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Abstract

In real situations all observations and measurements are not exact numbers but more or
less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian
computational methods to estimate inverse Weibull parameters and reliability function with
fuzzy data. The maximum likelihood and moment estimations are obtained as non-
Bayesian estimation. The maximum likelihood estimators have been derived numerically
based on two iterative techniques namely “Newton-Raphson” and the “Expectation-
Maximization” techniques. In addition, we provide compared numerically through Monte-
Carlo simulation study to obtained estimates of the parameters and reliability function in
terms of their mean squared error values and integrated mean squared error values
respectively.

Keywords: Non-Bayesian Methods; Inverse Weibull distribution; Expectation
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1.Introduction

Statistical analysis of inverse Weibull distribution is based on exact data. However, in real
situations all observations and measurements are not exact numbers but more or less non-
exact, also called fuzzy. Thus, in this paper we present a non-Bayesian approach to
estimate the parameters and reliability function of inverse Weibull distribution with fuzzy
data. Keller et al. (1985) [4] introduced inverse Weibull distribution as a suitable model to
describe degradation phenomena of mechanical components of diesel engines. Other names
for this distribution are complementary Weibull distribution, reciprocal Weibull
distribution and reverse Weibull distribution [7].

A random variable X is said to have a two-parameter inverse Weibull distribution if it has
the following probability density function (PDF)[8],

Fo OB ) = BAx—B+De=2xF 0 5 0.8 1> 0 (D
The cumulative distribution function(CDF), reliability function is given respectively by:

FeGi ) =e 2 x>0,51>0 (2
R)=1-e**F x>081>0 (3
where B is the shape parameter and A is the scale parameter.

Definition [9]: let (R™, A, P) be a probability space in which A is the o — field of Borel
sets in R and P is a probability measure over R”. Then, the probability of a fuzzy event A
in R™ is defined by:

P(4) = fug(x) dP  ;forallx € R" . (4)

In particular, suppose that P be the probability distribution of a continuous random variable
X with PDF g(x).The conditional density of X given 4 is given by:

z pa(x) g(x)

A)=—2"2 7 ..(5
9 = T twgtod ®
Fuzzy Data and the Likelihood Function
Let X = (X4,X3,...,Xp) be an (i.i.d.) random vector of a random sample of size n from

inverse Weibull distribution with PDF given by (1). If an observations of x was known
exactly, then the complete-data likelihood function is:

L(B. 4;x) = ]l[fx(xi.ﬁ,m - ﬁﬁ 2 0 exp (~ )
i=1 i=1
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=> LB 4x) = ﬁn/lnl_[x —(B+1) exp( AZ ) .. (6)

Now consider the problem where x is not observed precisely and only partial information
about x is available in the form of a fuzzy subset X with the Borel measurable membership

function pz(x). The observed-data natural log-likelihood function can be obtained, using
Zadeh's definition of the probability of a fuzzy event in the expression (5) as:

(B, ;%) = nL(B, A X) = lnl_Um x~ B exp(—Ax~F) pg, (x) dx
i=1

n
=>¢(B %) =ninf +nind+ Z lnfx‘(ﬁ“) exp(—2Ax7F) pg, (x)dx ..(D
i=1

Maximum likelihood Estimations
Differentiating the natural log-likelihood function ¢ (B, A X), given by (7), partially with
respect to § and A and then equating to zero we have:

af([’) A; x) Z f[x2ﬁ+1 ﬁ+1 linx e ad pg, (x)dx “o ®)
ap ﬂ = f [3+ e(—ﬂ.x B) ,U;zi(X)dX
n 1 —ax
o0, 1%) _n NIz e A B,u;zi(x)dxz . o

1 -
dA A = fme_lx E,u,zl.(x)dx

The maximum likelihood estimates (MLEs) of  and A are the solution of the likelihood
equations (8) and (9). Since there is no closed form of the solutions, an iterative
approximation technique can be used to obtain the MLEs. In the following, we consider
two iterative approximation techniques namely the expectation-maximization (EM)
algorithm and Newton Raphson (NR) algorithm.

Expectation-Maximization Algorithm

Dempster et al. (1977) [2] presented a general approach to iterative computation of
maximume-likelihood estimates when the observations can be viewed as incomplete data.
Now, since the observed fuzzy data ¥ can be seen as an incomplete specification of a
complete data vector x, the EM algorithm is appropriate to find the MLEs of the unknown
parameters [3][5].

