Common Fixed Points in Modular Spaces

Salwa Salman Abed

 salwaalbundi@yahoo.com Dept. of Mathematics/College of Education forPure Science (Ibn Al-Haitham) University of Baghdad **Karrar Emad Abdul Sada** kararemad1982@gmail.com Dept. of Mathematics/ College of Education for Pure Science (Ibn Al-

Haitham) University of Baghdad

Abstract

 In this paper,there are new considerations about the dual of a modular spaces and weak convergence. Two common fixed point theorems for a P -non-expansive mapping defined on a star-shaped weakly compact subset are proved, Here the conditions of affineness, demi-closedness and Opial's property play an active role in the proving our results.

Keywords: Modular spaces, fixed points, best approximations.

1. Introduction and Preliminaries

Dotson [1] proved existence of fixed points for non-expansive self-mappings of starshaped subsets of Banach spaces(under appropriate conditions). Subrahmanyam^[2] and Habinak [3] used the concept of Banach operator to generalize Dotson's theorem and its application to invariant approximation. Recently, Abed [4] introduced the notion of best approximation in modular spaces and gave conditions to existences of proximinal and Chebysev sets in finite dimension modular spaces. Also, Abed and Abdul Sada [5-7] proved a theorem of Brosowski-Meinaraus type on invariant approximation, proved that two fixed point theorems for compact set-valued mappings in modular spaces with an application on invariant best approximation. The object of the present paper is to extend and unified the above results [2], [3], [4] and others to modular spaces. For other results in this field see $[8]$ - $[10]$

Definition (1.1)[5]: Let *M* be a linear space over $F(R \text{ or } \mathbb{C})$. A function $\gamma : M \to [0, \infty]$ is called modular if

i. $\gamma(v) = 0$ if and only if $v = 0$;

ii. $\gamma(\alpha v) = \alpha(v)$ for $\alpha \in F$ with $|\alpha| = 1$, for all $\alpha \in F$;

iii. $\gamma(\alpha v + \beta u) \leq \gamma(v) + \gamma(u)$ iff $\alpha, \beta \geq 0$, for all $\in M$.

If (iii) replaced by

(iii) $\gamma(\alpha v + \beta u) \leq \alpha \gamma(v) + \beta \gamma(u)$, for $\alpha, \beta \geq 0$, $\alpha + \beta = 1$, for all $v, u \in M$ Then *M* modular γ is called convex modular.

Definition 1.2 [6] A modular γ defines a corresponding modular space,then,the space M_{ν} given by

$$
M_{\gamma} = \{ v \in M : \gamma(\alpha v) \to 0 \text{ whenever } \alpha \to 0 \}.
$$

Remark 1.1[6] by condition (iii) above, if $u = 0$ then $\gamma(\alpha v) = \gamma(\frac{\alpha}{\beta} \beta v) \leq \gamma(\beta v)$, for all

 α, β in F, $0 < \alpha < \beta$ this shows that γ is increasing function. **Definition 1.3**[6] The *y*-ball, $B_r(u)$ centered at $u \in M_v$ with radius $r > 0$ as $B_r(u) = \{v \in M_v; \gamma(u - v) < r\}.$

The class of all γ -balls in a modular space M_{γ} generates a topology which makes M_{γ} Hausdorff topological linear space. Every γ -ball is convex set, therefore every modular space locally convex Hausdorff topological vector space [4].

Definition 1.5[6] Let M_{γ} be a modular spase.

a) A sequence $\{v_n\} \subset M_\gamma$ is said to be γ -convergent to $v \in M_\gamma$ and write $v_n \to v$ if $\gamma(v_n - v) \to 0$ as $n \to \infty$.

b) A sequence $\{v_n\}$ is called γ - Cauchy whenever $\gamma(v_n-v_m) \to 0$ as , $m \to \infty$.

c) M_{ν} is called ν - complete if any ν - Cauchy sequence in M_{ν} is ν convergent.

d) A subset $B \subset M_{\nu}$ is called γ – closed if for any sequence $\{v_n\} \subset B\gamma$ – convergent to $\in M_{\gamma}$, we have $\nu \in B$.

e) A γ - closed subset $B \subset M_{\gamma}$ is called γ - compact if any sequence { v_n } ⊂ has a ν convergent subsequence.

f) A subset $B \subset M_{\nu}$ is said to be γ -bounded if $daim_{\nu}(B) < \infty$, where

 $daim_v(B) = sup{v(v - u)}; v, u \in B$ is called the γ -diameter of B.

