Strongly -nonsingular Modules

Tha'ar Younis Ghawi

thar.younis@qu.edu.iq Department of Mathematics, College of Education, AL-Qadisiyah University AL-Qadisiyah, Iraq.

 Article history: Received 12 August 2018, Accepted 26 September 2018, Publish January 2019

Abstract

 A submodule *N* of a module *M* is said to be s-essential if it has nonzero intersection with any nonzero small submodule in *M*. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly $\mathcal K$ -nonsigular. We investigate some properties of strongly K -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.

Keywords: Modules; S-essential submodules; nonsingular modules; Strongly \mathcal{K} -nonsigular modules.

1. Introduction

 A proper submodule *N* of a module *M* is said to be small if for any submodule *K* of *M* with $N + K = M$ implies $K = M[1]$. A nonzero module M is called Hollow if all its proper submodules are small [2]. The dual concept of small submodule is an essential submodule, where a nonzero submodule *N* of a module *M* is called essential if for any submodule *K* of *M* with $N \cap K = 0$ implies $K = 0$. A nonzero *R*-module *M* is said to be uniform if all its nonzero submodules are essential [3]. As mixing of concepts small and essential submodules, we introduced the following class of submodules. A submodule *N* of *M* is said to be s-essential if for any small *K* in *M* with $\overline{N} \cap \overline{K} = 0$ implies $\overline{K} = 0$ [4]. It is clear essential submdules implies s-essential. Roman C.S. in [5], recall that an *R*-module *M* is called *K*-nonsigular if for any endomorphism φ of *M* which has essential kernel, $\varphi = 0$. \mathcal{K} -a nonsingular module is studied in detail by [6]. In this research, we introduced concept of strongly K -nonsigular modules which is stronger than K -nonsigular modules. An *R*-module *M* is said to be strongly *K*-nonsigular if for each endomorphism of *M* which has s-essential kernel, is zero. In section 2, we give some characterizations and properties of this concept. In section 3, we proved a strongly K -nonsigular module is inherited by direct summands. Also, we give a condition for finite direct sums of strongly K -nonsigular modules to be strongly $\mathcal K$ -nonsigular. Several connections between strongly $\mathcal K$ -nonsigular and other classes, also some examples are proved in section 4. Throughout this work, all rings are associative with identity and all modules are unitary right *R*-modules. For a right *R*-module *M*, the notations $N \subseteq$ $M, N \le M, N \le M, N \le M, N \le S^s$ M or $N \le N$ denotes that *N* is a subset, a submodule, a small submodule, an essential submodule, a s-essential submodule, or direct summand of *M*, respectively. Also, for $N \leq M$, we denote the endomorphism ring of *M* by $End_R(M)$, $r_R(N) =$ $\{r \in R | Nr = 0\}$ and $[N:_{R} M] = \{r \in R | Mr \subseteq N\}.$

 Starting, we will state some properties of s-essential submodules in [4, Prop. 2.7] which needed in this work.

Proposition 1: Let *M* be a module. Then;

(1) Assume N, K, L are submodules of M with $K \leq N$.

- (*i*) If $K \trianglelefteq^s M$, then $K \trianglelefteq^s N$ and $N \trianglelefteq^s M$.
- (*ii*) $N \trianglelefteq^s M$ and $L \trianglelefteq^s M$ if and only if $N \cap L \trianglelefteq^s M$.
- (2) If $\varphi: M \to \tilde{M}$ is a homomorphism with $K \leq^{s} \tilde{M}$, then $\varphi^{-1}(K) \leq^{s} M$.
- (3) If $K_1 \subseteq M_1 \subseteq M$, $K_2 \subseteq M_2 \subseteq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2 \preceq^s M_1 \oplus M_2$ if and only if $K_i \trianglelefteq^s M_i$ for $i = 1,2$.

2. Strongly -nonsigular Modules

In this section, we introduce the class of strongly K -nonsigular modules as a stronger class of K -nonsigular modules. Several various properties are proved.

Definition 2. An *R*-module *M* is said to be strongly *K*-nonsigular if for all $\varphi \in End_R(M)$ with $\text{ker}\varphi$ is s-essential in *M*, implies $\varphi = 0$. Also, a ring *R* is strongly *X*-nonsigular if it is a strongly -nonsigular *R*-module.

for $N \leq M$, if $Hom_R\left(\frac{M}{N}, M\right) = 0$ then *N* is called quasi-invertible [7].

Firstly, we are now in a position to give a characterization the notion of strongly $\mathcal K$ -nonsigular modules.

Theorem 3. A module *M* is strongly *K*-nonsigular if and only if all its s-essential submodules are quasi-invertible.

Proof. Assume *M* is a strongly *K*-nonsigular *R*-module. Let $N \leq^{s} M$ and *N* is not quasiinvertible, *i.e.* $Hom_R\left(\frac{M}{N}, M\right) \neq 0$, so there exists $(0 \neq) \varphi : \frac{M}{N} \to M$. Consider $\psi = \varphi \circ \pi \in$ $End_R(M)$, where π is a natural epimorphism map. It is clear that $N \subseteq ker\psi$, but $N \leq^s M$, this implies $ker \psi \leq^{s} M$, and hence $\psi = 0$, as *M* is strongly *K*-nonsigular, thus $\varphi = 0$, a contradiction. Therefore $N \leq^{s} M$ and N is quasi-invertible. Conversely, let $(0 \neq) f \in End_R(M)$. If $ker f \leq^{s} M$, so by hypothesis $ker f$ is quasi-invertible. But, we can define a homomorphism $h: \frac{M}{ker f} \to M$ by $h(m + Ker f) = f(m)$ for all $m \in M$. So $h \neq 0$ and hence $Hom_R\left(\frac{M}{ker f}, M\right) \neq 0$ which is a contradiction with $ker f$ is quasi-invertible. Therefore $ker f \not\supseteq^s M$ and M is a strongly -nonsigular *R*-module. ∎

Corollary 4. Let *M* be a strongly *K*-nonsigular module. If $N \leq^{s} M$, then $r_R(N) = r_R(M)$.

