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Abstract 
        This paper is concerned with the solution of the nanoscale structures consisting of the 
𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄   with an effective mass envelope function theory, the electronic states of the 
𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄  quantum ring are studied.  In calculations, the effects due to the different 
effective masses of electrons in and out the rings are included. The energy levels of the 
electron are calculated in the different shapes of rings, i.e., that the inner radius of rings 
sensitively change the electronic states. The energy levels of the electron are not sensitively 
dependent on the outer radius for large rings. The structures of 𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄  quantum rings 
are studied by the one electronic band Hamiltonian effective mass approximation, the 
energy- and position-dependent on electron effective mass approximation, and the spin-
dependent on the Ben Daniel-Duke boundary conditions. In the description of the 
Hamiltonian matrix elements, the Finite elements method with different base piecewise 
linear function is adopted. The non-linear energy confinement problem is solved 
approximately by using the Finite elements method with piecewise  linear function, to 
calculate the energy of the one electron states for the  𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄  quantum ring. The 
results of numerical example are compared for accuracy and efficiency with the finite 
element method of linear triangular element. This comparison shows that good results of 
numerical example.  
 
Keywords: nanoscale, Finite elements method, Ben Daniel-Duke boundary conditions, 
𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄  quantum rings. 
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1. Introduction 
   The modeling of the electron states in semiconductor nanostructures remains a difficult 
computational task. The one electron states are helpful for studying the electron 
correlations and, the effects of magnetic fields in quantum rings and useful for designing 
and fabricating the double colors detector by intra band and inter band translations. 

In 1990, Paasch et. al., [3] used envelope equation and wave function matching for narrow-
gap semiconductors. In 1995, Mathine et. al., [4] applied computational Fourier series 
solution of the BenDaniel-Duke Hamiltonian for arbitrary shaped quantum wells. In 2001, 
Yiming Li et al, [1] used Computer simulation of electron energy levels for different shape 
𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄  semiconductor quantum dots. In 2002, Yiming Li et al, [2] used Electron 
energy state spin-splitting in 3D cylindrical semiconductor quantum dots. In 2003, Melnik 
et al, [5] applied finite element analysis of Nanowire superlattice structures. Whereas 2005, 
Yiming Li, [6] using an iterative method for single and vertically stacked semiconductor 
quantum dots simulation. In 2016, Deyasi et. al., [7] applied numerically computed in 
presence of electric field using propagation matrix method. In 2017, Eman et. al., [8] using 
finite element method with linear triangular element for solving finite nanowire superlattice 
quantum dot structures 𝐺𝑎𝐴𝑠 𝐴𝑙𝐺𝑎𝐴𝑠⁄ . In 2017, Eman et. al., [9] using finite element 
method with linear rectangular element for solving finite nanowire superlattice quantum 
dot structures 𝐺𝑎𝐴𝑠 𝐴𝑙𝐺𝑎𝐴𝑠⁄  results. 

 

Modeling Energy Stat with Spin-Dependent Boundary 
Conditions [5 & 6] 
     We consider the problem to compute relevant energy states and corresponding wave 
functions of a three dimensional semiconductor quantum ring. Consider the one electrons is 
confined in system of the three-dimensional quantum ring structures and apply an effective 
one electronic band Hamiltonian, is given by: 
 
𝐻෡ ൌ 𝐻෡଴ ൅ 𝑉෠௦௢ሺ𝑟ሻ,                                                                                                                             ሺ1ሻ 

where 𝐻෡ is the Hamiltonian of the system without spin-orbit interaction, 𝑉෠௦௢ሺ𝑟ሻ is the spin-
orbit interaction for the conduction band electrons, and the expression for 𝐻෡଴ is as follows: 

𝐻෡଴ ൌ െ
ℏଶ

2
∇௥ ൬

1
𝑚ሺ𝐸, 𝑟ሻ

൰ ∇௥ ൅ 𝑉ሺ𝑟ሻ                                                                                               ሺ2ሻ 

where ∇௥ is the spatial gradient, 𝑚ሺ𝐸, 𝑟ሻ is the energy dependent electron effective mass, 
and  𝑉ሺ𝑟ሻ is the confinement potential. 