Definition (1.6) [7] Let M_v be a modular space and $A \subseteq M_v$ $S:A \rightarrow A$, S is called contraction mapping if \exists h \in (0, 1) for all v, u in M_v . Such that

$$
\gamma(Sv - Su) \leq h(v - u)
$$

and if $h = 1$ then S is called a non –expansive mapping.

Definition (1.7): Let M_{γ} be a modular space and P, S: $M_{\gamma} \rightarrow M_{\gamma}$ be a mapping then S is said to be P – contraction if there exists h $\in (0, 1)$ such that

$$
\gamma(Sv - Su) \le h \gamma(Pv - Pu) \ \forall \ v, \ u \ \text{in} \ M_{\gamma}.
$$

If h= 1 in (1.7), then S is called P- non– expansive mapping.

Definition (1.8)

- a) A function $S: M_{\gamma} \to N_{\delta}$ (where M_{γ} , N_{δ} are modular spaces) is said to be continuous at a point $v \in M_{\nu}$ if $\gamma(Sv_n - Sv) \to 0$ as n $\to \infty$ whenever $\delta(v_n - v) \rightarrow 0$ as $n \rightarrow \infty$.
- b) A mapping $S: M_{\gamma} \to N_{\delta}$ is said to be affine if $\forall v, u$ in M_{γ} and $\forall \lambda$, $0 \le \lambda \le 1$, $S(\lambda v + (1 - \lambda)u) = \lambda S(v) + (1 - \lambda)S(u).$

Definition (1.9): A two mappings S and P on M_{γ} are said to be commute if $SPv = PSv \forall$ $v \in M_{\gamma}$.

 The purpose of this article is to prove the completeness of dual space of a modular space and to give some related concepts and properties, also, to prove the existence of common fixed points for pair mapping S, P where S is P – non – expansive.

2. Dual of a modular space

let P be a linear functional with domain in a modular space M_{γ} and range in the scalar field $K P: D(P) \to K$, P is bounded linear functional c such that for all $v \in D(P)$, $\gamma(Pv) \leq c\gamma(v)$. The set of all bounded linear functional on M_{γ} , M_{γ}' is linear space with point-wise operations. In the following, we reform some concepts about dual space in the setting of modular spaces, we begin with following:

Proposition (2.1): Let $P \in M'_\gamma$, define $\gamma : M'_\gamma \to R^+ \Rightarrow \gamma(P) = \sup \{\gamma(Pv) : \gamma(v) =$ 1 } then

i. $\gamma(\alpha P) = \gamma(P)$, for $\alpha \in K$ with $|\alpha| = 1$

- ii. $\gamma(\alpha P + \beta Q) \leq \gamma(P) + \gamma(Q)$,
- iii. $\gamma(P) = 0$ iff $P = 0$.

Proof: For (i) $\gamma(\alpha P) = \sup \{ \gamma(\alpha P \nu) \} = \sup \{ \gamma(P \nu) \} = \gamma(P)$.

For (ii) $\gamma(\alpha P + \beta Q) = \sup{\gamma(\alpha P v + \beta Q v)}$

$$
\leq \sup\{\gamma(Pv) + \gamma(Qv)\}
$$

= $\sup\{\gamma(Pv)\} + \sup\{\gamma(Qv)\}\$

$$
= \gamma(P) + \gamma(Q)
$$

For (iii) $\gamma(P) = 0$ iff sup $\{\gamma(Pv) : \gamma(v) = 1\}$ iff $\gamma(Pv) = 0$ for all v iff $P = 0$.