Proof. Assume $N \leq^{s} M$, then by previous Theorem, N is a quasi-invertible submodule, and so $r_R(N) = r_R(M)$ by [7, Prop. 1.1.4]. ■

Proposition 5. Let *M* be an *R*-module, $R^* = R/A$ and $A \subseteq r_R(M)$. Then *M* is a strongly *K*nonsingular R-module if and only if *M* is a strongly K -nonsigular R^* -module. **Proof.** Assume $\pi: R \to R^*$ is a natural epimorphism, so by [8, Ex. P.51] $Hom_R(\frac{M}{N}, M) =$

 $Hom_{R^*}\left(\frac{M}{N}, M\right)$ for each submodule *N* of *M*. So, the result is follow. ■

Proposition 6. Let *M* be a strongly *K*-nonsigular module with M/X is a projective module for all $\overline{X} \trianglelefteq^s M$. Then M/A is a strongly $\mathcal K$ -nonsigular module, for all $A \trianglelefteq^s M$.

Proof. For $B/A \trianglelefteq^s M/A$, to prove that $Hom_R\left(\frac{M/A}{B/A}, \frac{M}{A}\right) = 0$, that is; $Hom_R\left(\frac{M}{B}, \frac{M}{A}\right) = 0$. If false, so there is a nonzero homomorphism φ : $\frac{M}{B} \rightarrow \frac{M}{A}$ $\frac{M}{A}$. Note that $B \leq^{s} M$ (in fact, $A \subseteq B \subseteq M$ with $A \leq^{s} M$), so by hypothesis M/B is projective, hence there is a homomorphism $\psi: \frac{M}{B} \to M$ such that $\varphi = \pi \circ \psi$. It is clear $\psi \neq 0$, this implies $Hom_R\left(\frac{M}{B}, M\right) \neq 0$ with $B \leq^s M$, is a contradiction with *M* is strongly *K*-nonsigular. Thus $\varphi = 0$ and M/A is a strongly *K*-nonsigular *R*-module. ■

Definition 7. Let *M* be a module, define the s-*K*-nonsigular submodule of *M* by $Z_s^{\mathcal{K}}(M)$ = $\sum_{\varphi \in S} Im\varphi$, where $S = End_R(M)$ and $ker \varphi \leq^s M$.

Now, we will give another characterization for a strongly K -nonsigular module as follows.

Proposition 8. Let *M* be a module. Then *M* is strongly *K*-nonsigular if and only if $Z_s^{\mathcal{K}}(M) = 0$. **Proof.** If *M* is a strongly *K*-nonsigular module, then for all $\varphi \in End_R(M)$ with $\ker \varphi \leq^s M$, implies $Im\varphi = 0$, and hence $Z_s^{\mathcal{K}}(M) = \sum_{\varphi \in S} Im\varphi = 0$, where $S = End_R(M)$ and $ker\varphi \trianglelefteq^s M$. Conversely, assume $Z_s^{\mathcal{K}}(M) = 0$. Let $\psi \in End_R(M)$ such that $ker \psi \leq^s M$, then $Im \psi \subseteq Z_s^{\mathcal{K}}(M)$ and so $\psi = 0$. Hence *M* is a strongly *K*-nonsigular module. ■

Let *M* be a module, recall that a submodule *N* is supplement of $K \leq M$ if, *N* is a minimal in the set of submodules $L \leq M$ with $K + L = M$ (Equivalently, N is supplement of $K \leq M$ if and only if $K + N = M$ and $K \cap N \ll N$ [9]. We say that a submodule N of a module M is a supplement if it is a supplement for some submodule *L* of *M*.

 The transitive property of s-essential submodules need not be hold, see [4, Ex. 2.8]. So, we will give a condition for which the transitive property is hold of s-essential submodules.

Lemma 9. Let *M* be a module, and let *N* is a supplement submodule in *M* with $K \subseteq N \subseteq M$. If $K \trianglelefteq^s N$ and $N \trianglelefteq^s M$, then $K \trianglelefteq^s M$.

Proof. Assume $L \ll M$ with $K \cap L = 0$. If $L \subseteq N$, but N is a supplement in M , then by [10, Prop. 20.2] $L \ll N$, and hence $L = 0$, since $K \subseteq S^s N$. Now, if $L \not\subseteq N$. We have $L \cap N \subseteq N \subseteq M$, but ($L \ll M$ implies $L \cap N \ll M$), thus again by [10, Prop. 20.2] $L \cap N \ll N$, since *N* is a supplement in *M*. But $K \cap (L \cap N) = K \cap L = 0$ and $K \subseteq S^N$, this implies $L \cap N = 0$, and hence $L = 0$, as $N \trianglelefteq^s M$.■

Now, we present the following Proposition.

Proposition 10. Let *M* be a quasi-injective *R*-module, and let *N* is a s-essential and supplement submodule in *M*. If *M* is a strongly K -nonsigular *R*-module, then so is *N*.

