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Abstract

Real life scheduling problems require the decision maker to consider a number of criteria
before arriving at any decision. In this paper, we consider the multi-criteria scheduling
problem of n jobs on single machine to minimize a function of five criteria denoted by total
completion times (3.C;), total tardiness (D.T;), total earliness (3 E;), maximum tardiness
(Thnax) and maximum earliness (E;,4,). The single machine total tardiness problem and
total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.
We apply two local search algorithms (LSAs) descent method (DM) and simulated
annealing method (SM) for the 1// (3.C; +X.T; +Y E; + Tinax + Emax) problem (SP) to find
near optimal solutions. The local search methods are used to speed up the process of
finding a good enough solution, where an exhaustive search is impractical for the exact
solution. The two heuristic (DM and SM) were compared with the branch and bound
(BAB) algorithm in order to evaluate effectiveness of the solution methods.

Some experimental results are presented to show the applicability of the (BAB)
algorithm and (LSAs). With a reasonable time, (LSAs) may solve the problem (SP) up to
5000 jobs.

Keywords: Multicriteria; Scheduling; Single machine; Earliness-tardiness; local search
methods.
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1. Introduction

Scheduling is allocation of resources (machines) over time to perform a collection of tasks
(jobs).

Generally speaking, Scheduling means to assign machines to jobs in order to complete all
jobs under the imposed constraints. The problem of scheduling a set N ={1,...,n} of n jobs
on a single machine. Each job i€EN has processing time p; and a due date d;. If a given
schedule o= (1,...,n), then the completion time Ci=2}:1 pj, the tardiness of job i
T;=max{c;-d;,0} and earliness of job i E;=max{d;-c;,0}, consequently we have total
completion time Y;cy C;, total tardiness }.;ey T;, maximum tardiness Tmax:%%x{Ti}’ total

earliness ),;ey E; and maximum earliness E,, . =max{E;}.
ieEN

For the maximum tardiness for ///T;,,, problem is minimized by EDD (earliest due date)
rule to Jackson 1955[9]. The 1/} C; problem, the (SPT) (shortest processing time) rule is
optimal to Smith 1956[13]. The maximum earliness for //E,,,, problem is minimized by
MST (minimum Slack time) rule [3], where the two problems 1/, T; and 1//), E; are NP-
hard ([6],[]11]) and [3] respectively. Any problem including such cost functions as
subproblem is NP-hard.

The first bi-criteria scheduling problem was already solved by Smith (1956) [13] the
1//(3.Ci, Tinayx) problem subject to Ty =0 is imposed by using back ward algorithm, only a
few bi-criteria scheduling problem have been investigated since then. Van Wassenhove &
Gelder (1980) [16] studied the 1//(3.C;, Tinax) problem. The set of efficient points is
characterized and a pseudo-polynomial algorithm to enumerate all these points is given.
Hoogveen and Van de velde (1995)[8] provided an algorithm for finding all efficient
schedules for the problem 1/(Y.C;, fmax)- Tadie et al. (2002) [15] proposed a procedure that
takes advantage of an algorithm for finding the Pareto optima set by applying specially
developed constraints to a branch and bound (BAB) algorithm for the 1/(2T;, Tinax)
problem to find the set of efficient point. For the 1/(2C;, E;qy) problem, Kurz and
Canterbury (2005) [10] used genetic algorithm, Al-Assaf (2007)[5] proposed BAB
algorithm to find the optimal solution for 1/3.C; + E;q problem and proposed an
algorithm with a special range for the problem [/(2C;, E,,,,) to find the set of efficient
solutions.

The single machine 1//},C; + Y.T; + T;pqx problem is NP-hard, the (BAB) algorithm is used
to find optimal solution (2015)[1]. For 1//3.C; + Y.E; + E4x problem is NP-hard, local
search algorithms are used to find near optimal solution and compared their results with
CEM for small n (2016) [2]. There are mainly three classes of approaches that are
applicable to multicriteria scheduling problem.

C,: Hierarchical (lexographical) optimization the hierarchical approach, one of the
criteria (more important) regards as constraint (primary) criterion which must be satisfied,
(see [7] and [14]).
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C,: Priority optimization
In this approach minimizing a weighted sum of the multicriteria (objectives) and convert

the multicriteria to a single criterion problem, several multicriteria scheduling problems
studied in this class (see [8]and [12]).