A modular γ defines a corresponding modular space, *i. e.*, the space M'_{γ} given by

$$
M'_{\gamma} = \{v \in M : \gamma(\alpha P) \to 0 \text{ whenever } \alpha \to 0\}
$$

Theorem (2.2): M'_{γ} is complete modular space.

Proof: We consider an arbitrary Cauchy sequence (S_n) in M'_γ and show that (S_n) converges to a $S \in M'_\gamma$ Since (S_n) is Cauchy, for every $\epsilon > 0$ there is an L such that

 $\gamma(S_n - S_m) \leq \epsilon$, $(n, m > L)$,

For any $v \in M_{\nu}$ and $n, m > L$, this implies that

$$
|S_n v - S_m v| = |(S_n - S_m)v| \le \gamma (S_n - S_m)\gamma(v) \le \epsilon \gamma(v). \tag{2.1}
$$

Now, for any fixed point v and given ϵ' we may choose $\epsilon = \epsilon_v$ so that ϵ_v $\gamma(v) < \epsilon'$.

Then from (2.1), we have $|S_n v - S_m v| < \epsilon'$ and $(S_n v)$ is Cauchy in K. By completeness of K, $(S_n v)$ converges, say, $S_n v \to r$. Clearly, the limit $r \in K$ depends on the choice of $v \in$ M_{γ} .

This defines a functional S: $M_{\gamma} \rightarrow K$ where $r = Sv$. The functional S is linear since $\lim_{n\to\infty}S_n(\alpha v+\beta z)=\lim_{n\to\infty}(\alpha S_n v-\beta S_n z)=\alpha \lim_{n\to\infty}S_n v+\beta \lim_{n\to\infty}S_n z$. We prove that S is bounded and $S_n \to S$, that is $\gamma(S_n - S) \to 0$.

Since (2.1) holds for every $m > L$ and $S_m v \to S$, we may let $m \to \infty$. Using the continuity of the modular, then for every $n > L$ and all $v \in M_{\gamma}$.

$$
|S_n v - Sv| = |S_n v - \lim_{m \to \infty} S_m v|
$$

=
$$
\lim_{m \to \infty} |S_n v - S_m v|
$$

$$
\leq \epsilon \gamma(v) \qquad \qquad \dots \qquad (2.2)
$$

This shows that $(S_n - S)$ with $n > L$ is a bounded linear functional. Since S_n is bounded, $S = S_n - (S_n - S)$ is bounded, that is, $S \in M'_\gamma$. Furthermore, if in (2.2) we take the supremum over all ν of modular 1, we obtain

$$
\gamma(S_n - S) \le \epsilon, \ n > L.
$$

Hence $\gamma(S_n - S) \to 0$. This completes proof.

Definition (2.3): A sequence (v_n) in a modular space M_v is said to be weakly convergent if there is an $v \in M_{\gamma}$ such that for every $P \in M_{\gamma}$

$$
\lim_{n \to \infty} \gamma (P v_n - P v) = 0
$$
 This denoted by $v_n \stackrel{w}{\to} v$.

Ibn Al-Haitham Journal for Pure and Applied science

Proposition (2.4): In a modular space M_v , every convergent sequence is weakly convergent.

Proof: By definition, $v_n \to v$ means $\gamma(v_n - v) \to 0$ and implies that for every PE M'_{γ} ,

$$
|P(v_n) - P(v)| = |P(v_n - v)| \le \gamma(P)\gamma(v_n - v) \to 0.
$$

This shows that $v_n \stackrel{w}{\rightarrow} v$.

 Note that, the converse of proposition (2.4) is not necessary true. To show this recall the usual case is in a normed space.In the following some other needed properties of weak convergence are given:

Proposition (2.5): Let (v_n) be weakly convergent sequence in a modular space M_v , say $v_n \stackrel{w}{\rightarrow} v$ Then:

i. The weak limit v of (v_n) is unique.

ii. Every subsequence of (v_n) converges weakly to v.