Proof. Let $(0 \neq f: N \rightarrow N$ be a homomrphism. Since *M* is a quasi-injective module, there exists $(0 \neq)\varphi \in End_R(M)$ such that $i \circ f = \varphi \circ i$, where $i: N \to M$ is an inclusion map. As M is strongly *K*-nonsigular, we get $\ker \varphi \not\cong M$. Clearly, $\ker f \subseteq \ker \varphi$ then $\ker f \not\cong M$. If $ker f \subseteq^s N$, and since N (supplement) $\subseteq^s M$, so by previous Lemma, $ker f \subseteq^s M$, is a contradiction. Therefore $ker f \not\cong^s N$, and *N* is a strongly *K*-nonsigular module. ■

A quasi-injective module \overline{M} is called quasi-injective hull of a module *M* if, there exists a monomorphism $\varphi: M \to \overline{M}$ with $Im \varphi \trianglelefteq \overline{M}$ [11].

Corollary 11. Let \overline{M} be a strongly *K*-nonsigular module. If *M* is a supplement in \overline{M} , then *M* is strongly K -nonsigular.

Next, we will study the behavior of s-essential submodule and strongly K -nonsigular module under localization. Firstly, we have the following Lemma.

Lemma 12. Let *M* be a module, $N \le K \le M$ and let *S* is a multiplicative closed subset of *R*, provided $S^{-1}L_1 = S^{-1}L_2$ *iff* $L_1 = L_2$ for all $L_1, L_2 \leq M$. Then the following hold. (i) $N \ll K$ in *M* as *R*-module if and only if $S^{-1}N \ll S^{-1}K$ in $S^{-1}M$ as $S^{-1}R$ -module. (*ii*) $N \leq S^s K$ in *M* as *R*-module if and only if $S^{-1}N \leq S^{-1}K$ in $S^{-1}M$ as $S^{-1}R$ -module.

Proof. (i) Assume $N \ll K \leq M$. Let $S^{-1}L \leq S^{-1}K$ with $S^{-1}N + S^{-1}L = S^{-1}K$, where $L \leq K$. But we have $S^{-1}N + S^{-1}L = S^{-1}(N + L)$, so $S^{-1}(N + L) = S^{-1}K$, and hence $N + L = K$ by hypothesis, thus $L = K$, as $N \ll K$. Therefore $S^{-1}L = S^{-1}K$, and so $S^{-1}N \ll S^{-1}K$ in $S^{-1}M$. Conversely, if $N + L = K$ where $L \le K$. Then $S^{-1}N + S^{-1}L = S^{-1}(N + L) = S^{-1}K$, and hence $S^{-1}L = S^{-1}K$, as $S^{-1}N \ll S^{-1}K$. By hypothesis, $L = K$, and so $N \ll K$ in M.

(*ii*) If $N \leq^{s} K \leq M$. Let $S^{-1}L \ll S^{-1}K$ such that $S^{-1}N \cap S^{-1}L = S^{-1}0$, where $L \leq K$. By (*i*), $L \ll K$. But, we have $S^{-1}(N \cap L) = S^{-1}N \cap S^{-1}L = S^{-1}0$, $N \cap L = 0$ by hypothesis. As $N \leq^{S} K$ and $L \ll K$ implies $L = 0$, thus $S^{-1}L = S^{-1}0$. Conversely, suppose $N \cap L = 0$ where $L \ll K$. implies $S^{-1}L \ll S^{-1}K$, by (i). So $S^{-1}N \cap S^{-1}L = S^{-1}(N \cap L) = S^{-1}0$, thus $S^{-1}L = S^{-1}0$, as $S^{-1}N \trianglelefteq^{s} S^{-1}K$. By hypothesis, $L = 0$.

However, we get the following result.

Proposition 13. Let *M* be an *R*-module, and let *S* is a multiplicative closed subset of *R* such that $S^{-1}L = S^{-1}K$ iff $L = K$ for all $L, K \leq M$. Then *M* is a strongly *K*-nonsigular *R*-module, whenever $S^{-1}M$ is a strongly K -nonsigular $S^{-1}R$ -module.

Proof. Assume $(0 \neq)g \in End_R(M)$. We can define an $S^{-1}R$ -homomorphism $S^{-1}g: S^{-1}M \to$ $S^{-1}M$ such that $S^{-1}g\left(\frac{m}{s}\right)=\frac{g(m)}{s}$ for each $m \in M$, $s \in S$. It is clear $S^{-1}g \neq 0$, so $ker(S^{-1}g) \not\supseteq^{s} S^{-1}M$, as $S^{-1}M$ is strongly *K*-nonsigular. Also, it is easy to see that $ker(S^{-1}g)$ = $S^{-1}(ker g)$, this implies that $S^{-1}(ker g) \not\supseteq S^{-1}M$, and hence by Lemma 12 (*ii*), $ker g \not\supseteq M$.

Proposition 14. Let *M* be an *R*-module, and let *P* is a maximal ideal of *R*. If M_p is a strongly K nonsigular R_p -module, then *M* is a strongly *K*-nonsigular *R*-module.

Recall that an *R*-module *M* is called multiplication if for each submodule *N* of *M*, $N = MI$ for some ideal *I* of *R* (Equivalently, *M* a multiplication if and only if $N = M$. $[N:_{R} M]$) [12]. If $r_R(M) = 0$, then *M* is called a faithful *R*-module. An *R*-module *M* is said to be scalar if for any $\varphi \in End_R(M), \varphi(m) = mr$ for some $r \in R$, and for all $m \in M$ [13].

Now, we will studied the strongly K -nonsigular property for rings and modules. But, in a position we need the following Lemma.

Lemma 15. The following holds, for faithful multiplication *R*-module *M*.

(*i*) $N \ll M$ if and only if $I \ll R$, where $N = MI$.

(*ii*) $N \leq^{s} M$ if and only if $I \leq^{s} R$, where $N = MI$.

