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Abstract

In the current study, the researchers have been obtained Bayes estimators for the shape and
scale parameters of Gamma distribution under the precautionary loss function, assuming the
priors, represented by Gamma and Exponential priors for the shape and scale parameters
respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been
used effectively in Bayesian estimation.

Based on Monte Carlo simulation method, those estimators are compared depending on the
mean squared errors (MSE’s). The results show that, the performance of Bayes estimator under
precautionary loss function with Gamma and Exponential priors is better than other estimates in
all cases.

Keywords: Gamma distribution; Maximum likelihood estimator; precautionary loss function;

Exponential prior; Lindley’s approximation.

1. Introduction

The gamma distribution is extremely important in reliability analysis and life testing. Hogg and
et al. (2013), showed that, the gamma distribution is not only a good model for waiting times, but
one for many nonnegative random variables of the continuous type [1].

Also, it is a flexible distribution that commonly offers a good fit to any variable such as in
environmental, meteorology, climatology and other physical situations [2].
The probability density function of the Gamma distribution is defined as follows [3]

a,.a—-1,—Fx
f(x;a,B)=% ; x>0, a>0 , B>0 (1)
Where,

a and B are often called the shape and scale parameters, respectively. The Gamma function is

oo}

I'(a) = f x% e *dx , for a >0
0
The cumulative distribution function (CDF) is

F (x;0,B) = f;% ut e uBqy
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This function is called incomplete Gamma function. The formula for the cumulative distribution
can be written as

Fluop)=1- 3 &2 epr = 57 B opr
Therefore, the reliability functions for I'(«, ) is [3]
. 1 (BX)’
R(x;0,B) = X550 F ~Bx

2. Estimation Methods

In this paper, the moment estimators are used as primary estimators for maximum likelihood
estimators of each of a and .On the other hand, the maximum likelihood estimators are used as
initial values for Bayesian estimators.

2.1. Moment Method
Suppose that, X be a random variable has a Gamma distribution defined by (1).

Let x1, X2, . . ., Xn be a random sample of size n from X. Defining the first k sample moments
about origin as

’ 1
m, ==X ;%" ,r=12,....k

The first k population moments about origin are given by . = E(X").

Now, equaling these moments, that is

ur=m.,r=12,...,k

The solutions to the above equations denote by 6;,6,,...,8; , yields the moment estimators of
01,02, ..., 0c [4]

The moment method for estimating the two—parameter Gamma distribution can be derived as

TieaXi _ o
ml — =1 l: x
n

n 2
Xiz1 X

m-, =
2 n

m =EX) =

uy = B0 = 5+ ()

From my =y, , my, =pu’,, we get

=2

A nx
a= 2
i= 1x12_nx2 ( )

A nx
=™ 3
b= ®

2.2. Maximum Likelihood Method

The maximum likelihood method is one of the best methods of obtaining a point estimator of a
parameter. This technique was proposed by R.A. Fisher (1912), and he developed it in 1920s [5].
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This method is the most popular procedure in estimating the parameter € which specifies a
probability function f(x, 8), based on the observations x;, x5, ..., X, which were independent sample

A

from the distribution. The maximum likelihood estimator & of the parameter € which maximizes the
likelihood function will be as follows [6]
L(x1, %0, ., Xy 0) = L, f (x5 0)

The likelihood function for two-parameter Gamma distribution is

B n o oa-1,-BYr, x;
L(xy, %3, . Xy 50, B) = @y e i=1Xi 4)

Taking the logarithm for (4), yields
LnL = —nInl'(0) + nalnf + (a = 1) X Inx; — B Y1 x;

The parameters that maximize the likelihood function are the solution of the equations
dinL

o = n¥(@) +nin + X, Inx; ©
dlnL
62’ - %a ~ 2% "

Observe that, the two equations (5) and (6) are difficult and complicated to solve, then it is
impossible to find MLE for & and g analytically, we can use the numerical analysis (numerical

procedure) to obtain and estimate & and S that maximize the likelihood function. One of these
numerical procedures is Newton-Raphson method and using Hessian matrix, which is the second
partial derivative of the log-likelihood function. We can construct Hessian matrix as follows [4]
g1(@) = —n¥()+ninp + Y-, Inx;

92(B) = n‘Ta —nx

The partial derivatives of g,(a) with respect to unknown parameters « and 3 are

0g1(a) _ _ I
—oa = n¥'(a)