Proof: For (i), suppose that $v_n \xrightarrow{w} v$ as well as $v_n \xrightarrow{w} u$. Then $P(v_n) \rightarrow P(v)$ as well as $P(v_n) \rightarrow P(u)$. Since $(P(v_n))$ is a sequence of numbers, its limit is unique. Hence $P(v)$ = $P(u)$, that is, for every PE M'_γ . We have $P(v) - P(u) = P(v - u) = 0$. This implies $v-u$ $= 0$ and shows that the weak limit is unique. Part (ii) follows from the fact that $(P(v_n))$ is convergent sequence of numbers. So that every subsequence of $(P(v_n))$ converges and has same limit as the sequence.

Definition (2.6): A a subset of a modular space M_V is said to be weakly compact if every sequence in M_{γ} has a weak convergent subsequence.

Definition (2.7): Let M_{γ} , N_{ρ} be two modular spaces and $S : M_{\gamma} \longrightarrow N_{\rho}$ be mappings then:

i. S is continuous if $v_n \longrightarrow v \Rightarrow S(v_n) \longrightarrow S(v)$.

ii. S is weakly continuous if $v_n \stackrel{w}{\rightarrow} v \Rightarrow S(v_n) \stackrel{w}{\rightarrow} S(v)$.

Definition (2.8): Let M_{γ} be a modular space, $A \subseteq M$ and $S: A \rightarrow M_{\gamma}$ be a mapping, S is called demi-closed of $v \in A$, if for every sequence (v_n) in A such that $v_n \stackrel{w}{\rightarrow} v$ and $v_n \rightarrow v$ $u \in M_{\gamma}$ then $u = Sv$ and S is demi closed on A if it is demi-closed of each v in A.

Definition (2.9): Let M_{γ} be a modular space, M_{γ} is said to be Opial if for every sequence (v_n) in M_v weakly convergent to $v \in M_v$ the inequality

$$
\lim_{n\to\infty}\inf\gamma(v_n-v)<\lim_{n\to\infty}\inf\gamma(v_n-u)
$$

holds for all $u \neq v$.

3. Common fixed point for commuting mappings

 Mongkolkeha, Sintunavarat and Kumamstudy[11]and [12] proved the existence theorems of fixed points for contraction mappings in modular metric spaces with condition $\gamma(P(v)) < \infty$ to guarantee the existence and uniqueness of the fixed points. We start with following

Proposition (3.1): Let P be a continuous self-mapping of a complete modular space (M_{γ}, γ) if S: $M_{\gamma} \to M_{\gamma}$ is P- contraction mapping which commutes with P and $S(M) \subseteq$ $P(M)$ and $\exists v \in M_v$ such that $\gamma(P(v)) < \infty$ then $F(P) \cap F(S) =$ singleton.

Proof: Suppose $p(a) = a$ for some $a \in M_{\nu}$, define $S: M_{\nu} \to M_{\nu}$ by $S(\nu) = a \forall \nu \in M_{\nu}$ then $S(P(v)) = a$ and $P(S(v)) = P(a)$ for all $v \in M_v$ so $S(P(v)) = P(S(v))$, $\forall v \in M_v$ M_{γ} and S commutes with P moreover $S(v) = a = P(a) \forall v \in M_{\gamma}$ so that $S(M) \subseteq$ $P(M)$. Finally, ∀ $a \in (0,1)$, ∀ v, u in M_v we have

$$
\gamma(S(v), S(u)) = \gamma(a, a) = 0 \le a \gamma(P(v), P(u)).
$$

This completes the proof.

Now, it is easy to show that the following needed lemma.

Lemma (3.2): Let M_{γ} be a modular space, S: $M_{\gamma} \rightarrow M_{\gamma}$ be mapping, and $u \in M$. If

 $S(hu + (1-h)v) = hSu + (1-h)v$, $\forall v \in M_v$ and $h \in (0,1)$, then u is a fixed point.