C3: Interactive optimization

In this approach one generates all efficient (Pareto optimal) schedules and select the one
that yield the best composite objective function value of the multicriteria. Several
multicriteria scheduling problems studied in this class (see [8] and [16]).

2. Problem Formulation and Analysis
We consider the following performance criteria: ey Ci, Dien Ti» Yien Eir Tmax and
Enax hence the problem is denoted by 1/F (>.C;, YT, Y Ei, Tmasxe» Emax) (P). We consider
multicriteria problem of scheduling n jobs on a single machine. All jobs are available at
time zero and characterized by their processing time p; and due date d;. In this problem, the
total completion times (total flow times), the total tardiness, the total earliness, maximum
tardiness and maximum earliness are used as multicriteria. The first object is to minimize
flow time (a measure for average in processing inventory). The other objectives deal with
service to customers. These objective functions force jobs not be early and/or tardy.

For this problem, we will try to find efficient solutions for the //F (Y.C;, T},
Y Ei, Tmaxr Emax) problem (P), which can be written for a given schedule s= (1,...,n) as:

( 2Ci(s) )
Min' 2Ti(s)
ces { 2Ei(S)
Tmax(s)
Ernax(s)
s.t
C,=Ph i=1..,n (- (P)
Ci:C(i—1)+Pl l:2,..,n
TiZCi_di l=1,...,7’l
T, =0 i=1,..,n
E; =>d;—( i=1,..,n
E;=>0 i=1,..,n J

Where S is the set of all schedules.

This problem (P) is difficult to solve and find the set of all efficient solutions (SE).
This problem of five objects has not been considered by any researcher yet. We propose
efficient algorithm to find approximate set of efficient solutions (SA) for this problem.

1- Some results for the //F (3.C;, D T;, D Ei, Tinaxr Emax) problem (P):

Proposition (1): The SPT sequence is efficient for the problem (P).

Proof: First, suppose that all processing times are different the unique SPT sequence
(SPT™) gives the absolute minimum of )'C;. Hence there is no sequence o # SPT* such
that
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2Ci(0) < XCi(SPT"), X Ti(0) < XTy(SPT), LE;(0) < XE;(SPT"),
Tmax(0) < Tax(SPT*) and E 4 (0) < Epax(SPTY) .. (3.D
With at least one strict inequality.

Second if more than one SPT sequence exists, jobs with equal processing times are
order in EDD rule, if SPT and EDD are identical then order these jobs in MST and let the
resulting SPT sequence (SPT*). Note if o is an SPT but not SPT* sequence it can not
dominate SPT* sequence since:

XCi(0) = XC;i(SPT"),XTi(SPT™) < ¥Ti(0). XE;(SPT") < ¥E;(0),
Hence SPT* sequence is efficient. m

Proposition (2): If SPT rule, EDD rule and MST rule are identical, then there is one or
more than one efficient solution for the problem (P).

Proof: It is clear that this identical sequence (s) is efficient by proposition (1). Now since
YE; is non regular criteria, there may be another sequence (s) with value of Y E;(s') <
Y.E;(s). Hence the sequence s’ is also efficient solutionm.

Example (1): consider the problem (P) with the following data: Pi=(2,3,3,5) ,
di=(3,6,8,10) and Si=(1,3,5,5). The sequence (1,2,3,4) is SPT, EDD and MST give the only
one efficient. (3.C;, X.Ti, Y E;, Tmax» Emax)= (28,3,2,3,1), which is obtained by (CEM).
Proposition (3): If SPT rule and MST rule are identical then there is one or more than
one efficient solution.

Proof: The sequence s=(1,...,n) obtained from the identical SPT rule and MST rule

respectively.

Hence we have:

P, <P, <...<P, ...(3.3)
d;-P, <d,-P, <...<d,- By, ...(3.4)

The EDD rule d; <d, <...< d, is obtained by adding (3.3) & (3.4)

Hence the SPT, EDD and MST are identical, and we have one or more than one efficient
solution by proposition (2) m.