Form equation (6), the natural log-likelihood function for X becomes:

2(B,4;x) = InL(B, 4 x)
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n n
>0 Lx)=nnf+nni— B+ 1)2 Inx; — AZ x; 78 ..(10)
i=1 i=1

The EM algorithm is given by the following iterative process:

1. Set h = 0 and initial values of § and A, say 8(® and A(®) .

2. At iteration (h + 1), compute the E and M steps.

3. Repeat step (2) until the convergence occurs, i.e. the absolute difference between two
successive iterations is less than € for some pre-fixed € > 0. when the convergence occurs
then the present +D and A+ be the MLEs of # and A via EM algorithm which we
referred to as (BEM, XEM).

E-step: The E-step of the EM algorithm at iteration (h 4+ 1) requires to compute the
following conditional expectations using the expression (5),

Egm ym [¢(B, 4; x|%)]

n
=nlnp+nlni—(B+1) Z Egm yom[In x;]%;]
i=1

n
—)lz Egm ym [xl-‘ﬁpzi] ..(11)
i=1
where the conditional expectations of X given X is computed as:

—g(h)
[P+ n(x) e 2P (x)dx

J (@) g=a® 28 oy

Egm ;o0 (In X |%;) = . (12)
~(28M+1) AW x=BM
[x e iz, (x)dx

fx_(ﬁ(h)+1) e—l(h)x_ﬁ(h) .ufi (x)dx

M-step: The M-step of EM algorithm involves maximizing equation (11) with respect to 3

Epm yo0(X7F|%;) = ..(13)

and A. This is easily achieved by differentiating equation (11) partially with respect to 8

and A and then equating to zero which implies that:
n

LD = .. (14)
[Z?zlEﬁ(h)_A(h)(lnX |%;) — A+ Z?zlEB(h)_A(h) X-Finx |J?l)]
- n
A+ = _ ..(15
i1 Epm aon (XF1%) (15
where E 0RO (X “Finx |J?l-) computed as:
_g®
~ _ fx‘(zﬁ(h)"'l) Inx e ?"Mx7F ﬂfi(x)dx
Eﬁ(h)yl(h) (X Binx |xl-) = .. (16)

fx_(ﬁ(h)+1) e—/l(h)x—ﬁ(h) u,;i(x)dx
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Egm ;o0 (In X |%;) and Egm zam (X=#|%;) as in (12) and (13). We can rewrite f**1 and A"*V) in
(14) and (15) as:

pD = { Z Ey; — A(D Z “ - (17)
)l(h+1) ..(18
=1E2i ( )
where:
Ey = Egm oo (InX %), By = Eﬁ(hm(h)(X_ﬁlfi) and E3; = Eﬁ(h),,l(m(X_ﬁ InX|%;)
Newton-Raphson Algorithm
The steps of the NR algorithm are [5][7]:
1. Set h = 0 and initial values of 8 and A, say f(© and A(® .
2. At iteration (h + 1), estimate the new value of B and A, as:
0B, 1%) (B AD| T [04(8,41)
[3(h+1)] B [g(h)] 3 ap? 0p0A ap (19)
amen] T Law] T a%e(p,17)  0%¢(8,4:%) 06(8, 1 %) -
apor 012 =™ aA B=p™M
1=2 A=A

where the first—order derivatives of the natural log-likelihood with respect to  and A ,
required for proceeding with the NR algorithm, are obtained as in (8) and (9) and the
second—order derivatives are obtained as follows.

0*4(p,4:%) _ _n

25> - B2
A —Ax~ 2
N J.(x3l?+1 - x2/;+1)€ Al (ln(x)) ufi(x)dx
93
1 _
i=1 fxﬁ+1 e—Ax B ,Ll”.(X)dx

f(xl?1+1 x2ﬁ+1) (ln(x)) e’ Hz; (x)dx

+ - -
fxﬁ+1 e M g (x)dx
1 -B 2
Zn: x2ﬁ’+1 ﬁ+1) In(x) e ﬂfi(x)dx 20
i=1 fxﬁ+1 _Ax_ﬁ,“azi(x)dx
1 _Ax-B
0%(B %)  n ifm e g (x)dx