Where W' () is the derivative of W(a) which is called as tri-gamma

9g1(a) _nr
op B

The partial derivatives of g,(/) with respect to unknown parameters o and g are

992(8) _n
da B
992(B) _ _na
ap B?
Hence,
og,(a) 0g, (@)
J = da o8 _[G11 Q12
ko _[a21 azz]
9g,(f) 0g,(p)
oa op

Where, Jk is the Jacobean matrix and Jx must be a non-singular symmetric matrix so, its inverse
can be found as
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Jel = 17 Az —a12]
K JIl=az1 411
Oy %G| g (a)
= —Jkl

B _:Bk g,(B)

n
[ na;, i}
—na,¥(ay) + nay,nfy, + ay, Z Inx; — + na;,x
Ofk+1] _ [ak] 1 = k
Br+1l — LB - "
k+1 kd Q11022 — Q202 na ay _
na; ¥(ay) —nay Inf — az, Z Inx; + —na; X
; k
i=1

The absolute value for the difference between the new value for & and g in new iterative
value with previous value for & and g in last iterative represent the error term, it's symbol is &,
which is a very small and assumed value. Then, error term is formulated as

Ernl(a) Ay ay
= - (7)
Era(B) B By

Where o, and f, are the initial values for & and g respectively, for which are assumed.

3. Bayesian Estimation

3.1. Posterior Density Functions Using Gamma and Exponential Priors

To estimate o and [ parameters for Gamma distribution, we assume that o has a prior mi(-),
which follows Gamma (a, b). At this moment we do not assume any specific prior on a. We
simply assume that the prior on B is m2(+) and the density function of m2(-) is Exponential and it is
independent of mi(+).

(b)a(a)a—le—b(x )
nl(a)z{—F(a) ; a>0, b>0a>0 ®
0 0.w

m@)={ e i e>0hz0 ©

The equations (8) and (9) are prior distribution for & and S respectively.
The joint p.d.f is given by

JCr, %z, o X @, B) = L (X1, Xp, e, Xs @, B) 101(@) T2 (B)

_ ﬁna n
n Tj=1Xi

— a-1,-BYk,x; D@ e | _pe
(M)

I'(a)

And the marginal p.d.f. of (x4, x5, ..., x;,) is given by

fxq, %3, 0, xy) = ff L(xq, %3, oo, Xp; @, )11 () T, (B)da dP
00

Hence, the posterior density functions of & and S can be written as follows
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L(x1'x2' e X &, B) ﬂl(a) 7-[2(:8)
Jo I LGy X2 o, 25 @, BTy (@) T2 (B)ddB

h(a, Blxq1, X2, oy Xp) =

na n p)q(q)d—1le—ba _
(e e e B —c e
1,-b
f Jo (F[:n)‘;n =% te” Prizai WGE_'BC da dp

3.2. Bayes Estimator under Precautionary Loss Function

Norstrom (1996) introduced an asymmetric precautionary loss function, which can be defined
as follows [7]

L(5,0) = & ")

Based on precautionary loss function, risk function Rg (@, 6) can be derived as follows

Rg(0,0) = E[L(5,0)]

= f OOL(G, 0) h(6|x)do

R(9,0) = f (6-6) h(e|x)de
= f (626~) h(6]x)do — f w29h(6|§)d9+ f K h(6]x)do

Ry(8,0) = E(0%|x)0~* — 2E(0|x) + 8

Taking the partial derivative for RB(é, 6) with respect to 0 and setting it equal to zero, gives

05" = E(6°]x)

Hence, Bayes estimator relative to precautionary loss function, denoted by 85 is given by

s = |E(0°]x) (10)

In general,

Elu(a, B)] = f f u(a, B) h(a, Iy, ... xy) dadp
00

Where u(a,B) be any function for a and . Therefore,

Iy I u(@BL(x1 Xz, Xmi, ) 1 (@) T2 (B) dadf

E[U(a’ﬁ)] - f;ofgoL(XLXZ ----- Xn;a,B) m1(a) my(B) dadf

1) Bayesian Estimation for the Shape Parameter o under Precautionary Loss Function

To obtain Bayesian estimation for a, assume that,

u(@p) =a
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S 17 @ L0, X,kin;a )T (@) 02 (B)dudp
Jo I L0t X2,xn;0 )T (@) w2 (B) dot dB

