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Abstract

In this paper, a Monte Carlo Simulation technique is used to compare the performance of
MLE and the standard Bayes estimators of the reliability function of the one parameter
exponential distribution. Two types of loss functions are adopted, namely, squared error loss
function (SELF) and modified square error loss function (MSELF) with informative and non-
informative prior. The criterion integrated mean square error (IMSE) is employed to assess
the performance of such estimators.
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1. Introduction

The reliability theory is related with random happening of unwanted events or failure during
the life of a physical or biological system [1]. Reliability is an essential feature of a system.
Basic concepts associated with reliability has been known for a number of years, however, it
has got greatest significance during the past decade as a consequence of the use of highly
complex systems. In reliability theory, the exponential distribution plays an important role in
life testing experiments. Historically, it was the first life time model for which statistical
procedures were widely developed. Many researchers gave numerous results and generalized
the exponential distribution as a life time distribution, particularly, in the field of industrial
life testing. The exponential distribution is desirable because of its simplicity and its own
features such as lacks memory and self-producing property. The probability density,
cumulative distribution and reliability functions of one parameter exponential distribution are
respectively defined as [2]:

The f(t,8) = ee™*, t,e>0 €Y}
Cumulative distribution function is given by:
FO) =pr(T<t)=1-—e"* 2)
R(t) =1—F(t) = e 3)

2.1. Maximum Likelihood Estimator

Let t;, ty, ..., t, be the set of n random lifetimes from the one parameter exponential
distribution then
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L(e;ty, ty, ..., ty) = oe0Zik1 ti (4)
The value of e maximize L, also maximize In L. Hence, by taking the natural logarithm for
the likelihood function we get [3]

n

InL(e; ty,t,,t,) = nlne — ez t;
i=1

Differentiating the log likelihood function with respect to e and setting the resultant
derivative equal to zero, yield:

aln L(, tlJtZ""’tTL) n n
de e i=1
Therefore the MLE for e denoted by &, is:
n n
bMLE =Tn =7 ©)
it T

Where we suppose that = )7L t; .
Hence, the MLE of the reliability function will be
R(t)ypg = e~ OmLE! (6)

2.2. Standard Bayes Estimators

The researchers employed two types of loss functions, namely, the squared error loss
function (SELF) and modified squared error loss function (MSELF) . The Bayes estimator of
the parameter o is the value of e that minimize the risk function R(6, e) where [4]

R(8,0) = E[L(8,0)] = f L(8,0)h(elt) do (7)
e
In the case of squared error loss function, we have:
L(6,0)=(6-0)2 (8)

Then, the risk function will be
R (8,0) =j (6 —0)%h (elt)de
e
— [ a2 a 2
= J, 82h (elt)de — 28 [ eh (elt)de + [ o®h (elt)de
R(8,0) = 82 — 28E(elt) + E(8?It)
Differentiating R (8, e) with respect to 6 and setting the resultant derivative equal to zero,
we get:
26 — 2E(elt) = 0

Solving for & implies that

85, = E(elt) 9)
The Modified square error loss function is defined as [5]:
L(6,0) = o"(6—0)? (10)

Where r is a positive integer.
If (MSELF) is adopted, it can be in the same manner show that the Bayes estimator of e is

__E(ep)

Ous = m (11)
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2.3. Posterior Density Based on Jeffrey's prior information

Let us assume that e has non informative prior density. Jeffrey's (1961) developed a general
rule for obtaining the prior distribution of e [6]. He established that the single unknown
parameter e which is regarded as a random variable follows such a distribution that is
proportional to the square root of the fisher information on e, that is [5]:
g(e) a+/I(e) (12)
That is
g(e) = cyI(e)

Where c is a constant of proportionality and I(e) represent fisher information defined as
follows:

0%Inf (t,e)
I(e) = —nE[— >—]
If g, (e) denote Jeffrey's prior information then
22Inf (t; e)
91(e) = CJ—nE <T (13)

For the exponential distribution we have
Inf(t,e) =Ilne — et
dlnf(te) _ 1
de T e

The second derivative is
0%Inf(t;e)  —1

-t

de? 82
Hence,
g (azlnf(t; e)) _-1
de? e?
Substituting in equation (13) it follows that
g1(e) = g\/ﬁ

From Bayes theorem the posterior density function of e denoted by h, (el £) can be derived
as [4]:

_ gl(e)L(e; tlr---ﬂtn)
hl (eltl' o tn) B fooogl(e)L(G;tl,...,tn)de

n-1 e—eT

5]

=~
fo on—1 =0T gg

hy(elty, ..., tn) T=Y" . t;
Hence, the posterior density function for e based on Jeffery's prior information will be:

hy(elty, . ty ) = 2

n—1 ,—eT
Ir'(n)

The posterior density in equation (14) is defined identified as a density of the Gamma
distribution, that is:

(14)

elty, ty, ..., t,~ Gamma (n,%) with E(e) = % and var(e) =%

e~Gamma (n ,%)
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2.4. Posterior Density Based on Gamma Prior Distribution

Assuming that e has informative prior as Gamma distribution which takes the following
form:

,8“ ea—l e —-ef3
I'(a)
Where a,f are the shape parameter and scale parameter respectively.