1
𝑚ሺ𝐸, 𝑟ሻ

ൌ
𝑃ଶ

ℏଶ ቈ
2

𝐸 ൅ 𝐸௚ሺ𝑟ሻ െ 𝑉ሺ𝑟ሻ

൅
1

𝐸 ൅ 𝐸௚ሺ𝑟ሻ ൅ ∆ሺ𝑟ሻ െ 𝑉ሺ𝑟ሻ
቉                                              ሺ3ሻ 

where 𝐸௚ሺ𝑟ሻ and ∆ሺ𝑟ሻ stand for the position dependent band gap and the spin-orbit splitting 
in the valence band, respectively and, 𝑃 is the momentum matrix element.. 
The spin-orbit interaction for the conduction band electrons 𝑉෠௦௢ሺ𝑟ሻ is given by 
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𝑉෠௦௢ሺ𝑟ሻ ൌ 𝑖∇𝛽ሺ𝐸, 𝑟ሻ

∙ ሾ𝜎ො ൈ ∇ሿ                                                                                                                ሺ4ሻ 

where 𝛽ሺ𝐸, 𝑟ሻ is the spin-orbit coupling parameter and 𝜎ො ൌ ൛𝜎௫, 𝜎௬, 𝜎௭ൟ is the vector of the 
Pauli matrices. The energy and position dependent 𝛽ሺ𝐸, 𝑟ሻ has the form  

𝛽ሺ𝐸, 𝑟ሻ ൌ
𝑃ଶ

2
ቈ

1
𝐸 ൅ 𝐸௚ሺ𝑟ሻ െ 𝑉ሺ𝑟ሻ

െ
1

𝐸 ൅ 𝐸௚ሺ𝑟ሻ ൅ ∆ሺ𝑟ሻ െ 𝑉ሺ𝑟ሻ
቉                                                ሺ5ሻ 

For those quantum ring systems that have sharp discontinuity on the conduction band 
interfaces between the quantum ring ("𝐼𝑛𝐴𝑠" material 1) and semiconductor matrix 
("𝐺𝑎𝐴𝑠" material 2), the hard-wall confinement potential is 

𝑉ሺ𝑟ሻ ൌ ൜
0,            𝑟 ∈ material 1
𝑉଴,          𝑟 ∈ material 2,                                                                                                    ሺ6ሻ 

where 𝑉଴ is the structure band offset. Combining the Hamiltonian in equations (1), (2), and 
(4), the spin dependent Ben Daniel-Duke boundary conditions for the electron wave 
function Ψሺ𝑟ሻ is written as follows: 

Ψ୫ୟ୲ୣ୰୧ୟ୪ ଵሺ𝑟௦ሻ ൌ Ψ୫ୟ୲ୣ୰୧ୟ୪ ଶሺ𝑟௦ሻ

൜ ℏଶ

2𝑚ሺ𝐸, 𝑟ሻ ∇ െ 𝑖∇𝛽ሺ𝐸, 𝑟ሻሾ𝜎ො ൈ ∇ሿൠ
௡

Ψሺ𝑟௦ሻ ൌ C଴

                                                                          ሺ7ሻ 

where 𝑉଴ is the some constant, 𝑟௦ denotes the position of the system interface.  
  

Note (1): We note that the expressions of electron effective mass in equation (3), spin-orbit 
coupling parameter in equation (5), and the equations of Ben Daniel-Duke boundary 
condition in equation (7) are all energy and position dependent relationships in this study. 
 

