for 21 nodes

(20 elements) in the mesh are shown in Fig.(9a).

It is seen that increasing the discretization significantly improves the
solution. It should also be noted that the FENN inversion algorithm
for 21 nodes has not converged to the desired error goal (as seen [rom
Figure®(b))and a larger number of iterations are nceessary to [urther
improve the solution.

References

1. Baras, J. S. and Lavigna, A, (2002) Convergence of a neural
network classifier, Systems Research Center, University of
Maryland, College Park .

2. Turmon, I. (1995). Assessing generalization of feed forward
neural networks, Ph.D. Thesis, August Cornell University.

3. HeS. ; Reif, K. and Unbehauen, R. (2000). Neural Networks . Vol
13, P.385-396 ,

4. Cheney, E. W. and Light, W.(2000). Course in approximation
theory, 2000, Pub. Books, Colepub. Company.

5. Yegnanarayana, B. (2000). Artificial neural networks, Newdelhi .

6. Mitchell, A. R. and Wait, R. (1978). The finite eement mthod in
prtial dlferential cuations, 1978,

7. Wang.,Q. and Aoyama, T, (2001). Neuron Computing, Vol. | NO.1.
8. Masuoka, R. (2000).IEICE TRANS.INF.&SYST.,Vol.E83-D,NO.6.

120

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.19(4) 2006

Table (1) Node-element connectivity array for the 2-clement mesh

e n(l.e) n(2,.e) n(3.e)
| | 7 3
2 4 3 2

Fig. (2) Comparison of analytical solution and FENN

solution for Laplace's equation with K=1

Fig. (3) Comparison of analytical, FEM and
FENN solutions for Poisson's equation (p=10)

121

IBN AL- HAITHAM J. FOR PURE & APPL. SCT. VOL.19(4) 2006

(b)

Fig. (4) FENN inversion results for Poisson’s equation with (a)
initial solution £ = x and (b) initial solution € = 1+ x.

Fig.(5) Inversion result for Poisson's equation with initial
solution(a)e = 0.5(b)e =1

(a) (b)
Fig. (6) Inversion result for Poisson's equation with (a) random
initialization 1 (b) random initialization 2

122

1IBN AL- HAITHAM J. FOR PURE & APPL.SCL. VOL.19(4) 2

Fig. (7) FENN inversion results for Poisson’s equation with initial
solution(a) e=1-x(b)e=2-x.

; pEl— 4 i L i i i i Ll
it : : £
[F e - = [1 3 4 5 B

(a)Constrained inversion result with (b)Error in the forcing function for
eleven nodes an eleven node discretization

Fig. (8)

oy
"5 b
Lrsmamin
ek
\n.
ey

{a) Constrained inversion results for {(b) Error in the forcing
21 node discretizatization

Fig(9)

123

2006 (4) 19 alaa Al g A sl o gall g ol Alsa

&m&mij1ﬁwwm1
rﬁﬂijgaﬁﬁﬂ‘)bad'r

Aty daalae 2l = A IS bl) and

duadlal)
Sk S b Al jealiall pisal A gl edlef Sl ey

sy dglle Ady Jylall sldae) 8 4aSi g 23 gadl) Bpaal @lliy A guac
el Gl €2 L easnn] N Aladny) AL Lgleay A phall sda il
Sl gniall B3 el A 2lia Bale) 8 A) gl Aallaall il
S Jilan g el lacall by JSlua Ja B g (AU 2adl Bl e Lgialaiy
f—s il 138 Qi A il aae g A Ll L SE 3 e g el)

N S EC [P S 21 [OO - U EQIE 5 SPGB

124