The posterior density function is
92(8)L (8 ty, ..., ty)

92(e) = ;6>0,8>0,a>0 (15)

hZ (9|£) = "=
fo gZ (G)L(e, tl) ey tn)de
Thus
patn ea+n—1e—eP

h,(elt) = 16

2(e1) ['(a+n) (16)
Where P = (B + T)
It can easily be noted that
(o1t)~Gamma (& +n,3) with E() =% Var(e) = (*57)
2.5. Bayes Estimator When (SELF) is Adopted

a: The case of Jeffrey's prior information.
From equation (9) we found that:
8)5q = E(e1t) = [” oh, (elt) do

n
O = T (17)
Similarly, the Bayes estimator of the reliability function can be obtained:
as follows:
R(t)jsq = E(R(DIL) = f R(Dh,(elt) dO
0

R(®jsq = (o) 18

()ISq_(T+t) (18)

b: The case of Gamma prior distribution.
In this case we have
8gsq = E(elt) = ;" oh,(olt) do === (19)
The estimator of the reliability function can be obtained as:
o ® P
R(®)gsq = E(R(DIY) = f R(O)h,(elt) do = G (20)

0

2.6. Bayes Estimator When (MSELF) is Adopted
a: The case of Jeffrey's prior information
From equation (11) we have:

E(er+1|£)
(S] =
s E(e"It)

The " moment of elt can be evaluated as follows:
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E(e"It) = fom e"hyi(elt)de
Hence,

E(e"ID) = 1o (21)

Let us assume that r=1,3 and &jys;, &yms, represent the estimator of the parameter o

corresponding to r=1,3 respectively then by applying the formulas in (11) and (21) we get

2 r(n+2)
A __E(e”1) _ rmT?2 _ n+1l
Oyms1 = Feit)  Imih) T Tp (22)
— rm)T
4 I'(n+4)
~ __E(e™1) _ ramr* _ n+t3
Oms2 = E@edp T ~ T (23)
= r(n)T3

Similarly, the Bayes estimators of the reliability function can be obtained as follows

5 _E[((R®)%1D)
R(t)jms1 = TEROD

o E[(R®) D]
ROms2 = bR 20)]

Now, we have to determine each of E[((R(t))?1t)],E[((R(t))3It)] and E[((R (t))4lg)]

E(ROID) = ()"

E(R)21E) = [ (R(©) hy(e1t)do
T
=G5"
By the same way we find that,

ER())1D) = ()"

T+3t
T
ER®)* = ()"
Hence,
T
Gao" T+t
5 + 2t
R(t = = n 24
(Opmst = =2 — = G 50) (24)
75
)" T+3t
R(t — T+at? n 25
s = T = G (25)

b: The case of Gamma prior distribution
From equation (11) we have:

E(er+1|£)
(S] =
s E(e"1t)

The " moment of elt can be evaluated as follows:

E(e"It) = f " h, (elt)de
0
[(a+n+r)
['(a +n)P"
Let us assume that r=1,3 and 8gms1, 6gmsz represent the estimator of the parameter o
corresponding to r=1,3 respectively then by applying the formulas in (11) and (26) we get:

E(e"It) = (26)
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(a+n)(a+n+1)

R E(e%1t) P2 (a+n+1) @n
9 = = =
GMS1 E(9|E) ((l ;)_ Tl) P
(a+n)(a+n+1D)(a+n+2)(a+n+3)

_ E(64|£) _ p

O6ms2 _E(e3|t) B (a+n)(a+n+D(a+n+2)
4 53

_a+:+3 (28)
Similarly, the Bayes estimators of the reliability function can be obtained as follows
- _E((R®)1t)]
R()gms1 = TEROD
5 E[((R®) *1D)]
R(®)ems2 = 7oy

E[(R()*11)]
Now, we have to determine each of E[((R(£))?1t)], E[((R(¢))31t)] and E[((R (t))4I£)]

ER@®IE) = [;° R()hy(elt)de
:(P+t)0l+ﬁL

E ((R (t)) | g) is obtained as follows

E(R(D)21E) = j “(R(O) hy(e16)do

:(P+2t)a+n

Similarly, we find that
E R t 3 t —_ a+n

(R®)Y*1D) = (P+3t>
E((R t 4 t) = a+n

(RO = G
Hence,

) _ E[((R(t))ZIE)] — P+zt)a+n Pttya+n

E[((R() *1D)] _ (—)‘”" P+3t

R(®)gus2 = Ept =)™ (30)

E[(R(D)31L)] (P+3t)“+n P+4t

3. Simulation Study

The simulation study was conducted in order to compare the performance of the maximum
likelihood estimator (MLE) and Bayesian estimators of the reliability function R(t)of one
parameter exponential distribution.