Proof. (i) Assume that $N \ll M$. Let *J* be any ideal of *R* with $I + J = R$, so $M(I + J) = MR$, that is; $N + M = M$, but $N \ll M$ implies $M = M$, and so $J = R$, since M is a faithful multiplication *R*-module. Thus $I \ll R$. Conversely, let $K \leq M$ with $N + K = M$. As *M* is multiplication, $K = MI$ for some $J \le R$. Hence $M(I + J) = N + K = M = MR$, but *M* is a faithful multiplication *R*module, so $I + I = R$, thus $I = R$ (since $I \ll R$). Therefore, $K = MI = MR = M$, and hence $N \ll$ М.

(*ii*) Let $N \trianglelefteq^s M$. Suppose that $J \ll R$ with $I \cap I = 0$, then $N \cap M = MI \cap M = M(I \cap I) = 0$, but by (*i*), $M \ll M$, hence $M = 0$, implies $J = 0$ (since *M* is faithful). Thus $I \subseteq S$ R. Conversely, let $K \ll M$ such that $N \cap K = 0$. Since M is multiplication, then there is a small ideal *J* of *R* with $K = M$, by (i). Hence $M(I \cap I) = MI \cap M = N \cap K = 0$, so by faithfulty for M, we get $I \cap I =$ 0, then $J = 0$, as $J \ll R$ and $I \subseteq S^S R$. Thus $K = MJ = 0$, and so $N \subseteq S^S M$.

Proposition 16. Let *M* be a faithful multiplication *R*-module. If *M* is a strongly *K*-nonsigular *R*module, then *R* is strongly K -nonsigular. The converse hold, whenever *M* is finitely generated.

Proof. Assume that M is a strongly K -nonsigular R-module. Let $(0 \neq)\varphi \in End_R(R)$. For $r \in R$, we know $\varphi(a) = a.\varphi(1)$. We can define $\psi: M \to M$ by $\psi(m) = m.\varphi(1)$ for all $m \in M$. It is easy to see ψ is well-defined and homomorphism. If $\psi = 0$, then $M. \varphi(1) = 0$, hence $\varphi(1) \in$ $r_R(M) = 0$, so $\varphi = 0$ which is a contradiction. Hence $(0 \neq \psi) \psi \in End_R(M)$, and so kerv $\psi \not\supseteq^s M$, as *M* is strongly *K*-nonsigular. Since *M* is a multiplication *R*-module, $ker \psi = M$. [$ker \psi_{R} M$]. But, we have $\lceil ker\psi_{R} M \rceil = ker\varphi$, to see this: if $r \in \lceil ker\psi_{R} M \rceil$, $Mr \subseteq ker\psi$, so $\psi(Mr) =$ $Mr, \varphi(1) = M, \varphi(r) = 0$, hence $\varphi(r) \in r_R(M) = 0$, thus $r \in \text{ker}\varphi$. Now, if $x \in \text{ker}\varphi$, $\varphi(x) =$ $x.\varphi(1) = 0$ hence $Mx.\varphi(1) = 0$, so $\psi(Mx) = 0$ implies $Mx \subseteq \text{ker}\psi$, thus $x \in \text{ker}\psi_{R}M$. Since $ker \psi \not\cong^s M$, so M. $[ker \psi:_R M] \not\cong^s M$, so by Lemma 15 (*ii*), $[ker \psi:_R M] \not\cong^s R$, which hence $\text{ker}\varphi \not\cong^S R$, therefore R is strongly K -nonsigular. Conversely, let $(0 \neq)g \in \text{End}_R(M)$. If *M* is finitely generated multiplication *R*-module, then *M* is a scalar *R*-module, by [14, Th. 2.3]. Hence $q(m) = mr$ for some $r \in R$, and for all $m \in M$. It follows that $h \in End_R(R)$ defined by $h(x) = xr$ for all $x \in R$. Note $h(1) = 1$. $r = r \neq 0$ (in fact, if $r = 0$ implies $g = 0$), and hence $(0 \neq)h \in End_R(R)$, but *R* is strongly *K*-nonsigular, then kerh \mathcal{D}^s *R*. On the other hand, we have

 $kerh = [ker g:_{R} M]$ which implies $[kerg:_{R} M] \not\supseteq^{S} R$, and hence M. $[kerg:_{R} M] \not\supseteq^{S} M$, by Lemma 15 (*ii*), thus $\text{ker } q \leq^s M$, and *M* is a strongly *K*-nonsigular *R*-module. ■

Next, proved that the property of strongly K -nonsigular of modules is inherited by isomorphism.

Proposition 17. For two modules M_1 and M_2 , if $M_1 \cong M_2$ then M_2 is a strongly K -nonsigular module, whenever M_1 is strongly K -nonsigular.

Proof. Since $M_1 \cong M_2$, there exists an isomorphism $f: M_1 \to M_2$. Assume M_1 is a strongly \mathcal{K} nonsigular module. Let $g \in End_R(M_2)$ such that $\text{ker } g \leq^s M_2$. Consider $\psi = f^{-1} \circ g \circ f \in$ $End_R(M_1)$, where $f^{-1}: M_2 \to M_1$ isomorphism. Now, we have $ker \psi = f^{-1}(ker g)$, to see this: $ker \psi = \{ x \in M_1 | f^{-1} \circ g \circ f(x) = 0 \} = \{ x \in M_1 | g \circ f(x) \in ker f^{-1} = 0 \}$ ${x \in M_1 | f(x) \in \text{ker } g} = {x \in M_1 | x \in f^{-1}(\text{ker } g)} = f^{-1}(\text{ker } g)$. By Proposition 1.1(2), we get $f^{-1}(ker g) \leq^{s} M_1$, (since $ker g \leq^{s} M_2$), this implies $ker \psi \leq^{s} M_1$ and hence $\psi = 0$, as M_1 is strongly *K*-nonsigular. Thus, $0 = f^{-1} \circ g(Imf) = f^{-1} \circ g(M_2)$, thus $Im g \subseteq ker f^{-1} = 0$. Therefore $g = 0$. ■

Proposition 18. Let *M* be a faithful scalar *R*-module. Then *R* is strongly *K*-nonsigular if and only if $S = End_R(M)$ is strongly *K*-nonsigular.