1 -

_B 2
e—Ax

n

g, (x)dx
Z ngﬂ i .21
_Ax B:ufi (x)dx

i=1 xB+1
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A 2
62{)(/3' 4 Z) i / (W X2B+1 ) In(x) e” 'ufi (x)dx
“opor 1 -
oo i=1 fx3+1 e~ M Bu,gi(x)dx
Z”:f B+1 In(x) e=27* pz,()dx [ =7 2[5’+1 e—/lx—B‘ufi(x)dx -
1 _ 2
= (f PR e~ B#zi (x)dx)

3. Repeat step (2) until the convergence occurs. When the convergence occurs then the
present BM+D and AM*+D be the MLEs of B and A via NR algorithm which we referred to as

(BNRI XNR) '

Now, depending on the invariant property of MLE, the MLE of the reliability function of
inverse Weibull distribution via EM and NR algorithms, denoted by R(t)gy and R(t)yg
respectively, can be obtained by replacing 8 and A in (3) by their MLE estimates as:

R(t)py = 1 — e demt™PEM . 5 .(23)
R(t)yp = 1 — e mrt™Pve 5 .(24)

Moment Estimations

The method of moments is one the oldest method for deriving point estimators. The
moment estimates for 3 and A of inverse Weibull distribution can be found by the following
two equations which are obtained by equating the first and the second population moments
to the corresponding sample moments, that is:

BT (1 - —) - Z Ega (XI%) . (25)

ABr(1 ——) - ZEM(X %) .. (26)

Note that, the direct form of the solutions to equations (25) and (26) could not be obtained.
However, by using an iterative numerical process, we can obtain the parameter estimates as
described below:

Step (1) Set h = 0 and initial values of 8 and A, say (® and A(® .

Step (2) At (h+1)™ iteration, using the expression (5) to compute the following
conditional expectation,
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_g)
. fX—B(h)+r—1 e—l(h)x g ls, (x) dx
Egm yon (XTI = 5 ® ; r=1.2
J B e AT g (%) dx

Step (3) Solve the following equation for 3, based on equations (25) and (26), to obtain the
solution as B+,

[F (1 - %)]2 [ZL Egm am (X|>~<i)]2
r (1 - %) T 1 2, Egaam (X[R))

Step (4) Obtain the solution for A, say A"*D) | through the following equation,

B(h+1)
Yiz1 Egmon (XIXi)

1
I’IF(].—W)

Step (5) Setting h = h + 1, repeat step (2) to step (4) until convergence occurs. When the

}L(h+1) —

convergence occurs then the present P+ and A+ be the moment estimates of B and A

which we referred to as (GMO, XMO).

Now, depending on the moment estimates of the shape and scale parameters, the
approximated moment estimate of the reliability function of inverse Weibull distribution at
mission time t, denoted by Ry (t), can be obtained by replacing B and A in equation (3) by
their moment estimates as:

Ryo(D) = 1 — e Mo t™Mo . > . (27)

Simulation Study

In trying to illustrate and compare the algorithms as described above, a Monte-Carlo
simulation study was perform to generate an independent identical distributed random
samples, say X, according to inverse Weibull distribution through the adoption of inverse
transformation method with size n = 20, 30 and 90 to take care of small, medium and large
data sets. The number of sample replicated chosen to be (100). The shape parameter was
chosen to be 3, 2.1, 1 and 0.5 and the scale parameter 0.5, 1, 3. Then, each observation of x
was made fuzzy based on an appropriate selected membership function among the
following eight membership functions in the FIS shown in figure (1). The simulation
program has been written by using MATLAB (R2010b) program. The results of Monte-
Carlo simulation have been summarized in the tables (1)...(3).
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(x) = 025X 05 <x<025 (x) =+ 105.2—5x
S R T = S 1<x<15
0 ; otherwise 0.5 .
0 ; otherwise
XZ005 05 < x <025 x— 1 1<x<15
02 P EX=T 0.5 pa=x=t
Hg,(X) =4 0.5—x Hg,(X) =42 —X
: 025<x<0. ; 1.5<x<2
025 ; 0.25<x<0.5 05 X
0 ; otherwise 0 ;  otherwise
(x — 0.25 0.25 < x < 0.5 < — 15
025 & oev=x=0 = S 15<x<2
Mg, (X) = 9 0-352:( .05 <x<0.75 My, () =9 3777 ; 2<x<3
\ .0 ; otherwise 0 ;  otherwise
x — 0.5 05 <x< s
025 o 0o=x=07 Xx—2 ; 2<x<3
pe, =4 1-x Hge () =7 1 ;ox=23
* 0.25 ; 075=x<1 ° 0 ;. otherwise
0 ; otherwise

