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Abstract  

The aim of this work presents the analytical studies of both the magnetohydrodynamic (MHD) flux 
and flow of the non-magnetohydro dynamic (MHD) for a fluid of generalized Burgers’ (GB) 
withinan annular pipe submitted under Sinusoidal Pressure (SP)gradient. Closed beginning 
velocity's' solutions are taken by performing the finite Hankel transform (FHT) and Laplace 
transform (LT) of the successivefraction derivatives. Lastly, the figures were planned to exhibition 
the transformations effects of different fractional parameters (DFP) on the profile of velocity of 
both flows.  
 
Keywords: Generalized Burgers’, finite Hankel transform, Laplace transform, Sinusoidal Pressure 
gradient. 
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Preface 
Lately, many attentions have been devoted to the project of nonNewtonian fluids. In general, 
the foremostobject is t 
hat fluids (such as paints, the molten plastics, slurries, pulps, emulsions, the petroleum was 
drilled, blood and other identical entities), which do not follow the Newtonian assume that the 
stress tensor is immediately symmetricto the rate of turn of deformitytensor, and show 
characteristics of flow quite severalto those of Newtonian fluids, the models are usually 
distribution gas fluids of differential, average and integral types (Rajagopal, [1]; and Dunn 
and Rajagopal, [2]). Different studies were performed on a generalized Oldroyd-B(GO-B) 
fluid flux includes those from Zheng et al. [3], Khan et al. [4], and Sultan et al. [5]. Fetecau et 
al. [6], Kamranc et al [7] and Hyder Ali Muttaqi Shah [8] thought fulsome summary fluxes of 
(GO-B) fluid through two wall sides that perpendicular to a sheet. Zheng et al. [9], and Nazar 
et al. [10] talk overMaxwell fluid flux because of a plate, with fixed velocity. Mahmood et al. 
[11] investigated the unsteady flux of a non-Newtonian fluid between two infinite coaxial 
circular cylinders. Whereas Khan et al. [12], Khan et al. [13], with Khan and Shafie, [14] 
described the exact solutions for the flux of an MHD (GB) fluid. 
In this paper, our target is to study the unsteady viscoelastic fluid flow with the model of 
fractional (GB) fluid within an annular pipe under (SP), and compare with flow under MHD 
(SP). The accurate solution for the distribution of velocity is performed by implying the 
(FHT) Garg et al. [15] and discrete (LT) of the sequential fractional derivatives. 
 

Prevalent Equations 

The constituent equations for an incompressible fractional(GB)fluid are agreed through 
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When (.) is the Gamma function. 
The type diminished to the model of (GO-B) when 02  and if, addendum for that α = β = 1 
the normal Oldroyd-B typeshall be earned. 
So, we suppose that shear stress and the field of velocity of the format 
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When
z

e meant vector unit along the z-direction .Equation (5) substituted into (1) and 

takeover an account for the first condition  
S (r,0) = 0                                                (6) 
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When 0SSSS rzrr   .  
Thereafter the being gradient of pressure at z-direction, the motion equation provided next 
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When



v indicated the kinematic viscosity. 

First Problem of the Non-magnetohydrodynamic Flow 

   Regard that the fluxaffair of an incompressible (GB) fluid is firstly at rest in between two 

infinitely long coaxial cylinders of the radius 0R and 1R  ( 0R ). At time 
 0t  fluid is 

generated because of(SP) gradient which acts on liquid in z-direction. Pointing to Eq. (9), the 
coinciding (DFP) equation that define such flux has the way 
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The condition of initial and boundary relations are described as form 
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For producing the accurate analytical solution of the previous problems (10)- (12), First, we 
perform(LT) rule Garg et al. [15] through respect to t, we got 
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When ),( sr denoted of function image of ),( tr and s denoted the parameter transform. 