Proof. Since *M* is a scalar *R*-module, then by [15, Lemma 3.6.2] $S = End_R(M) \cong R/r_R(M)$, but *M* is faithful, hence $S = End_R(M) \cong R$. By Proposition 17, the result is follow. ■

Proposition 19. Let *M* be a faithful multiplication *R*-module. If *R* is strongly *K*-nonsigular, then $r_R(N) = r_R(M)$ for all $N \leq^s M$.

Proof. As M is a faithful multiplication R-module, if $N \leq^{s} M$, there is $I \leq^{s} R$ with $N = MI$, by Lemma 15 (*ii*). For $r \in r_R(N)$, $Nr = 0$, then $MI.r = 0$, hence $Ir \subseteq r_R(M) = 0$, so $r \in r_R(I)$ implies $r_R(N) = r_R(I)$. Since *R* is strongly *K*-nonsigular with $I \subseteq S^R$, then *I* is a quasi-invertible ideal (by Theorem 2.2), so $r_R(I) = r_R(R) = 0$ by [7, Prop. 1.1.4]. Hence $r_R(N) = 0 = r_R(M)$. ■

3. Direct Summand and Direct Sums

We start with following result.

Proposition 20. Let *M* be a strongly *K*-nonsigular module, and $A \leq M$. If $A \leq^S B_i \leq^{\oplus} M$, then $B_1 = B_2$ for $i \in \{1,2\}$.

Proof. Consider $\rho_i: M \to B_i$ is the canonical projection map, for $i = 1,2$. We have $\rho_1(A) = A =$ $\rho_2(A)$. Since $(1 - \rho_1)\rho_2 \in End_R(M)$, so we have $((1 - \rho_1)\rho_2)(A) = (1 - \rho_1)(\rho_2(A)) =$ $(1 - \rho_1)(\rho_1(A)) = ((1 - \rho_1)\rho_1)(A) = 0$ (since ρ_1 is an idempotent), then $A \subseteq \text{ker}(1 - \rho_1)\rho_2$. Now, $B_2 \leq^{\oplus} M$, so $M = \vec{B_2} \oplus B_2$ for some $\vec{B_2} \leq M$. Hence $((1 - \rho_1)\rho_2)(\vec{B_2}) = (1 \rho_1(\rho_2(\hat{\beta}_2)) = (1 - \rho_1)(0) = 0$, thus $\hat{\beta}_2 \subseteq \ker(1 - \rho_1)\rho_2$. Therefore $\hat{\beta}_2 \oplus A \subseteq \ker(1 - \rho_1)\rho_2$. On the other hand, $\vec{B}_2 \trianglelefteq^5 \vec{B}_2$ and $A \trianglelefteq^5 B_2$, then $\vec{B}_2 \oplus A \trianglelefteq^5 \vec{B}_2 \oplus B_2 = M$ by Proposition 1 (3), and

so $ker(1 - \rho_1)\rho_2 \leq^s M$ which implies $(1 - \rho_1)\rho_2 = 0$, as *M* is strongly *K*-nonsigular. Hence $\rho_2 = \rho_1 \rho_2$, so $B_2 = \rho_2(B_2) = \rho_1 \rho_2(B_2) = \rho_1 (\rho_2(B_2)) = \rho_1(B_2) \subseteq B_1 \Rightarrow B_2 \subseteq B_1$. Similarly, taking $(1 - \rho_2)\rho_1 \in End_R(M)$, and we get $B_1 \subseteq B_2$.

Based on our result, we prove that direct summands of a strongly K -nonsigular module inherit the property.

Proposition 21. A direct summand of a strongly K -nonsigular module is strongly K -nonsigular.

Proof. Let *M* be a strongly *K*-nonsigular module, and $A \leq^{\oplus} M$, so $M = A \oplus B$ for some $B \leq M$. Assume that $f \in End_R(A)$ such that $ker f \subseteq S^s A$. Consider $h = i \circ f \circ \rho \in End_R(M)$, where ρ is the canonical projection map onto A, and *i* is the inclusion map from A to M. So, we have Kerh $=$ $Ker f \bigoplus B$, to see this: for $x \in ker h$, $x = a + b$ where $a \in A$ and $b \in B$ with $h(x) = 0$, so $f(a) = b$ $i \circ f(a) = i \circ f(\rho(x)) = h(x) = 0$, then $a \in \text{ker}f$, and hence $x = a + b \in \text{ker}f + B$, that is; $kerh = kerf + B$. On the other hand, $kerf \cap B \subseteq A \cap B = 0$, which implies $kerh = kerf \oplus B$. Since $ker f \subseteq S$ A and $B \subseteq S$ B, then $ker h = ker f \oplus B \subseteq S$ $A \oplus B = M$ by Proposition 1.1(3). Thus $h = 0$, as *M* strongly *K*-nonsigular. Hence $Im f = f(A) = i \circ f(\rho(M)) = h(M) = 0$. Therfore $f = 0$ and A is strongly K -nonsigular. ■

Definition 22. Let *M* and *N* be two *R*-modules. Then *M* is called strongly *K*-nonsigular relative to *N* if, every $\varphi \in Hom_R(M, N)$ such that $\ker \varphi \leq^s M$, implies $\varphi = 0$. Obviously, *M* is strongly *K*nonsigular if and only if *M* is strongly *K*-nonsigular relative to *M*.