2- Algorithm (AP) for Determination of Approximate Set of Efficient

Solutions for the Problem (P).
We propose algorithm (AP) to determine the set of approximate solutions (SA) for the
problem (P).
This algorithm consists of two parts, the first part deals with calculation of tardiness and
total completion times, the second part deals with calculation of earliness and total
completion times.
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Algorithm (AP)for finding efficient solutions for the problem 1/} C;, > T;,
ZEi' Tmax' Emax) (P):
Step(0): Set A=Y P; and 6 = ().
Step(1): Set N={1,...,n} , K=n ,t=) P;.
Step(2): Calculate T; V i €N (by lawler algorithm).
Step(3): Find a job jeN such that T; < A ,P; = P; Vj,i ENand T; < A
assign job j in position K of ¢ if no job j with T; < A, set
Emax(0) = Emax(spt) go to step(7).
Step(4): Set t=t-P; ,N=N-{j} , K=K-1 ,if K>1go to step (2).
Step(5): for the resulting sequence job 6 = (a(1), ... 6(n)) calculate
(ZCL' (O’), ZTL'(O-)’ ZEi (O-)JTmax (0)' Emax (U))
Step(6): Put A =Ty, (0)-1 ,g0 to step(2).
Step(7): Put A =E, 4, (0)-1 ,N={1,...,n} ,K=1 ,t= P; and 6 = (D)
if A< Ep e (MST) go to step(11).
Step(8): Calculate r; =max{s; — A,0} Vi EN.
Step(9): Find a job j EN with min 1, r; < Cx_q and P; < P; Vj,1 €N, Cy=0 (break
tie with small s;) assign j in position K of o.
Step(10): Set N=N-{j} ,K=K+1 ,if K < n go to step(9) for the ruslting
Sequence o = (0(1),...a(n)) calculate
(Zci(ﬁ), zTi (0)> in(G)aTmax (0-)' Emax(o)) and goto step(7).
Step(11): Stop with a set of efficient solutions (SA).

Example (2): consider the problem (P) with the following data:
Pi=(3,4,8,7) , di=(12,4,10,7).
The result of efficient solutions for example (2) by CEM and algorithm AP.

Efficient solutions for problem (P)

CEM Alg.(AP) >C; 3T ME; Tonax Epax sum
(1,243 | (1,24,3) 46 22 9 12 9 98
2,4,1,3) | 24,1,3) 51 18 0 12 0 81
(2,43,) | 243, 56 23 0 10 0 89
2,1,43) | (2,143 47 19 5 13 5 89

In this example we find all efficient schedules, and sum is the optimal sum of (3 C; (o),
2Ti(0), YXEi(0), Tnax (0), Emax(0)) =81

3- Sub-Problems of the Multicriteria Problem (P)

Decomposition of the problem (P) is a general approach for solving a problem by breaking
it up into smaller ones. It is clear that this decomposition has the following properties:

First all the subproblems have simpler structure than the multicriteria problem (P). Second
all the subproblems are NP-hard (except (P2) and (P3) are solved by pseudo algorithms)
and some of them are studied by some researchers, such as (P4, p7, P8, P12, P13, P18, P19)

From the problem P we can get the following subproblems:
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DI/ E;, Tmax Emax) --P1

2)1//.Ci, Tax) - P2

3)1//(3.Ci, Emax) ---P3

4)1/3.C;, XT;)...P4

5)17/0.C;.>E)...P5

6)1/.T;, YE)...P6

7)1/ Tmaxr Emax) - P7

8)1/0.T;, Thax)---P8

9)1//(3Ei, Emax)---P9
10) 1//CCE;, Tmax) ---P10
1) 1/(3T;, Emax)---P11
12) 17/0T;, YEi, Tmaser Emax) ---P12
13)17/03.C;, >.Ti, Tonaser Emax) --- P13
14)17/3.Ci, Y Ei, Tay) --- P14
15)1//.Ci, XT;, Emax) --- P15
16)1//(3.C;, YT, Y E;)...P16
17)17/3.Ci, Trnaser Emax) --- P17
18)17/3.C;, > T;, Tiax) --- P18
19)17/(3.C;, Y Ei, Emay) ---P19
20) 1703 T;, Tmaxr Emax) --- P20

For the sub-problems from (P13 to P17) we can use (AP) to find approximate set of
efficient solutions.

4- The 1/ (3.C; +XT; +YE; + Thax + Emax) Problem (SP)

It is clear that the problem (SP) is a special case of the problem (P). The aim of this
problem is to find the minimum value of the objective function }.C; + Y.T; + Y. E; + Tppax +
Epax- This problem is NP-hard and local search algorithms are used to find its optimal
solution. This problem can formally be written for a given schedule s=(1,...,n) as:

V =min{}C; + ¥T; + YE; + Tnax + Emax } )

S.t.