Therefore, E(a?|x) =

Notice that, it is difficult to find the solution of the ratio of two integrals. Therefore, Lindley's

approximate will be used to get E (az |£) as follows

u(a, ) = a?
du(a,p) 0%u(a,p) du(a,p) *u(ap) _
U =—3.— =2a,uy; = a2 =2, UZ=T=0 » U2z = 7557 =0
a a-1,-ba
n(a,p) = ®Y @) 7e™" (O?(a) ce P
p = Inn(a, B) = (a — Dlna + alnb — ba — Inl'(a) + Inc — cf
op a-1 dp
=5, = ~b.p2=5p=—c
Recall that,
Ln L (X1,...,xn; a,B) =noIn f-n In T(a)-p XL, X + (0 — 1) XL, Inx
_omL(@p) _ n
Liz= 2adp® B
23 Inl(a,p)
b1 =~ = 0
_93Inl(a,B) _ 2na
s =g 5
a3 Inli(a,p) "
Lo = D — ()
__ L _ 1 __ 1 _#
011 = lo  n¥(a) ’ 022 = loa  na

Ay 1 1 1
E(a®) ~ a* + > (U11011)+P1uy011 + > (Uzouy04) + 2 (lizuy011023)

1
n¥'(a)

a1 ) Voa—t 4+ licnerg)—2 y4l_n 22 B
)+( a b) Zan\f’(a)+z( n (@) (n.yr(a))Z)-'_z( B2 n¥'@ na

~ @2+ (2

a2, 22 (a1 )\ _ n¥@a
~a +n\{f’(a) (( a b) (nq,'(a))z (1D

Now, Substituting (11) into (10) yields,
5 o~ |52 2a a-1 p) — nV¥"'(@)a
B \/ ) (( a ) (nq;(a))z

i1) Bayesian Estimation for the Scale Parameter § under Precautionary Loss Function

Assume that,

u(o, B) = [32 then,
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du(o,p) *u(ap) _ du(a,p) *u(a.p)
u1=%=0 ,U11=V—0 ) 2=%=23 » Ugp = a2 =2

A 1 1

Thus, E(B?) = f? + > (Uz207;) + PaUy0,;, + 3 (l03u20222)
~ P2 L L(2BP . 2B% 1 2napt
~ﬁ+ ( )+(cna+2(fi’3n&

n 52 73
~ f2 43 2P (12)

After Substituting (12) into (10) yields,

na

5~ |p2 4 3B% _ 2cB®
BB"\/.B T2

Where @, are the maximum likelihood estimators for o, p respectively.
4. Simulation Study

In this section, Monte — Carlo simulation is employed to compare the performance of three
estimates (moment, Maximum likelihood and Bayes Estimators under precautionary loss function)
for unknown shape and scale parameters based on the mean squared errors (MSE’s) as follows

I. a._ 2
MSE(Q) — Zl=1(?l 9)
Where, I is the number of replications.
We generated [ = 3000 samples of size n = 20, 30, 50, and 100 to represent small, moderate and
large sample sizes from Gamma distribution with a =2, 3 and B = 0.5, 1. The values of a's prior
parameters are chosen as a =3, b = 3 and for 's prior parameter, ¢ = 4.

5. Discussion and Conclusion

The expected values and (MSE's) for estimating o and f are tabulated in Tables (1-8).
The results of the Tables can be summarized by the following points
1. The performance of Bayes estimates under precautionary loss function for two parameters o
and P are the best, since they give smallest mean square error, as indicated for all
combinations of initial values of parameters. Followed by maximum-likelihood estimates,
for all cases
2. It is clear that, the result for a (expected values and MSE's) at B = 0.5 are the same as the
corresponding result when § = 1, the reason can be clarified easily, as follows
According to moment method we have

Q= ni?
— yn 2_ =2
Yizq X —nx

B
= =1 % (13)
Note that, xq,x,, ...,x, is a random sample from a Gamma distribution defined by (1), where
each observation say x; is generated independently and identically by the following equation

193



Ibn Al-Haitham Jour.for Pure&Appl.Sci. IHJPAS
https://doi.org/10.30526/32.1.1914 VYol. 32 (1) 2019
xX; = ] 1 log(uu) , 1=1,2,...,n (14)

Where, u;; is a random number followed uniform distribution with (0,1), i.e., u;; ~ U(0, 1)

After substituting (14) into (13) yields,
n a

. _B 2 Z -1,

a= nl, i og(u;)

i=1j=1

Therefore, f will be canceled from moment estimation for . Recall that, the moment is the
initial value for MLE. Also Bayesian estimator are depending on MLE , So the result for expected
values and MSE for & are the same as the corresponding value of @ for different values of .