Proposition 23. If *M* is a strongly *K*-nonsigular module. For $N \leq M$, *M* is strongly *K*-nonsigular relative to *N*.

Proof. If $N = M$, clear that M is strongly K -nonsigular relative to N. Assume that $N \neq M$, if $\psi \in$ Hom_R(M, N) with $ker \psi \leq^{s} M$. Consider $h = i \circ \psi$, where *i* is the inclusion map from *N* to *M*. So $h \in End_R(M)$ such that $kerh = ker\psi \leq^s M$, then $h = 0$, as M is strongly K -nonsigular, hence $Im \psi = \psi(M) = i(\psi(M)) = h(M) = 0$, thus $\psi = 0$.

Lemma 24. For a module M, if $N_i \leq^s K_i \leq M$ for $i \in \Lambda = \{1, 2, ..., n\}$, then $\bigcap_{i=1}^n N_i \leq^s \bigcap_{i=1}^n K_i$. **Proof.** Consider the case when the index set $\Lambda = \{1,2\}$. Let $X \ll K_1 \cap K_2$ with $(N_1 \cap N_2) \cap X =$ 0, then $N_1 \cap (N_2 \cap X) = 0$. Since $X \ll K_1 \cap K_2 \subseteq K_1$, then $X \ll K_1$ and hence $N_2 \cap X \ll K_1$ implies $N_2 \cap X = 0$, as $N_1 \trianglelefteq^s K_1$. Also, $X \ll K_2$ and $N_2 \trianglelefteq^s K_2$, hence $X = 0$. Thus $N_1 \cap$ $N_2 \trianglelefteq^s K_1 \cap K_2$.■

Theorem 25. Let $M = M_1 \oplus M_2$ be an *R*-module. Then *M* is strongly *K*-nonsigular if and only if M_i is strongly K -nonsigular relative to M_i , for $i, j \in \{1,2\}$.

Proof. Assume $M = M_1 \oplus M_2$ a strongly K -nonsigular module. By Proposition 21, M_i is strongly K -nonsigular, for $i \in \{1,2\}$. Hence M_i is strongly K -nonsigular relative to M_i , for $i \in \{1,2\}$. Now, let $\varphi \in Hom_R(M_1, M_2)$ such that $\ker \varphi \leq^s M_1$. Consider $\psi = i \circ \varphi \circ \rho \in End_R(M)$, where ρ is

the canonical projection map onto M_1 , $i: M_2 \to M$ is the inclusion map. Clearly, $ker \psi =$ $ker \varphi \oplus M_2$, so $ker \psi = ker \varphi \oplus M_2 \trianglelefteq^s M_1 \oplus M_2 = M$, hence $\psi = 0$ (since *M* is strongly *K*nonsigular). Thus, $\varphi = 0$ and so M_1 is strongly $\mathcal K$ -nonsigular relative to M_2 . M_2 is strongly $\mathcal K$ nonsigular relative to M_1 , similarly. Conversely, if $f \in End_R(M)$ such that $ker f \subseteq^s M$, so we have kerf $\cap M_1 \subseteq^s M_1$, by Lemma 24. Consider $f|_{M_1}: M_1 \to M$ which defined by $f|_{M_1}(x) =$ $f(x + 0)$ for all $x \in M$. We have $ker(f|_{M_1}) = ker f \cap M_1$ as follows: if $a \in ker f \cap M_1$ then $0 =$ $f(a) = f(a + 0) = f|_{M_1}(a)$ and $a \in M_1$, thus $a \in ker(f|_{M_1})$. Now, if $x \in ker(f|_{M_1})$ then $0 =$ $||f||_{M_1}(x) = f(x+0) = f(x)$, so $x \in \text{ker } f \cap M_1$. Consider $g_i = \rho_i \circ f|_{M_1}$, where ρ_i is the canonical projection map onto M_i , for $i \in \{1,2\}$. To prove that $ker(f|_{M_1}) = \bigcap_{i=1}^2 ker g_i$. If $x \in$ $ker(f|_{M_1}), 0 = f|_{M_1}(x)$, so $g_i(x) = \rho_i \circ f|_{M_1}(x) = \rho_i(f|_{M_1}(x)) = \rho_i(0) = 0$, this implies $x \in$ $\bigcap_{i=1}^{2} \text{ker} g_i$. Now, if $x \in \bigcap_{i=1}^{2} \text{ker} g_i$, so $g_i(x) = 0 \Rightarrow \rho_i(f|_{M_1}(x)) = 0 \Rightarrow f|_{M_1}(x) \in$ $\bigcap_{i=1}^{2} \text{ker} \rho_i = M_2 \cap M_1 = 0 \Rightarrow x \in \text{ker}(f|_{M_1})$ for $i \in \{1,2\}$. So $\bigcap_{i=1}^{2} \text{ker} g_i = \text{ker}(f|_{M_1}) =$ $ker f \cap M_1 \trianglelefteq^s M_1$, hence by Proposition 1, $ker g_1 \trianglelefteq^s M_1$ and $ker g_2 \trianglelefteq^s M_1$. By hypothesis, $g_i =$ $0 \Rightarrow \rho_i (Im f|_{M_1}) = 0 \Rightarrow Im f|_{M_1} \subseteq \bigcap_{i=1}^2 ker\rho_i = 0$ for $i \in \{1,2\}$, implies $f|_{M_1} = 0$. Similarly, we obtain $h_i = \rho_i \circ f|_{M_2} = 0$ for $i \in \{1,2\}$, and hence $f|_{M_2} = 0$. So $f|_{M_i} = 0$ for $i \in \{1,2\}$. Therefore $f = 0$, and $M = M_1 \oplus M_2$ is strongly $\mathcal K$ -nonsigular. ■

Corollary 26. If $M = \bigoplus_{i=1}^{n} M_i$. Then M is a strongly K -nonsigular module if and only if M_i is strongly *K*-nonsigular relative to M_i , for $i, j \in \{1,2,...,n\}$.