CiZPi i=1,..,n

Ci = C(i—l) +pl i = 2,...,n

T, > C, — d i=1,..n [ O©P
T, >0 i=1..,n
EiZdi_Ci i=1,...,n

E; =0 i=1..,n

The aim for problem (SP) is to find a processing order o=(a(1),..., a(2)) of the jobs on a
single machine to minimize the sum of the total completion time, total tardiness, total
earliness, the maximum tardiness and the maximum earliness (3Cs;) + Ty + LEsq) +

Tnax(0) + Epmax(0)), for a particular schedule o € S where S is the set of all feasible
solutions.
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3. Computational Experiments
3.1 Test problems

Performance of the algorithm (AP) for the problem (P) is compared on 5 problem instances
for each n with the complete enumeration method (CEM). For each job j, the processing
time p; was uniformly generated from uniform distribution [1,10]. Also, for each job j, an
integer due date d; is generated from the uniform distribution [(1-TF-RDD/2)TP,(1-
TF+RDD/2)TP], where TP is the total processing times of all the jobs, TF is the tardiness
factor, and RDD is the relative range of the due dates. For the two parameters TF and RDD,
the values 0.2,0.4,0.6,0.8,1.0 for TF and the values 0.9,1.0 for RDD are considered. For
each selected value of n, one problem is generated for each of the five values of parameter
producing 5 test problems.

3.2 Computational results for the problem (P)

In the Table (1) and Table (2) we have:

n: Number of jobs

EX: Example number

|CEM|: The cardinal number (exact number) of efficient solutions obtained by Complete
Enumeration method (CEM).

|Alg AP|: The cardinal number (approximate number) of efficient solutions obtained by
algorithm (AP).

Optimal: The optimal value of sum of (3.C;, >'T;, > Ei, Tmax» Emax) obtained by (CEM).
Best: The optimal or near optimal of sum of (>.C;, >T;, > E;, Tmax Emax) obtained by
algorithm (AP), for n<10 and 11<n<100 respectively.
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Table (1): Comparison of number of efficient solutions of the algorithm (AP) with (CEM)

for n<10 for the problem (P).

Number of Efficient solutions for (P)
n | EX | |CEM| Optimal Time |Alg AP| Best Time
1 8 108 0.1197 5 108 0.2221
2 4 138 0.0126 4 138 0.0393
4 3 9 155 0.0127 4 155 0.0813
4 3 83 0.0071 2 83 0.669
5 10 59 0.0151 6 59 0.0107
No. of opt. 5
1 18 85 0.1270 3 85 0.1340
2 13 140 0.0299 7 140 0.2027
5 3 43 158 0.0432 8 158 0.0401
4 49 107 0.0463 11 109 0.0542
5 8 121 0.0227 6 121 0.1525
No. of opt. 4
1 41 156 0.2072 8 156 0.1808
2 16 152 0.0953 3 152 0.0171
6 3 52 197 0.1189 7 197 0.0322
4 26 193 0.1147 8 193 0.138
5 40 148 0.1119 4 148 0.0394
No. of opt. 5
1 64 232 9.4264 10 232 0.1539
2 50 206 16.9584 3 224 0.1954
7 3 58 246 10.7295 11 246 0.0499
4 59 226 12.2096 9 226 0.0149
5 55 189 88.6240 10 191 0.0605
No. of opt. 3
1 112 279 4.7087 1 299 0.1011
2 132 265 4.4248 3 294 0.2308
8 3 81 469 4.7034 1 518 0.0054
4 73 343 4.7177 6 343 0.0495
5 67 242 4.9829 8 242 0.0311
No. of opt. 2
1 74 295 39.5168 7 306 0.3677
2 231 249 49.1618 10 264 0.1849
9 3 139 384 44.8974 5 493 0.1562
4 150 325 45.5338 2 375 0.0057
5 205 344 43.6530 4 381 0.2455
No. of opt. 0
1 345 394 493.0906 19 394 0.3128
2 173 292 469.6615 13 294 0.2171
10 | 3 129 498 497.8566 7 498 0.0446
4 398 414 461.0331 5 454 0.1882
5 126 469 485.5750 17 469 0.2051
No. of opt. 3
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Table (2): The results of approximate efficient solutions obtained by using algorithm (AP)
when 11<n<100 for the problem (P).