3. It is observed that, MSE's of all estimators of shape parameter is increasing with the increase
of the value of the shape parameter. Also, MSE values for all estimates are increasing with
the increase of the scale parameter value in all cases.

Table 1. The expected values for different estimators for unknown shape
parameter o of Gamma distribution when o =2

Method Ao (17723 Apr
n B=0.5 p=1 B=0.5 p=1 B=0.5 p=1
20 2.486393 2.486393 | 2.33479 2.334791 2.14737 2.147371
30 2.298321 2.298321 | 2.194657 2.194658 | 2.085778 2.085778
50 2.183145 2.183145 | 2.118412 2.118412 | 2.058392 2.058392
100 2.090724 2.090724 | 2.055311 2.055311 | 2.027358 2.027357
Table 2. The expected values for different estimators for unknown shape
parameter o of Gamma distribution when a =3
Method Auo Ayr Apg
n B=0.5 B=1 B=0.5 =1 B=0.5 =1
20 3.600494 3.600494 | 3.447432 3.447433 | 3.091556 3.091556
30 3.405721 3.405721 | 3.299321 3.299319 | 3.082031 3.08203
50 3.255532 3.405721 3.18809 3.299319 | 3.066335 3.08203
100 3.126059 3.126059 | 3.089527 3.089528 | 3.032201 3.032202
Table 3. The MSE values for different estimators for unknown shape
parameter o of Gamma distribution when o =2
Method auo e g
n B=0.5 B=1 B=0.5 B=1 B=0.5 B=1
20 1.13161 1.13161 0.80765 0.80765 0.52387 0.52387
30 0.58915 0.58915 | 0.38833 0.38833 0.29354 0.29354
50 0.29714 0.29714 | 0.18510 0.18510 0.15579 0.15579
100 0.13609 0.13609 | 0.08313 0.08313 0.07647 0.07647
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Method Ao Ay App
p=0.5 p=1 p=0.5 p=1 $=0.5 p=1
20 2.06203 2.06203 1.62539 1.62540 1.02131 1.02132
30 1.11338 1.11338 0.84883 0.84883 0.62012 0.62012
50 0.61598 1.11338 0.44923 0.84883 0.37063 0.62012
100 0.25924 0.25924 0.18543 0.18543 0.16827 0.16827
Table 5. The expected values for different estimators for unknown scale
parameter B of Gamma distribution when = 0.5
Method Ayo Ay Apg
$=0.5 p=1 p=0.5 p=1 f=0.5 p=1
20 0.63802 0.61058 0.59870 0.58464 0.58620 0.57713
30 0.58456 0.57368 0.55831 0.55562 0.55171 0.55141
50 0.55128 0.54540 0.53514 0.53420 0.53178 0.53201
100 0.52472 0.52256 0.51588 0.51658 0.51444 0.51562
Table 6. The expected values for different estimators for unknown scale
parameter B of Gamma distribution when f =1
Method Ao (17723 Apr
p=0.5 p=1 p=0.5 p=1 $=0.5 p=1
20 1.27605 1.22115 1.19739 1.16928 1.10595 1.11258
30 1.16913 1.14735 1.11661 1.11124 1.06368 1.07708
50 1.10256 1.14735 1.07027 1.11124 1.04133 1.07708
100 1.04945 1.04511 1.03176 1.03317 1.01838 1.02428
Table 7. The MSE values for different estimators for unknown scale
parameter B of Gamma distribution when = 0.5
Method Ayo Ay Agp
p=0.5 p=1 p=0.5 p=1 p=0.5 p=1
20 0.09335 0.06904 0.06875 0.05533 0.05957 0.05055
30 0.04509 0.03596 0.03113 0.02778 0.02835 0.02615
50 0.02224 0.01936 0.01490 0.01465 0.01408 0.01412
100 0.01023 0.00824 0.00681 0.00627 0.00662 0.00615
Table 8. The MSE values for different estimators for unknown scale
parameter  of Gamma distribution when =1
Method Ao Ay g
$=0.5 p=1 B=0.5 p=1 $=0.5 p=1
20 0.37339 0.27617 0.27500 0.22131 0.18993 0.17587
30 0.18037 0.14383 0.12452 0.11114 0.09764 0.09486
50 0.08896 0.14383 0.05961 0.11114 0.05129 0.09490
100 0.04091 0.03295 0.02723 0.02508 0.02535 0.02386
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