The initial values required for proceeding with the Expectation-Maximization , Newton-
Raphson algorithms and moment method chosen to be the symmetrical rank regression
estimators and the iterative process stops when the absolute difference between two
successive iterations becomes less than € = 0.0001. The comparisons between parameter
estimates were based on values from Mean Square Error (MSE) while it were based on
values from Integrated Mean Square Error (IMSE) for the estimates of the reliability
function [1], where:

MSE(f)

L (5 2
Z j= ﬁ - .8
_2aimp) . (28)
L
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MSE()
N 2
Tha(h -2
=) . (29)
L
L N
~ 1 1 "
IMSE(R(t)) = —Z — Z(Rj(ti)
Iy ng &
j=1 i=1
2
— R(t)) .. (30)

¢ i /ij : is the estimate of B and A respectively at the j ! replicate (run).
L: is the number of sample replicated.

n; : is the number of times chosen to be (4) where (t = 1,2,3,4).
R;(t;): is the estimates of R(t) at the j*"* replicate (run) and i*" time.

2. Conclusions and Recommendations

Approximate maximum likelihood and moment estimations as non-Bayesian estimations
have been used to estimate the parameters and reliability function of inverse Weibull
distribution according to fuzzy data. The maximum likelihood estimators have been derived
numerically based on two iterative techniques namely “Newton-Raphson” and the
“Expectation-Maximization” techniques. In addition, we provide compared numerically
through Monte-Carlo simulation study to obtained estimates of the parameters and
reliability function in terms of their mean squared error (MSE) values and integrated mean
squared error (IMSE) values respectively.

The most important conclusions of Monte-Carlo simulation results are:

Table (1): The maximum likelihood estimates based on Newton-Raphson algorithm
introduced the best perform compared with other estimates with different values of the
shape and scale parameters for all sample sizes except for small sample size with
parameters, 3 = 3,A=05andf =3,A=3.

Table (2): The maximum likelihood estimates based on Newton-Raphson algorithm
introduced the best perform compared with other estimates for all sample sizes except for
large sample size with parameters 3 = 2.1,A = 1, where Moment estimate is the best.

Table (3): The maximum likelihood estimates based on NR introduced the best perform
compared with other estimates with different values of the shape and scale parameters for
all sample sizes with f = 2.1,3 and A = 0.5,1 as well as for moderate sample size with
= 2.1 and A = 3. On the other hand, the maximum likelihood estimates based on EM
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introduced the best perform compared with other non-Bayes estimates for all sample sizes
with =3 and A=3 as well as for small and large sample sizes with 3 = 2.1 and A = 3.

Tables 1, 2 and 3 clearly show that as the sample size increases, the MSE and IMSE values
of the estimates decrease.

Based on this, we recommend,

Using the maximum likelihood estimates based on Newton-Raphson algorithm for
estimating the shape parameter of the inverse Weibull distribution especially with moderate
and large sample sizes and we have to be careful in choosing the approximation techniques
for estimating the shape parameter of this distribution when dealing with small sample size.
Using the maximum likelihood estimates based on Newton-Raphson algorithm for
estimating the scale parameter of the inverse Weibull distribution especially with small and
moderate sizes and we have to be careful in choosing the approximation techniques for
estimating the scale parameter of this distribution when dealing with large sample size.
Using the maximum likelihood estimates based on Newton-Raphson algorithm for
estimating the reliability function of the inverse Weibull distribution with § = 2.1, 3 and
A=0.5,1 and using the maximum likelihood estimates based on Expectation-
Maximization algorithm with =3 and A =3 .
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Table (1): MSE Values for Non-Bayes Estimates of the Shape Parameter (8) of Inverse
Weibull Distribution with Different Cases