We imply the (FHT) Garg et al. [15], described as form 

drkrBr i

R

R
H

)(0

1

0

            ,  321i   (15) 

While its inverse as 
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eventually, the inverse (FHT) obtains the analytic solution of velocity classification 
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The Special Cases 
Working the limits of Eq.(21) where 0 , 02   (b=0) , we obtain the  distribution of 
velocity for a (GO-B) fluid. So the field of velocity decreases to  
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Where hfhlnfhlmk   3)2(13 . 

Second Problem of the Magnetohydrodynamic (MHD) Flow 
Moreover, it believes that showing fluid is prevailed by imposing magnetic field 0[0,H ,0]H

which work in positive z-direction. In the calculation of  the low-magnetic Reynolds number,    
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the magnetic power of  the body is considered as 
2
0H w , when indicated electrical 

accessibility of fluid.Now, by adding magnetic field to Eq.(8) we get an Eq. (23): 
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Where 3111* wwfk  , 12* w , 213* wtfz  , 0114* wthnqlk  ,

1015* wwtjfhzq  , 26* w ,
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While its discrete inverse (LT) Garg et al [15] will yield the form
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the following property of inverse (LT) is used (20). finally, the inverse (FHT) gets the analytic 
solution of velocity classification 
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The Special cases 
Working the limitsfor Eq.(30) where 0 , 02   (b=0) while 0M  (c=d=0) , we obtain the  
distribution of velocity for (GO-B) fluid. So the field of velocity decreases to 
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(31) 

Where )()(31 yzjwzqywinqlk   . 
 

Results Discussion 
In the present study, we have been discussed MHD flux of (GB) fluid that passed an annular 
pipe. The accurate solution for the field of velocity u  is gotten by performing the (LT) and 
(FHT). Furthermore, figures were plotted to show the behavior of diverse parameters included 
the velocity expressionsu .  
A comparison between the effect of magnetic parameter (M≠0) (Panel (a)) and the effect of 
non-magnetic parameter (M=0) (Panel (b)) were also done graphically in figures (1-6).   
figures (1) and (2) the velocity is increased with the increasing of the with both cases (M=0 
& M≠0), while it increased with  (M≠0)  more than with  (M=0).  
figures (3), (4) and (5) showed the relaxation parameter effect 1  on the fields of velocity. 
Velocity is decreased for the incensement of 1  for (M≠0), and it did not affected with the 
increase of 1  for (M=0). Velocity is increased with the incensement of 2 when (M=0), and it 
oscillated with the increase of 2  for (M≠0).The velocity is decreased with the incensement of 

3 when (M=0), and decreased more with the incensement of 3  for (M≠0). 
figure (6) has shown the effect of the magnetic parameter M inshort as well as in long time.  It 
is detected that the velocity profile is increased with the increase of t = 0.5 – 1.2 for (M≠0) 
more than for (M=0). 
Comparison displays that velocity sketch with the effect of magnetic field is greater when 
compared with velocity sketch without the effect of magnetic field. The result is demonstrated 
in long time. 

 

  

Figure (1): Shows velocity for various values of  while remaining another parameters 
constant (a) M 3 , and (b) M 0  

 



 

https://doi.org/10.30526/31.1.1840               Mathematics | 209 
 

  2018)عام  1العدد ( 31لمجلد ا    مجلة إبن الهيثم للعلوم الصرفة والتطبيقية                                                                          

Ibn Al-Haitham Jour. for Pure & Appl. Sci.                                           Vol. 31 (1) 2018 

 

Figure (2): Shows velocity for various values of   while remaining another parameters 
constant (a) M 3 and (b) M 0  

 

 

Figure (3) Shows velocity for various values of 1  while remaining another parameters 
constant (a) M 3 and (b) M 0  

 

  

Figure (4): Shows velocity for various values of 2  while remaining another parameters 
constant (a) M 3 and (b) M 0  
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Figure (5): Shows velocity for various values of 3  while remaining another parameters 

constant  

  

Figure (6): Shows velocity for various values of M  while remaining another parameters 
constant (a) 0.1t  and (b) 0.5t   
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