2. Finite Element Method 
     Dependence of the electron effective mass and spin–orbit coupling parameter on each 
energy state results in a nonlinear equation (9) and (10). The nonlinear equations 
complicate the process of analytical solution in the explored quantum ring. Therefore, the 
numerical approach to the solution of the nonlinear equations is advanced in the calculation 
of the electronic structure of 𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄  quantum rings. The finite element method is 
applied to solve the above problem for the nanoscale 𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄  quantum rings. Energy 
states and spin-splitting are numerically calculated without any fitting parameters. Starting 
from a given initial energy, the finite element method globally calculates all bounded 
energies for the corresponding nonlinear algebraic eigenvalue problem. A computational 
procedure of the finite element method is shown below:  
 

െ
ℏଶ

2𝑚௜ሺ𝐸ሻ
ቆ

𝜕ଶ

𝜕𝑅ଶ ൅
𝜕

𝑅𝜕𝑅
൅

𝜕ଶ

𝜕𝑍ଶ െ
𝑙ଶ

𝑅ଶቇ 𝜙௜ሺ𝑅, 𝑍ሻ ൅ 𝑉 𝜙௜ሺ𝑅, 𝑍ሻ ൌ 𝐸𝜙௜ሺ𝑅, 𝑍ሻ,       ∀ሺ𝑅, 𝑍ሻ

∈ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖    ሺ12ሻ 

Where 𝑖 ൌ 1,2 since the cylindrical is symmetry, 𝑉 ൌ 𝑉ሺ𝑅, 𝑍ሻ, and 𝜙௜ ൌ 𝑢ሺ𝑅, 𝑍ሻ𝑒௜௟థ೔, 
where 𝑙 is an integer. Equation (12) becomes 
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െℏଶ

2𝑚௜ሺ𝐸ሻ
ቈ
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𝜕𝑢
𝜕𝑅

൅
𝜕

𝜕𝑅
൬

𝜕𝑢
𝜕𝑅

൰ െ
𝑙ଶ

𝑅ଶ 𝑢 ൅
𝜕

𝜕𝑍
൬

𝜕𝑢
𝜕𝑍

൰቉ ൅ 𝑉𝑢

ൌ 𝐸𝑢                                                       ሺ13ሻ 

The electron energy spectra for 𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄  quantum rings the semiconductor band 
structure governing physical process in a ring nanoscale are described in terms of 
cylindrical coordinates. When the geometry, loading, and boundary conditions are 
independent of the circumferential direction (𝜙 -coordinate), the electron energy spectra for 
𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄  quantum rings of the semiconductor band structure equation become two-
dimensional in terms of 𝑅 and 𝑍. 
 
2.1 Weak Form 

    Assume that Ω is a typical element the piecewise linear function of the finite element 
mesh, and we develop the finite element model of equation (13) over Ω. Various two-
dimensional elements will be discussed in the sequel.  
There are three steps in the development of the weak form of equation (13) over the typical 
element  Ω.  
The first step is formulated equation (13) by the following weak form. 
 
 

0

ൌ න ቈ
െℏଶ

2
ቈ𝑤

1
𝑚௜ሺ𝐸ሻ

𝜕𝑢
𝜕𝑅

൅ 𝑤𝑅
𝜕𝐹ଵ

𝜕𝑅
െ

𝑙ଶ

𝑚௜ሺ𝐸ሻ𝑅
𝑤𝑢 ൅ 𝑤𝑅

𝜕𝐹ଶ

𝜕𝑍
቉ ൅ 𝑉𝑤𝑅𝑢

 

Ω

െ 𝐸𝑤𝑅𝑢቉ 𝑑𝑅𝑑𝑍                                                                                                         ሺ12ሻ 

Where  
 

𝐹ଵ ൌ ൬
1

𝑚௜ሺ𝐸ሻ
𝜕𝑢
𝜕𝑅

൰               and                𝐹ଶ ൌ ൬
1

𝑚௜ሺ𝐸ሻ
𝜕𝑢
𝜕𝑍

൰  

In the second step, we note the identities 

 െ𝑤𝑅
𝜕𝐹ଵ

𝜕𝑅
ൌ 𝑅

𝜕𝑤
𝜕𝑅

𝐹ଵ

െ 𝑅
𝜕

𝜕𝑅
ሺ𝑤𝐹ଵሻ                                                                                             ሺ15aሻ 