Number of efficient solutions for (P)
N | EX Best |Alg AP| Time n | EX| Best |Alg AP| Time
1 539 19 0.1168 1 627 24 0.1468
| 2 676 14 0.0254 | 2 769 16 0.0989
1 3 845 17 0.0302 5 3 769 3 0.0336
4 429 8 0.0265 4 639 22 0.0400
5 423 26 0.0457 5 740 2 0.0966
1 718 22 0.1542 1 1054 16 0.1131
| 2 614 33 0.0626 | 2 944 25 0.0491
3 3 761 35 0.0655 4 3 929 5 0.0277
4 850 21 0.0392 4 652 24 0.0894
5 776 9 0.0988 5 1002 10 0.0237
1 1163 31 0.1629 1 |2243 12 0.4208
| 2 1437 5 0.0126 ) 2 1982 50 0.1459
5 3 1203 2 0.1059 0 3 2307 41 0.1064
4 1167 3 0.1121 4 1695 2 0.1548
5 1221 34 0.0691 5 1583 47 0.1290
1 3405 2 0.2792 1 | 4733 7 0.1291
) 2 3701 50 0.1946 3 2 4537 7 0.1904
P 3 3782 2 0.1534 0 3 4517 50 0.1743
4 3630 2 0.1608 4 4466 50 0.1791
5 2937 50 0.1486 5 4477 2 0.2007
1 8553 50 0.3199 1 12541 5 0.3804
4 2 8438 50 0.2256 5 2 12816 2 0.2687
0 3 10368 50 0.2138 0 3 13280 7 0.2838
4 7863 2 0.2351 4 9580 50 0.2662
5 6729 50 0.2472 5 11708 45 0.2587
1 27124 14 0.5125 1 49021 2 0.6389
7 2 25069 17 0.3946 1| 2 | 47162 2 0.5283
5 3 27450 2 04125 | 0] 3 54565 2 0.5105
4 25915 2 0.3821 0| 4 | 47173 50 0.5185
5 25514 16 0.4268 5 45498 2 0.5025

Note from the Table (1) the results show that:
For 4< n <10 the algorithm (AP) gives 22 exact optimal solutions for the problem (SP)
from 35 test problems.

From the results of Tables (1) and (2) it is clear that the algorithm (AP) does not
give good results for problems with large n. This is because the Multicriteria scheduling
problems are generally affected by a number of costs functions, and in our problems (P)
and (SP) the number of cost function is five.
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Basic Structure of Local Search
For a Machine Scheduling problem
Given:
¢ Finite set S of feasible solutions
e Objective function f:S—R
The goal is to find a solution with a minimal objective value, i.e. a solution s* € S with
f(s"y=min{f (s)}
Basic structure of Local Search Algorithm (LSA)
e Choose an initial solution;
e Repeat
Choose a solution from the neighborhood of the current solution and move to this solution
e Until stopping criteria

Variable Neighborhood Search (VNS) Algorithms

The (VNS) algorithms (DM and SM algorithms) depend on the selection of
neighborhoods and the selection of the initial solution. In these(VNS) algorithms, we use
three initial solutions s;, s, and s3; are obtained by solving the three single objective
problems 1//3, C;, 1//Tq, and 1//E,, 4, respectively.

The adjacent pair interchange (API) neighborhood (N) is used to generate new
solutions. For the (VNS) algorithms, in each iteration initial solution s is selected, neighbor
solutions are generated using N(s). The two algorithms (DM) and (SM) are run with
stopping criterion at a known number of iterations depends on the number of jobs. Hence,
we assign more iterations to large instances which are obviously more time consuming to
solve.

Problem Instances
The performance of the DM and SM algorithms are compared on 5 problems
instances. To compare the solutions that the sizes of these instances are:
for small size n=4,...,15
for middle size n=20,..., 150
for large size n=200,...5000

3.3 Computational Results for the Problem (SP)
Computational results of local search algorithms (LSAs) DM and SM is given in the
following tables. We implement LSAs as follows: Since we know the optimal solutions for
small size problems, which are obtained by BAB algorithm for n<15[4], LSAs use large
number of iterations, hence each algorithm stop when it catches the optimal solution
(termination condition), but may be for large size problems we used 100000 iterations as
termination condition. In these LSAs the neighborhoods generated using the API. The
initial solution for the tested problems is generated using the minimum of (s4,5,,S3).