Theorem (3.3): Let $\emptyset \neq A$ weakly compact subset of a complete modular space M_v . Let p be a continuous and affine mapping on M_{γ} with $p(A) = A$, S: $A \rightarrow A$ be an P- non – expansive mapping commutes with P . If A is star-shaped with respect to S , and there is some $v \in A \gamma(S(v)) < \infty$ and $(P - S)$ is demi-closed on M_{γ} , then $F(S) \cap F(P) \neq \emptyset$.

Proof: Since A is star-shaped with respect to $u \in A$, then S: $A \rightarrow A$, we define S_n on A for any v in A by, $S_n(v) = h_n Sv + (1 - h_n)u$ and there is $u \in A$, and the sequence $h_n \to 1$ as $n \to \infty$, $0 < h_n < 1$ such that $(1-h_n)u + h_n S v \in A \ \forall \ v, u \in A$. It is clear that $S_n : A \to B$ A.

Note that $S(A) \subseteq A$ and $S_n(A) \subseteq p(A)$. Since S commutes with P and P is affine mapping, for each $v \in A$.

$$
S_n P v = h_n S p v + (1 - h_n) P u
$$

= $h_n P S v + (1 - h_n) P u$
= $P(h_n S v + (1 - h_n))$
= $P S_n v$

 $\exists S_n$ commutes with P. Further, we observe that for each $n \geq 1$, S is P- non-expansive mapping,

$$
\gamma(S_n v - S_n u) = \gamma(h_n Sv + (1 - h_n)u - h_n Su - (1 - h_n)u)
$$

$$
= h_n \gamma(Sv - Su)
$$

$$
\leq h_n \gamma(Pv - Pu)
$$

 $\forall v, u \in A$ hence S_n is P- contraction. Thus by proposition (3.1),

there is a unique $v_n \in A$ such that $v_n = S_n = Pv_n$ for all $n \ge 1$.

Since A is weakly compact, there is a subsequence (v_{n_i}) of sequence (v_n) which converges weakly to some $v_0 \in A$.

Since *P* is a continuous affine mapping then *P* is weakly continuous and so, since $S v_{ni} =$ $rac{\tau(1-n_{ni})u}{n_{ni}}$ and $Pv_{ni} = v_{ni}$.

Now, $(P - S)v_{ni} = Pv_{ni} - Sv_{ni}$

$$
= v_{ni} - \left(\frac{S_{ni}v_{ni} - (1 - h_{ni})u}{h_{ni}}\right)
$$

$$
= \frac{h_{ni}v_{ni} - S_{ni}v_{ni} + (1 - h_{ni})u}{h_{ni}}
$$

$$
= \frac{-v_{ni}(1 - h_{ni}) + (1 - h_{ni})u}{h_{ni}}
$$

$$
= \frac{(1 - h_{ni})(u - v_{ni})}{h_{ni}}
$$

$$
= \frac{(1 - h_{ni})}{h_{ni}}(u - v_{ni})
$$

$$
= \left(\frac{1}{h_{ni}} - 1\right) (u - v_{ni})
$$

Therefore $(P - S)v_{ni} = \left(\frac{1}{h_{ni}} - 1\right)(u - v_{ni})$

Thus $(P - S)v_{ni} = \left|\frac{1}{h_{ni}} - 1\right| \gamma(u - v_{ni}) \le \left|\frac{1}{h_{ni}} - 1\right| [\gamma(v_{ni}) + \gamma(u)].$

Since A is bounded, $v_{ni} \in A$ implies $(\gamma(v_{ni}))$ is bounded and so by the fact that $h_{ni} \to 1$,

We have
$$
\gamma(P-S)v_{ni} \to 0
$$

Now, since $P-S$ is demi-closed then $(P-S)v_0 = 0$ and thus $Pv_0 = v_0 = Sv_0$. Hence, $F(S) \cap F(P) \neq \emptyset$.

Another common fixed point theorem will be given for Opial's space.