 െ𝑤𝑅
𝜕𝐹ଵ

𝜕𝑍
ൌ 𝑅

𝜕𝑤
𝜕𝑍

𝐹ଶ

െ 𝑅
𝜕

𝜕𝑍
ሺ𝑤𝐹ଶሻ                                                                                             ሺ15bሻ 

Next, using equation (15a) and equation (15b) in the equation (14) then applying the 
divergence theorem, we obtain  
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0 ൌ න ቈ
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𝑤
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𝜕𝑅
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2
𝑅

𝜕𝑤
𝜕𝓏

൬
1

𝑚௜

𝜕𝑢
𝜕𝑍

൰ ൅ 𝑤𝑅𝑉𝑢
 

Ω

െ 𝑤𝑅𝐸𝑢቉ 𝑑𝑅𝑑𝑍

െ ර 𝑤 ൤𝑛ଵ ൬
1

𝑚௜

𝜕𝑢
𝜕𝑍

൰ ൅ 𝑛ଶ ൬
𝑅

𝑚௜

𝜕𝑢
𝜕𝑅

൰൨ 𝑑𝑠                                 ሺ16ሻ
 

୻
 

where   𝑛ሬ⃗ ൌ ሺ𝑛ଵ, 𝑛ଶሻ is an outer unite vector normal on Γ and 𝑑𝑠 is the length of an 
infinitesimal line element along the boundary. 
From an inspection of the boundary integral in (16), we note that the specification of 𝑢 
constitutes the essential boundary condition, and hence 𝑢 is the primary variable. The 
specification of the coefficient of the weight function in the boundary expression, i.e. we 
can let 

𝑑௡ ≡ 𝑛ଵ ൬
1

𝑚௜

𝜕𝑢
𝜕𝑍

൰

൅ 𝑛ଶ ൬
𝑅

𝑚௜

𝜕𝑢
𝜕𝑅

൰                                                                                                      ሺ17ሻ 

The third and last step of the formulation is to substitute the definition (17) in (16) and 
write the weak form of (13) as  

0 ൌ න ቈ
െℏଶ

2𝑚௜
𝑤

𝜕𝑢
𝜕𝑅

൅
ℏଶ

2
𝑅
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𝜕𝑅

൬
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𝑚௜

𝜕𝑢
𝜕𝑅

൰ ൅
ℏଶ𝐿ଶ

2𝑚௜𝑅
𝑤𝑢 ൅

ℏଶ

2
𝑟

𝜕𝑤
𝜕𝑍

൬
1

𝑚௜

𝜕𝑢
𝜕𝑍

൰ ൅ 𝑤𝑟𝑉𝑢
 

Ω

െ 𝑤𝑟𝐸𝑢቉ 𝑑𝑅𝑑𝑍

െ ර 𝑤𝑑௡𝑑𝑠
 

୻
                                                                                  ሺ18ሻ 

 
 
Now,  𝑢ሺ𝑅, 𝑍ሻ is approximated over a typical finite element Ω by the expression  

 𝑢ሺ𝑅, 𝑍ሻ ൎ 𝑢௛
௘ ሺ𝑅, 𝑍ሻ

ൌ ෍ 𝑢௝
௘𝜓௝

௘ሺ𝑅, 𝑍ሻ
௡

௝ୀଵ

                                                                                         ሺ19ሻ 

where 𝑢௝
௘ሺ𝑅, 𝑍ሻ is the value of 𝑢௛

௘ ሺ𝑅, 𝑍ሻ at the 𝑗௧௛ node ൫𝑅௝, 𝑍௝൯ of the element . 
Substituting the finite element approximation (19) for 𝑢 into the weak form (18), we get  
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ቌ
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௘

௡

௝ୀଵ

𝜓௝
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൅
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2
𝑅