The results obtained by LSAs is given in table (3). The results show which local
search algorithm gives solution closed to optimal solution obtained by BAB and the
corresponding time it needs to reach this solution for n<15.
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In table (4) we give the results of comparison between LSAs themselves, for each
algorithm, we find the best values and computation time. In Table (3), Table (4) and Table
(5) we have:

n: Number of jobs

EX: Example number

Node: The number of nodes.

Optimal: The optimal value obtained by BAB algorithm [4].
No. of opt.:Number of examples that catch the optimal value.
No. of best: Number of examples that catch the best value.
SM:The value obtained by Simulation Annealing method.
DM:The value obtained by Decent Method.

Time: Time in seconds.

Table (3): The comparison between the optimal solutions obtained by BAB and the results
of LSAs for small size problems

BAB Local search
N | EX | Optimal Node Time DM Time SM Time
1 108 11 0.0718 108 | 0.3366 108 | 0.3460
2 138 7 0.0105 138 | 0.3310 138 | 0.3307
413 155 7 0.0083 155 | 0.3216 155 0.3338
4 83 7 0.0095 83 0.3241 83 0.3317
5 59 14 0.0125 59 0.3289 59 0.3331
No. of 5 5
opt.
1 85 23 0.0174 85 0.3352 85 0.3384
2 140 19 0.0145 140 | 0.3257 140 | 0.3330
513 158 49 0.0242 158 | 0.3239 158 | 0.3320
4 107 94 0.0487 107 | 0.3234 107 | 0.3311
5 121 14 0.0142 121 0.3239 121 0.3336
No. of 5 5
opt.
1 156 32 0.0361 156 | 0.3297 156 | 0.3424
2 152 30 0.0180 152 | 0.3248 152 | 0.3351
6|3 197 63 0.0297 197 | 0.3234 197 | 0.3410
4 193 67 0.0260 193 | 0.3252 193 0.3357
5 148 28 0.0171 148 | 0.3277 148 | 0.3316
No. of 5 5
opt.
1 232 266 0.0984 232 | 0.3355 | 232 | 0.3406
2 206 310 0.0679 206 | 0.3544 | 206 | 0.3341
713 246 105 0.0338 246 | 0.3375 | 246 | 0.3324
4 226 173 0.0893 226 | 0.3291 | 226 | 0.3347
5 189 155 0.0570 189 | 0.3376 189 | 0.3320
No. of 5 5
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opt.
1 279 279 0.3884 279 | 03310 | 279 | 0.3445
2 265 1966 0.9219 265 | 03473 | 265 | 0.3350
8 [ 3 469 206 0.0217 469 | 0.3320 | 469 | 0.3343
4 343 90 0.0422 343 | 0.3301 | 343 | 0.3360
5 242 181 0.0874 242 | 03285 | 242 | 0.3430
No. of 5 5
opt.
1 295 878 0.3527 295 | 03330 | 295 | 0.3590
2 249 1417 1.3732 249 | 03270 | 249 | 0.3387
913 384 441 0.0681 384 | 0.3299 | 384 | 0.3470
4 325 1571 1.3764 325 | 0.3271 325 | 0.3472
5 344 3328 3.7414 344 | 03282 | 344 | 0.3414
No. of 5 5
opt.
1 394 36196 41.3435 394 | 0.3318 | 394 | 0.3406
2 292 1107 1.2757 292 | 03298 | 292 | 0.3369
10| 3 498 619 0.7495 498 | 0.3276 | 498 | 0.3350
4 414 15733 17.9227 414 | 03291 | 414 | 0.3364
5 469 1958 2.2977 469 | 03263 | 469 | 0.3383
No. of 5 5
opt.
1 539 11614 13.3561 539 1 03645 | 539 | 0.3538
2 676 14469 16.4799 676 | 0.3488 | 676 | 0.3397
11] 3 845 10094 11.6457 845 | 0.3408 | 845 | 0.3644
4 429 1344 1.5238 429 | 0.3509 | 429 | 0.3535
5 423 23246 26.3099 423 | 03337 | 423 | 0.3476
No. of 5 5
opt.
1 627 10443 11.9636 627 | 0.3405 | 627 | 0.3560
2 769 7801 8.7461 769 | 0.3534 | 769 | 0.3849
12| 3 602 97941 111.6275 602 | 0.3294 | 602 | 0.3577
4 630 22908 26.8492 630 | 0.3297 | 630 | 0.3601
5 689 45890 53.9377 689 | 0.3384 | 689 | 0.3591
No. of 5 5
opt.
1 718 49918 59.1163 718 | 0.3347 | 718 | 0.3889
2 573 967292 | 1.8000e+03 ] 573 | 0.3354 | 573 | 0.3583
13 3 749 349384 653.6059 749 | 0.3298 | 749 | 0.3660
4 828 82155 161.0544 828 | 0.3381 828 | 0.3625
5 692 932627 | 1.7117e+03 ] 692 | 0.3296 | 692 | 0.3621
No. of 5 5
opt.
14 1 1054 19719 36.7386 1054 | 0.3465 | 1054 | 0.3839
2 944 148623 208.8141 944 | 0.3386 | 944 | 0.3773
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3 881 135901 225.9353 881 0.3288 | 881 0.3636
4 617 1241576 | 1.8000e+03 | 617 | 0.3302 | 617 | 0.3644
5 949 500964 912.6224 949 103323 | 949 | 0.3743
No. of 5 5
opt.
1 1163 999952 | 1.8000e+03 | 1163 | 0.3428 | 1163 | 0.4000
2 1354 979356 | 1.8000e+03 | 1354 | 0.3362 | 1354 | 0.3645
153 1045 1408198 | 1.8000e+03 | 1045 | 0.3317 | 1045 | 0.3662
4 1095 1542277 | 1.8000e+03 | 1095 | 0.3308 | 1095 | 0.3930
5 1194 1126274 | 1.8000e+03 | 1194 | 0.3435 | 1194 | 0.3881
No. of 5 5
opt.