Theorem (3.4): LetØ \neq A weakly compact subset of Opia's complete modular space M_v . Let P be a continuous and affine mapping on M_{γ} with $P(A) = A$, S: $A \rightarrow A$ be P- non-

expansive mapping commutes with P. If A has star-shaped with respect to S, then $F(S) \cap$ $F(P) \neq \emptyset$.

Proof: Since A has star-shaped then $S:A \rightarrow A$ and there is $u \in A$ and the sequence $h_n \rightarrow 1$, as $n \to \infty$, $(0 < h_n < 1) \ni (1 - h_n)u + h_n S v \in A$ for all $v \in A$. Now, define S_n on A for any v in A by, $S_n(v) = h_n Sv + (1 - h_n)u$ and there is $u \in A$, it is clear that $S_n: A \to A$. Note that $S(A) \subseteq A$ and $S_n(A) \subseteq p(A)$. Since S commutes with p and p is affine mapping, for each $v \in A$.

$$
S_n P v = h_n S P v + (1 - h_n) P u
$$

= $h_n P S v + (1 - h_n) P u$
= $P(h_n S v + (1 - h_n) u)$
= $P S_n v$

Thus each h_n commutes with P. Further observe that for each $n \geq 1$, S is P – non-expansive mapping.

$$
\gamma(S_n v - S_n u) = \gamma(h_n Sv + (1 - h_n)u - h_n Su - (1 - h_n)u)
$$

$$
= h_n \gamma(Sv - Su)
$$

$$
\leq h_n \gamma(Pv - Pu)
$$

 $\forall u \in A$, hence S_n is P- contraction.

Thus by proposition (3.1), there is a unique $v_n \in A$ such that $v_n = S_n v_n = Pv_n$ for all n \geq 1. Since A is weakly compact, there is a subsequence (v_{ni}) of sequence (v_n) which converges weakly to some $v_0 \in A$. Since P is a continuous affine mapping then P is weakly continuous and so we have:

$$
P v_0 = \lim_{i \to \infty} P v_{ni} = \lim_{i \to \infty} v_{ni} = v_0
$$

\nSince $S v_{ni} = \frac{S_{ni} v_{ni} + (1 - h_{ni})u}{h_{ni}}$ and $P v_{ni} = v_{ni}$, we have:
\n
$$
(P - S) v_{ni} = P v_{ni} - S v_{ni}
$$
\n
$$
= v_{ni} - \left(\frac{S_{ni} v_{ni} + (1 - h_{ni})u}{h_{ni}}\right)
$$
\n
$$
= \frac{h_{ni} v_{ni} - v_{ni} + (1 - h_{ni})u}{h_{ni}}
$$
\n
$$
= \frac{-v_{ni}(1 - h_{ni}) + (1 - h_{ni})u}{h_{ni}}
$$
\n
$$
= \frac{(1 - h_{ni})(u - v_{ni})}{h_{ni}}
$$

$$
=\frac{(1-h_{ni})}{h_{ni}}(u-v_{ni})
$$

$$
(P-S)v_{ni} = \left(\frac{1}{h_{ni}} - 1\right)(u - v_{ni})
$$

Therefore $(P - S)v_{ni} = \left(\frac{1}{h_{ni}} - 1\right)(u - v_{ni}).$

Thus
$$
\gamma(P-S)v_{ni} = \left|\frac{1}{h_{ni}} - 1\right| \gamma(u - v_{ni}) \le \left|\frac{1}{h_{ni}} - 1\right| [\gamma(v_{ni}) + \gamma(u)].
$$

Since A is bounded by A is weakly compact, $v_{ni} \in A$ implies $(\gamma(v_{ni}))$ is bounded and so by the fact that $h_{ni} \to 1$, we have $\gamma (P - S) v_{ni} \to 0$

Now, since M_{γ} is Opial space and suppose that, $Sv_0 \neq v_0$ we have:

$$
\lim_{i \to \infty} \inf \gamma(v_{ni} - v_0) < \lim_{i \to \infty} \inf \gamma(v_{ni} - Sv_0)
$$
\n
$$
= \lim_{i \to \infty} \inf \gamma(Sv_{ni} + (P - S)v_{ni} - Sv_0)
$$
\n
$$
\leq \lim_{i \to \infty} \inf \gamma(Sv_{ni} - Sv_0) + \lim_{i \to \infty} \inf \gamma(P - S)v_{ni}, \text{ since } v_{ni} =
$$