Proposition 27. Let $M = M_1 + M_2$ be an *R*-module, where $M_1, M_2 \leq M$. If $\frac{M}{M_1 \cap M_2}$ is a strongly *K*-nonsigular *R*-module, then both of $\frac{M}{M_1}$ and $\frac{M}{M_2}$ is strongly *K*-nonsigular.

Proof. We have $\frac{M_1}{M_1 \cap M_2} + \frac{M_2}{M_1 \cap M_2} = \frac{M_1 + M_2}{M_1 \cap M_2} = \frac{M}{M_1 \cap M_2}$, also $\frac{M_1}{M_1 \cap M_2} \cap \frac{M_2}{M_1 \cap M_2} = \frac{M_1 \cap M_2}{M_1 \cap M_2} = 0$ $M_1 \cap M_2$, thus \boldsymbol{M} $\frac{M}{M_1 \cap M_2} = \frac{M_1}{M_1 \cap M_2} \oplus \frac{M_2}{M_1 \cap M_2}$. As $\frac{M}{M_1 \cap M_2}$ is strongly *K*-nonsigular, so by Proposition 3.2, $\frac{M_i}{M_1 \cap M_2}$ $\frac{M_i}{\cdot}$ is strongly *K*-nonsigular for $i = 1,2$. But, we have $\frac{M_2}{M_1 \cap M_2} \approx \frac{M_1 + M_2}{M_1}$ $\frac{M_1 + M_2}{M_1} = \frac{M}{M_1}$ and $\frac{M_1}{M_1 \cap M_2} \cong \frac{M_1 + M_2}{M_2}$ $\frac{1+\mu_2}{M_2} =$ \boldsymbol{M} $\frac{M}{M_2}$, so by Proposition 16, $\frac{M}{M_1}$ and $\frac{M}{M_2}$ are strongly *K*-nonsigular. ■

4. Connections to other Topics

In this section, we can prove some relations between strongly K -nonsigular modules and other classes of modules, such examples, semisimple, Rickart, quasi-Dedekind and prime modules.

Example 28. Every module has no nonzero small submodule, all its submodules are s-essential, and hence does not strongly K -nonsigular. Notice, every submodule in Z_Z is s-essential, because the zero is the only small submodule of Z_z , hence Z_z is not strongly $\mathcal K$ -nonsigular. In particular, every simple (semisimple) module is not strongly $\mathcal K$ -nonsigular. But, we know every semisimple module is K -nonsigular.

Remark 29. It is clear that every strongly K -nonsigular module is K -nonsigular, but the converse need not be true, in general, a semisimple module is K -nonsigular but not strongly K -nonsigular.

Lemma 30. Let *M* be a Hollow (not simple) module, and $A \leq M$. Then *A* is essential if and only if A is s-essential.

Proof. ⇒) Clear. ∈) Assume $(0 \neq)A \leq^{s} M$ such that $A \cap B = 0$, where $B \leq M$. If $B = M$, then $A = 0$, a contradiction. Thus *B* is a proper in *M*, hence $B \ll M$ (since *M* is Hollow), and so $B =$ 0, as $A \trianglelefteq^s M$. Therfore $A \trianglelefteq M$. ■

However, we consider the following Proposition by Lemma 30.

Proposition 31. Let *M* be a Hollow (not simple) module. Then *M* is strongly K -nonsigular if and only if *M* is K -nonsigular.

An *R*-module *M* is said to be Rickart if $r_M(\varphi) = Ker\varphi$ is a direct summand of *M* for each $\varphi \in$ $End_R(M)$ [16]. Recall that an *R*-module *M* is quasi-Dedekind if, for any $(0 \neq)\varphi \in End_R(M)$, is a monomorphism (*i.e.* $ker \varphi = 0$) [7].

Obviously, Rickart, quasi-Dedekind modules are K -nonsigular. Note that the *Z*-module Z_6 is semisimple, so it is Rickart, but not strongly K -nonsigular. Also we know Z_Z is quasi-Dedekind, but it is not strongly K -nonsigular. However, we have the following Corollary which follows by Proposition 4.4.

Corollary 32. For a Hollow (not simple) module *M*. If *M* is Rickart (or quasi-Dedekind), then *M* is strongly K -nonsigular.

Lemma 33. Let *M* be an *R*-module. If $S = End_R(M)$ is a regular ring, then *M* is Rickart.

Proof. Assume $\varphi \in S = End_R(M)$. Since S is a regular ring, so φ a regular element, thus $\text{ker}\varphi$ ≤[⊕] *M*, by [17, Cor. 3.2]. Hence *M* is a Rickart module. ■

Corollary 34. If *M* is a Hollow (not simple) *R*-module with $S = End_R(M)$ is a regular ring, then *M* is strongly K -nonsigular.

Proof. It follows directly by Lemma 33 and Corollary 34. ∎

Lemma 35. If *M* is a uniform module has nonzero small submodule, then s-essential submodule implies essential.

Proof. Assume $X \leq M$. Put $X = 0$. Let N be a nonzero small submodule of M, then $X \cap N = 0$ which implies $X \not\cong^s M$. Hence the result is obtained. ■

Note that *Z*-module *Z* is uniform, the zero submodule of Z_Z is s-essential but not essential (in fact, 0 is the only small submodule of Z_z).

However, we have the following.

Proposition 36. Let *M* be a uniform module has nonzero small submodule. Then *M* is strongly K nonsigular if and only if *M* is K -nonsigular.