Note: for the results of the table (3) for the problem (SP), the exact method (BAB)
guarantee a global optimum for NP-hard problem, but the time required that grows
exponentially with size of the problem, and often only small or medium sized instances can
be solved almost demonstrable optimality. In this case, the only possibility for large causes
is to use LSAs.

Table (4): The results of (LSAs) for middle size problems (SP).

l//(ch + ZTi + ZE + Tmax + Emax)
N | EX best DM Time SM Time
1 2192 2192 17.1704 2192 17.9940
2 1980 1980 17.2340 1980 18.1652
20 3 2307 2307 17.2693 2307 17.8001
4 1614 1614 17.0662 1614 17.9575
5 1480 1480 17.2500 1480 18.1025
No. of
best > >
1 3074 3074 17.4439 3074 18.0000
2 3576 3576 17.3106 3576 18.0559
25 3 3304 3304 17.2883 3304 17.9902
4 3252 3252 17.3190 3252 17.9990
5 2868 2868 17.0024 2868 19.0635
No. of
best > >
1 4617 4617 17.7994 4617 19.7571
2 4326 4326 17.2849 4326 19.3264
30 3 4484 4484 17.5013 4484 19.2168
4 4381 4381 17.6284 4381 19.4044
5 4144 4144 17.4485 4144 19.1458
No. of
best > >
40 8391 8391 17.8830 8391 18.3505
8229 8229 18.5320 8229 18.5105

For more information about the Conference please visit the websites:
http://www.ihsciconf.org/conf/
www.ihsciconf.org

Mathematics|448



ITHSCICONF 2017 Special Issue

Ibn Al-Haitham Journal for Pure and Applied science https://doi.org/ 10.30526/2017.IHSCICONF.1817
3 10128 10128 17.7782 10128 18.4321
4 7423 7423 18.5639 7423 18.4112
5 6570 6571 18.3700 6570 18.5121
No. of
best 4 >
1 12294 12294 17.8408 12294 18.6126
2 12235 12235 18.3901 12235 18.7420
50 3 12943 12943 18.1681 12943 18.7678
4 9427 9427 17.9928 9427 18.6223
5 11453 11453 17.9824 11453 18.7382
No. of
best > >
1 26660 26660 18.1376 26660 19.1078
2 24708 24708 18.8023 24708 19.3242
75 3 25066 25066 18.8975 25066 19.2128
4 24067 24067 18.9234 24067 19.1542
5 23517 23517 18.2172 23517 19.2733
No. of
best > >
1 47533 47533 19.5215 47533 20.2826
2 44798 44798 19.2866 | 44798 20.2693
100 | 3 51191 51191 19.5268 51191 20.1367
4 45303 45303 18.9843 45303 20.4310
5 42456 42456 19.8174 | 42456 20.1911
No. of
best > >

Table (5): The results of (LSAs) for large size problems (SP).