n MO ML Best
EM | NR Estimate
B=21,1=05
20 0.5925534 0.3276789 0.3210075 ML-NR
30 0.5668387 0.1731912 0.1720976 ML-NR
90 0.5026410 0.0807156 0.0802433 ML-NR
B=3,A1=05
20 0.5945321 0.8529363 0.7876280 MO
30 0.4313349 0.3780456 0.3622704 ML-NR
90 0.4008172 0.0871851 0.0861431 ML-NR
B=21,A=1
20 1.0234089 0.4793374 0.4697234 ML-NR
30 0.8987515 0.3765942 0.3700855 ML-NR
90 0.8584988 0.1780456 0.1764240 ML-NR
B=3,A=1
20 0.8207644 0.7696865 0.7355563 ML-NR
30 0.6615921 0.3721112 0.3652719 ML-NR
90 0.5914806 0.1426038 0.1412609 ML-NR
B=21,A=3
20 2.4264343 1.4173415 1.3050008 ML-NR
30 2.1658246 0.9206690 0.8674874 ML-NR
90 2.1064719 0.5787366 0.5542025 ML-NR
B=3,A=3
20 1.2356461 0.8079456 0.8175703 ML-EM
30 1.2346853 0.7552212 0.7170664 ML-NR
90 1.1146329 0.2692730 0.2583540 ML-NR

n: Sample Size

MO: Moment Estimate

ML: Maximum Likelihood Estimate

EM: Expectation-Maximization Algorithm
NR: Newton-Raphson Algorithm
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Table (2): MSE Values for Non-Bayes Estimates of the Scale Parameter (A) of Inverse
Weibull Distribution with Different Cases

n MO ML Best
EM | NR Estimate
B=21,1=05
20 0.0261692 0.0212376 0.0211103 ML-NR
30 0.0185599 0.0146520 0.0145815 ML-NR
90 0.0096941 0.0066130 0.0065777 ML-NR
B=3,A1=0.5
20 0.0258200 0.0221413 0.0216447 ML-NR
30 0.0187999 0.0153414 0.0151493 ML-NR
90 0.0061082 0.0049155 0.0048935 ML-NR
B=21,A=1
20 0.1178850 0.0874576 0.0864178 ML-NR
30 0.0539672 0.0495897 0.0493294 ML-NR
90 0.0171838 0.0222780 0.0220901 MO
B=3,A=1
20 0.1266382 0.0949276 0.0932050 ML-NR
30 0.0689319 0.0553591 0.0549835 ML-NR
90 0.0431480 0.0176048 0.0172905 ML-NR
B=21,A=3
20 10.1555872 5.9423094 5.0189589 ML-NR
30 6.6359697 3.0022532 2.5016068 ML-NR
90 3.9878570 0.5756619 0.5583213 ML-NR
B=3,A=3
20 42045048 5.2462299 3.5490963 ML-NR
30 3.8376384 5.1730105 3.0378761 ML-NR
90 2.1648816 0.3457172 0.3411649 ML-NR

n: Sample Size

MO: Moment Estimate

ML: Maximum Likelihood Estimate

EM: Expectation-Maximization Algorithm
NR: Newton-Raphson Algorithm
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Table (3): IMSE Values for Non-Bayes Estimates of the Reliability Function of Inverse
Weibull Distribution with Different Cases

n MO ML Best
EM | NR Estimate
B=21,A=05
20 0.0038869 0.0030015 0.0029777 ML-NR
30 0.0028681 0.0020454 0.0020271 ML-NR
90 0.0019454 0.0010003 0.0009953 ML-NR
B=3,A=05
20 0.0027426 0.0025390 0.0024743 ML-NR
30 0.0018299 0.0015330 0.0015252 ML-NR
90 0.0007605 0.0005639 0.0005614 ML-NR
B=21,A=1
20 0.0068683 0.0050789 0.0050384 ML-NR
30 0.0062469 0.0045062 0.0044766 ML-NR
90 0.0041694 0.0024271 0.0024047 ML-NR
B=3,A=1
20 0.0037806 0.0033036 0.0032750 ML-NR
30 0.0024769 0.0022311 0.0022310 ML-NR
90 0.0016173 0.0008200 0.0008185 ML-NR
B=21,A=3
20 0.0196349 0.0138542 0.0140972 ML-EM
30 0.0189882 0.0120847 0.0120259 ML-NR
90 0.0182735 0.0106072 0.0106827 ML-EM
B=3,A=3
20 0.0040808 0.0031302 0.0032523 ML-EM
30 0.0035055 0.0024299 0.0025396 ML-EM
90 0.0032125 0.0015585 0.0015589 ML-EM

n: Sample Size

MO: Moment Estimate

ML: Maximum Likelihood Estimate

EM: Expectation-Maximization Algorithm
NR: Newton-Raphson Algorithm
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