𝜕𝑤
𝜕𝑍

ቌ
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𝑚௜
෍ 𝑢௝

௘

௡

௝ୀଵ

𝜕𝜓௝
௘

𝜕𝑍
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௘

௡

௝ୀଵ

𝜓௝
௘ െ 𝑤𝑅𝐸 ෍ 𝑢௝

௘

௡

௝ୀଵ

𝜓௝
௘቏ 𝑑𝑅𝑑𝑍

െ ර 𝑤𝑑௡𝑑𝑠
 

୻
                                                                                                                ሺ20ሻ 

This equation must hold for every admissible choice of weight function 𝑤. Since we need 𝑛 
independent algebraic equations to solve for the 𝑛 unknowns, 𝑢ଵ

௘, 𝑢ଶ
௘, … , 𝑢௡

௘ , we choose 𝑛 
linearly independent functions for 𝑤: 𝑤 ൌ 𝜓ଵ

௘, 𝜓ଶ
௘, … , 𝜓௡

௘. For each choice of 𝑤 we obtain 
an algebraic relation among ሺ𝑢ଵ

௘, 𝑢ଶ
௘, … , 𝑢௡

௘ ሻ. We label the algebraic equation resulting from 
substitution of 𝑤 ൌ 𝜓௜

௘ into (20): 
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௘𝜓௝
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௘ െ ර 𝑤𝑑௡𝑑𝑠

 

୻
;  𝑖, 𝑗

ൌ 1,2, … , 𝑛                 ሺ21ሻ 
 

2.2 Finite Element Method for the Model with Piecewise Linear 
Functions 

      In this section, the solution u of equation (18) is approximated by a FEM for the model 
with piecewise linear function.  
We now define 𝑉௛ as follows: 
𝑉௛ ൌ ሼ𝑣: 𝑣 𝑖𝑠 𝑐𝑜𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑜𝑛 Ω, 𝑣 ൌ 0 𝑜𝑛 Γሽ. 
The space 𝑉௛  consists of all continuous function that are linear on each triangle 𝐾 and 
vanish on Γ. We notice that 𝑉௛ ⊂ 𝑉. As parameters to describe a function 𝑣 ∈ 𝑉௛ we choose 
the values 𝑣ሺ𝑁௜ሻ of 𝑣 at the nodes 𝑁௜, 𝑖 ൌ 1, … , 𝑁, of 𝑇௛ but exclude the nodes on the 
boundary since 𝑣 ൌ 0 on Γ.  
The corresponding basis function φ௝ ∈ 𝑉௛, 𝑗 ൌ 1, … , 𝑁, are then defined by (see Figure(2)) 

 φ௝൫𝑁௝൯ ൌ 𝛿௜௝ ≡ ൜
1 𝑖𝑓 𝑖 ൌ 𝑗
0 𝑖𝑓 𝑖 ് 𝑗  𝑖, 𝑗 ൌ 1, … , 𝑀. 

 The finite element method was applied to project the variational form of the problem onto 
a finite dimensional space. As a result, the problem was reduced to the following 
generalized eigenvalue problem: 

 𝐴𝑢
ൌ 𝜆𝐵                                                                                                                                               ሺ22ሻ 

 
where A and B are 𝑁 ൈ 𝑁 matrices, 𝑢 the vector of unknowns of dimensionality 𝑁, and 𝑁 
the number of nodes in which the solution to the problem (13) is being sought. 
Computational domains of interest are symmetric with respect to the z-axis, where we 
imposed Neumann's boundary conditions if 𝐿 ൌ 0. The solution to equation (22) was found 
in MATLAB. 
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We employed the finite element method so as to calculate electron eigenvalues and 
eigenstates for a series of finite NWSL structures with a cylindrical cross-section. In this 
case the matrices in equation (22) has the following form  
 
where 
𝐴 ൌ ൣ𝐴௜௝

 ൧ and  𝐵 ൌ ൣ𝐵௜௝
 ൧, 𝑖 ൌ 1,2, … , 𝑁, 𝑗 ൌ 1,2, … , 𝑁. 