1//(3C; + YT + YE; + Tyax + Emax)
N | EX Best DM Time SM Time
1 114782 114782 21.3637 114782 21.8264
2 105271 105271 20.8970 105272 21.1729
150 | 3 113900 113900 20.9309 113900 22.3416
4 107808 107808 21.0479 107808 22.1926
5 105044 105044 20.9315 105044 21.8763
No. of best 5 4
1 190272 190272 23.3108 190272 27.7667
2 195197 195197 22.6171 195197 24.3901
200 | 3 201662 201662 22.7381 201662 23.2338
4 165780 165780 22.5827 165780 23.1716
5 174895 174895 22.6055 174896 23.5996
No. of best 5 4
500 1 1249270 1249270 | 32.5923 1249270 34.1950
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2 1221710 1221710 | 34.1415 1221710 34.0155
3 1221949 1221949 | 33.5762 1221950 33.7248
4 1128689 1128689 | 33.3125 1128691 33.6118
5 1082602 1082602 | 33.2352 1082603 33.2889
No. of best 5 2
1 5192233 5192233 50.9866 | 5192235 51.6225
2 4985474 4985474 | 50.0319 | 4985474 51.0978
1000 | 3 4938789 4938789 | 49.7726 | 4938789 51.2369
4 4569662 4569662 | 49.7137 | 4569662 50.9907
5 4212750 4212750 | 49.6992 | 4212751 51.4793
No. of best 5 3
1 19815089 | 19808339 | 86.6824 | 19808339 | 89.8018
2 19527160 | 19527160 | 87.8703 | 19527160 | 88.2342
2000 | 3 19826853 | 19826853 | 87.6722 | 19826853 | 90.6310
4 17448482 | 17448482 | 88.4805 | 17448482 | 88.4856
5 17743289 | 17743289 | 87.6191 | 17743289 | 88.2204
No. of best 5 5
1 3124028 3124028 | 112.0557 | 31224028 | 114.6281
2 | 30408720 | 30408720 | 108.1435 | 30408722 | 111.4571
2500 | 3 | 30655008 | 30655008 | 108.8118 | 30655008 | 109.5242
4 | 27788565 | 27788565 | 107.5072 | 27788565 | 110.2695
S | 27166817 | 27166817 | 111.9192 | 27166817 | 112.1854
No. of best 5 4
1 44450378 | 44450378 | 127.9788 | 44450378 | 129.7762
2 | 44309450 | 44309450 | 128.7811 | 44309450 | 128.7734
3000 | 3 | 45225080 | 45225080 | 126.3454 | 45225080 | 127.8855
4 | 39495210 | 39495210 | 126.7486 | 39495210 | 128.4215
5 | 40045879 | 40045879 | 127.8283 | 40045879 | 127.8793
No. of best 5 5
1 79877216 | 79877216 | 164.5052 | 79877216 | 164.7037
2 | 79609210 | 79609210 | 168.6264 | 79609210 | 165.2966
4000 | 3 | 78861024 | 78861024 | 164.0467 | 78861024 | 164.4531
4 | 71495346 | 71495346 | 175.1210 | 71495346 | 166.4173
5 | 70029765 | 70029765 | 165.5078 | 70029765 | 166.7640
No. of best 5 5
1 | 123462832 | 123462832 | 207.2337 | 123462832 | 214.6064
2 1121049540 | 121049540 | 214.2919 | 121049540 | 216.2722
5000 | 3 | 110342921 | 110342921 | 206.2056 | 110342921 | 223.8944
4 1109574701 | 109574701 | 225.0643 | 109574701 | 204.9242
5 | 111141203 | 111141203 | 204.3804 | 111141203 | 206.6917
No. of best 5 5
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4. Conclusion
In this thesis, the problems of scheduling jobs on one machine for a variety of
multicriteria are considered.
We propose algorithm, which gave set of efficient solutions for the problem (P)
1//(3.Ci, 2T, Y Ei, Tinaxs Emax)- A local search algorithm (DM and SM) are used to find near
optimal solution for problem (SP) of size (5000) jobs.
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