Proof. It follows by Lemma 35. ∎

Recall [18], a module *M* is called prime if for all nonzero submodule *N* of *M*, $r_R(N) = r_R(M)$. Mijbass in [7, Th. 2.3.14], presented the following Theorem.

Theorem 37. A module *M* is uniform quasi-Dedekind if and only if it is uniform prime.

Proposition 38. Let *M* be a uniform *R*-module has nonzero small submodule. Then the following asseretions are equivalent.

- (i) *M* is Rickart.
- (*ii*) M is K -nonsigular.
- (*iii*) *M* is strongly K -nonsigular.
- (iv) *M* is quasi-Dedekind.
- (v) *M* is prime.
- (vi) For $N \trianglelefteq^s M$, $r_R(N) = r_R(M)$.

Proof. (*i*) \Rightarrow (*iv*) Since *M* is a uniform *R*-module, then *M* is indecomposable. Let $\varphi \in End_R(M)$ with $\varphi \neq 0$, then $\ker \varphi \leq^{\oplus} M$, as M is Rickart. So, either $\ker \varphi = M$ or $\ker \varphi = 0$. If $\ker \varphi = M$ then $\varphi = 0$, a contradiction. Hence $\ker \varphi = 0$, implies *M* is quasi-Dedekind.

 $(iv) \Rightarrow (i)$ Let $\varphi \in End_R(M)$. If $\varphi = 0$, then $\ker \varphi = M \leq \varphi M$. Assume that $\varphi \neq 0$, but M is a quasi-Dedekind module, so $ker \varphi = 0 \leq^{\oplus} M$. Thus *M* is Rickart.

- $(ii) \Leftrightarrow (iii)$ It follows by Proposition 36.
- $(ii) \Leftrightarrow (iv)$ Since *M* is a uniform module, the result is follow.
- $(iv) \Leftrightarrow (v)$ It follows by Theorem 37.

 $(v) \leftrightarrow (vi)$ Since *M* is uniform has nonzero small submodule, then all its nonzero submodules are s-essential, so the result is obtained. ∎

5. Conclusion

The most important results of the article are:

- **(1)** Let *M* be a faithful multiplication *R*-module. If *M* is a strongly K -nonsigular *R*-module, then *R* is strongly K -nonsigular. The converse holds, whenever *M* is finitely generated.
- (2) A direct summand of a strongly K -nonsigular module is strongly K -nonsigular.
- **(3)** If $M = \bigoplus_{i=1}^{n} M_i$. Then M is a strongly K -nonsigular module if and only if M_i is strongly *K*-nonsingular relative to M_i , for $i, j \in \{1,2,...,n\}$.

References

- 1. Leonard, W.W. Small modules. *Pro. Amer. Math. Soc.* **1966**, *2*, 527-531.
- 2. Fluery, P. Hollow modules and local endomorphism rings. *Pacific J. Math.* **1974**, *4*, 379- 385.

https://doi.org/10.30526/32.1.1919 *Vol. 32 (1) 2019*

- 3. Goodearl, K.R. *Ring theory, Nonsingular rings and modules*. Marcel Dekker. Newyork and Basel. **1976**.
- 4. Zhou, D.X.; Zhang, X.R. Small-essential submodules and morita duality. *Southeast Asian Bulletin of math*. **2011**, *35, 6,* 1051-1062.
- 5. Roman, C.S. Baer and Quasi-Baer modules. Doctoral Dissertation. The Ohio state Univ. **2004**.
- 6. Rizvi, S.T; Roman, C.S. On K -nonsigular modules and applications. *comm. In Algebra.* **2007**, 3, 2960-2982.
- 7. Mijbass, A.S. Quasi-Dedekind modules. Ph.D. Thesis. College of Science. University of Baghdad. Iraq. **1997**.
- 8. Kasch, F. *Modules and Rings*. Academic press. New York. **1982**.
- 9. Wisbauer, R. *Foundations of module and ring theory, reading.* Gordon and Breach Science Pub. **1991**.
- 10. Clark, J.; Lomp C.; Vanaja, N.; Wisbauer, R. *Lifting modules*. Supplements and projectivity in module theory. Frontiers in Mathematics. Birkhauser. Basel. **2006**.
- 11. Zelmanowitz, J.M. Representation of rings with faithful polyform modules. *comm. In Algebra*. **1986**, *14, 6,* 1141-1169.
- 12. Branard, B. Multiplication modules. *Journal of Algebra*. **1981**, *3*, 170-178.
- 13. Shihab, B.N. Scalar reflexive modules. Ph.D. Thesis. University of Baghdad. Iraq. **2004**.
- 14. Naoum, A.G. On the ring of Endomorphisms of finitely generated multiplication modules. *Periodica Math. Hungarica.* **1990**, *21, 3*, 249-255.
- 15. Mohamed-Ali, E.A. On Ikeda-Nakayama modules. Ph.D. Thesis. University of Baghdad. Iraq. **2006**.
- 16. Lee, G.; Rizvi, S.T.; Roman, C.S. Rickart modules. *Commutative In Algebra*. **2010**, *4*, 4005-4027.
- 17. Ware, R. Endomorphism rings of projective modules. *Trans. Amer. Math. Soc.* **1971***,* 233- 256.
- 18. Desale, G.; Nicholson, W.K. Endoprimitive rings. *J. Algebra*. **1981**, 548-560.
- 19. Hadi, I. M-A and Ghawi, Th.Y. Essentially Quasi-Invertible Submodules and Essentially Quasi-Dedekind Modules. *Ibn AL-Haitham J. For Pure & Appl. Sci.* **2011**, *24, 3*, 102-113.