𝐴௜௝
 ൌ න ቈ

െℏଶ

2𝑚
𝜓௜

௘
𝜕𝜓௝

௘

𝜕𝑟
൅

ℏଶ

2
𝑟

𝜕𝜓௜
௘

𝜕𝑟
ቆ

1
𝑚

𝜕𝜓௝
௘

𝜕𝑟
ቇ ൅

ℏଶLଶ

2mr
𝜓௜

௘𝜓௝
௘

 

ஐ

൅
ℏଶ

2
𝑟

𝜕𝜓௜
௘

𝜕𝓏
ቆ

1
𝑚

𝜕𝜓௝
௘

𝜕𝓏
ቇ቉ 𝑑𝑟𝑑𝓏 ሺ23ሻ 

𝐵௜௝
 

ൌ න ሾ𝑉 െ 𝐸ሿ𝑟𝜓௜
௘𝜓௝

௘ 𝑑𝑟𝑑𝓏
 

Ω
                                                                                                          ሺ24ሻ 

As a first choice the uniform mesh are used by the piecewise linear function three element, 
as shown in Figure( 3) to represent the domain, to determine the element coefficient 
matrices 𝐴 and 𝐵 of Eq. (22).  

To evaluation of the integral in Eq. (23) and Eq. (24), it is possible to obtain the closed 
form for the  𝐴 and 𝐵 matrices by carrying out the integrals in Eq. (23) and Eq. (24) exactly 
respectively. We consider element 1 as the typical element. Hence, the element coefficient 
𝐴 and 𝐵 matrices are 

 
Notes (1): 
 In the following example, the representative set of parameters were used for the 
calculations as: 
For 𝐼𝑛𝐴𝑠, the energy gap 𝐸௚ ൌ 0.42 eV,  ∆ଵൌ 0.38 𝑒𝑉,  𝑚ଵሺ0ሻ ൌ 0.024 𝑚଴ . 
For 𝐺𝑎𝐴𝑠, the energy gap 𝐸௚ ൌ 1.52 eV,  ∆ଵൌ 0.34 𝑒𝑉, 𝑚ଵሺ0ሻ ൌ 0.067 𝑚଴. The band 
offset parameter is taken as 𝑉଴ ൌ 0.55 eV.  
 
Example (1):  
    Consider the Nanoscal 𝐼𝑛𝐴𝑠/𝐺𝑎𝐴𝑠, quantum ring model, with using the above date to 
solve 𝐼𝑛𝐴𝑠/𝐺𝑎𝐴𝑠, nanostructures quantum ring.    
 In this example the FEM with piecewise linear function we used to solve equation (13).   

Equation (13) is solved using MATLAB program at 𝑛 ൌ 1296. The results of numerical 
example  give a good accuracy and efficiency of this method comparing with the results 
with FEM of linear triangular element and the maximum absolute error is less than 10ିଶ eV 
( as shown in Figure (4)). 
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Figure (1): A three-dimensional plot of the disk shaped semiconductor 
quantum ring. 

 

Figure (2): The basis function φ௝. 

 

Figure (3): The uniform mesh piecewise linear function three ele
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Figure (4): (a) The calculators of equation 
(13), calculated with the FEM piecewise 

linear function. 

Figure (5): (b) The calculators of equation 
(13),  calculated with the FEM of linear 

triangular element.

3. Conclusions 
    The finite element method with using different base piecewise linear function are used 
for solving the nanoscale structures consisting of the 𝐼𝑛𝐴𝑠 𝐺𝑎𝐴𝑠⁄  quantum ring, and the 
spin-dependent on the Ben Daniel-Duke boundary conditions. The results of numerical 
example give a perfect accuracy and efficiency of this approach. The results of numerical 
example give a good accuracy and efficiency of this method in comparison with the results 
with FEM of linear triangular element 
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