 $(P-S)v_{ni} + Sv_{ni}$. And thus

$$
\lim_{i \to \infty} \inf \gamma(v_{ni} - v_0) < \lim_{i \to \infty} \inf \gamma(Sv_{ni} - Sv_0)
$$

But on the other hand, we have

 $\lim_{i \to \infty} \inf \gamma(Sv_{ni} - Sv_0) \leq \lim_{i \to \infty} \inf \gamma(Pv_{ni} - Pv_0) = \lim_{i \to \infty} \inf \gamma(v_{ni} - v_0)$

This is a contradiction. Hence $v_0 \in F(S) \cap F(P) \Rightarrow F(S) \cap F(P) \neq \emptyset$.

Acknowledgements: We would like to acknowledge the generous help of editors and we are grateful to the referees for their constructive input.

References

[1] JR.Dotson, , W. G., "*Fixed point theorems for non-expansive mappings on star-shaped subsets of Banach spaces*", J. London Math. Soc., 4(2),. 408-410. 1972 http://onlinelibrary.wiley.com/doi/10.1112/jlms/s2-4.3.408/full

[2] P. V.Subrahmanyam, , "*Remarks on some fixed point theorems related to Banach contraction principle*", J. Math. Phys. Sci.8 (1974), 445457; Erratum, J. Math.Phys. Sci. 9, 195,1975

[3] L. Habiniak, "*Fixed point theorems and invariant approximation*", J. Approx. Theory, 56, pp. 241-244,1989.

[4] S.S. Abed, , "*On invariant best approximation in modular spaces*", Global Journal of Pure and Applied Mathematics, 13,. 9,. 5227-5233, 2017.

http://www.ripublication.com/gjpam17/gjpamv13n9_102.pdf

[5] S.S.Abed, , K.A. Abdul Sada, ," *An Extension of Brosowski- Meinaraus Theorem in Modular Spaces*", Inter. J. of Math. Anal., Hikari Ltd., 11, 18, 877 – 882, 2017 https://doi.org/10.12988/ijma.2017.77101

[6] Abed, S.S. Abdul Sada, K,.A. *"Approximatively Compactness and Best Approximation in Modular Spaces*" accepted in Conf. of Scie. Coll., Nahrain University.

[7] Abed, S.S. Abdul Sada, K.A., " *Fixed-Point and Best Approximation Theorems in Modular Spaces",* to appear in Inter. J. of Pur. And Appli. Math.

[8] Farajzadeh A.P. Mohammadi, M.B., Noor, MA, "Fixed point theorems in modular spaces". Math. Commun. 16, 13-20, 2011

https://pdfs.semanticscholar.org/2997/b07df8ee456156b991895e2652f1ca897880.pdf

[9] K. Kuaket, and P. Kumam, ,"*Fixed points of asymptotic point wise contractions in modular spaces.* Appl. Math. Let. 24,1795-1798(2011). https://doi.org/10.1016/j.aml.2011.04.035

[10] Marwan A. Kutbi, Latif, A., "*Fixed points of multivalued maps in modular function spaces*". Fixed Point Theory Appl. 2009, doi:10.1155/2009/786357

[11] Mongkolkeha, C., Sintunavarat W., Kumam. P., *" Fixed point theorems for contraction mappings in modular metric spaces",* Fixed Point Theory and Applications, Springer 2011, 2011:93

http://www.fixedpointtheoryandapplications.com/.

 [12] C. Mongkolkeha; W. Sintunavarat and P. Kumam., " *Fixed point theorems for contractionmappings in modular metric spaces Fixed Point Theory Appl. 2011",* Fixed Point Theory and Applications, Springer, 2012.

http://www.fixedpointtheoryandapplications.com/content/2012/