We adopted the integrated mean squared error (IMSE) as a criterion of comparison where
Ng

IMSE[R(ti)] = Z[—Z( Ri(t;) — R(¢:))?]
= n—Z MSE(R (t,)
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Where n;is the random limits of ¢t,., using t=(0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8,0.9,1).
L is the number of replications which we assumed that L=1000 in our study, R(t,) is the
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estimator of R(t) at the L**replication.

The Bayesian estimators of R(t) are derived with respect to two loss function which are the
Square error loss function (SELF) and Modified squared error loss function (MSELF),
moreover, the informative and non-informative prior were postulated. The sample sizes
n=10,50, 100 and 200 were chosen to represent small, moderate, large and very large sample
sizes from the one parameter exponential distribution. The postulated values of the unique
parameter e were 6=0.5,1.5 and the values of the parameters for Gamma prior were a=0.3,1
and f=1.2,3.

The values assumed for the loss parameter of modified loss function were =1,3. The
results are presented in Tables (1-4).

Table 1. (IMSE) values of the reliability function estimators by using Jeffrey's prior information at e=0.5

n 10 50 100 200
Estimator
MLE 0.000574 0.004713 0.004083 0.002636
JSqu 0.000526 0.004635 0.004060 0.002632
JMSql r=1 0.000450 0.004478 0.004014 0.002624
IMSq2 =3 0.000370 0.004171 0.003918 0.002608

Table 2. (IMSE) values of the reliability function estimators by using Jeffrey's prior information at e=1.5

10 50 100 200
M\
MLE 0.001008 0.003444 0.002316 0.001262
JSqu 0.000911 0.003396 0.002309 0.001261
JIMSql  r=1 0.000865 0.003293 0.002293 0.001260
IMSq2 =3 0.001262 0.003072 0.002258 0.001257

Table 3. (IMSE) of the reliability function estimators by using Gamma prior information at 6=0.5

n 10 50 100 200

Estimator
=0.30. p=1.2 0.000404 0.004277 0.003938 0.002619
GSqu B=3 0.000335 0.003899 0.003748 0.002653
o=1 p=1.2 0.000508 0.004395 0.003928 0.002605
B=3 0.000353 0.003945 0.003764 0.002563
GMSql | a=0.3 p=1.2 0.000359 0.004130 0.003890 0.002611
r=1 B=3 0.000324 0.003761 0.003700 0.002544
o=1 p=1.2 0.000427 0.004247 0.003891 0.002597
B=3 0.000322 0.003808 0.003716 0.002555
GMSq2 0=0.3 p=1.2 0.000322 0.003846 0.003793 0.002595
=3 B=3 0.000339 0.003495 0.003602 0.002526
o=1 p=1.2 0.000329 0.003959 0.003785 0.002580
p=3 0.000300 0.003544 0.003619 0.002537
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Table 4. (IMSE) of the reliability function estimators by using Gamma prior information at e=1.5

n 10 50 100 200

Estimator
GSqu =0.3a p=1.2 0.000856 0.003020 0.002212 0.001250
p=3 0.001549 0.002459 0.002057 0.001225
a=1 p=1.2 0.000713 0.003035 0.002214 0.001250
p=3 0.001096 0.002501 0.002045 0.001227
GMSql 0a=0.3 p=1.2 0.001071 0.002913 0.002193 0.001248
=l p=3 0.001978 0.002352 0.002035 0.001223
a=1 p=1.2 0.000816 0.002930 0.002195 0.001249
p=3 0.001451 0.002394 0.002023 0.001225
GMSq2 0=0.3 p=1.2 0.001798 0.002688 0.002152 0.001244
=3 =3 0.002966 0.002135 0.001988 0.001217
a=1 p=1.2 0.001353 0.002709 0.002155 0.001245
p=3 0.002319 0.002179 0.001975 0.001219

4. Simulation Results and Conclusions

From our simulation study, the following results are clear

From table 1: when =0.5 the Bayes estimator under modified squared error loss
function when r=3 with Jeffrey's prior is the best comparing to other estimators for all
sample sizes.

From table 2: when e=1.5 the Bayes estimator under modified squared error loss
function when r=3 with Jeffrey's prior is the best comparing to other estimators for
sample sizes (50,100,200) and in sample size (10) the best is modified squared error
loss function when r=1.

From table 3: when e=0.5 for (n=10) the best is Bayes estimator under modified
squared error loss function when r=3 with Gamma prior (o=1, B=3) and for
(n=50,100,200) the Bayes estimator under modified squared error loss function when
=3 with Gamma prior (0=0.3, p=3) is the best.

From table 4: when e=1.5 for (n=10) the Bayes estimator under square error loss
function with Gamma prior (0=1, p=1.2) is the best, and for (n=50,200) the Bayes
estimator under modified squared error loss function when r=3 with Gamma prior
(0=0.3, B=3) is the best and for (n=100) the Bayes estimator under modified squared
error loss function when r=3 with Gamma prior (o=1, f=3) is the best.

According to the simulation results we conclude that the Bayes estimator under
modified squared error loss function with r=3 is superior to the performance of other
estimators in almost cases that are studied in this paper, where the integrated mean
squared error (IMSE) is employed as a criterion to assess the performance of such
estimators.
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