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Abstract

Let M be a unitary R-module and R is a commutative ring with identity. Our aim in this
paper to study the concepts T-ABSO fuzzy ideals, T-ABSO fuzzy submodules and T-ABSO
quasi primary fuzzy submodules, also we discuss these concepts in the class of multiplication
fuzzy modules and relationships between these concepts. Many new basic properties and
characterizations on these concepts are given.

Keywords: T-ABSO fuzzy ideal, T-ABSO fuzzy submodule, Quasi- prime fuzzy submodule,
T-ABSO primary fuzzy submodule, T-ABSO quasi primary fuzzy submodule, Multiplication
fuzzy module.

1. Introduction

In this paper all ring is commutative with identity and all modules are unitary. Deniz S. et al
in [1] presented the concept of 2-absorbing fuzzy ideal which is a generalization of prime fuzzy
ideal. Prime submodule which play an important turn in the module theory over a commutative
ring. A prime submodule N of an R-module M, N£M, with property a€R, x€M, ax€N implies
that EN or a € (N: M) [2]. This concept was generalized to concept of prime fuzzy submodule
which was presented by Rabi [3]. In 1999, Abdul-Razakm, presented and studied quasi-prime
submodule let N < M, N be called a quasi-prime if for a, b €R, meM, abmeN, implies either
ameN or bmeN [4]. In 2001, Hatam generalized it to fuzzy quasi-prime submodules [5].
Darani, et al in [6] presented the definition of 2-absorbing submodule. Let N < M, N be called
2-absorbing submodule of M if wheneverr, b € R, x € M and rbx € N, then rx € N or bx € N or
tb € (N: M). Hatam and wafaa expanded this concept that is: if X be a fuzzy module of an R-
module M. A proper fuzzy submodule 4 of X is called T-ABSO fuzzy submodule if whenever
as , b; be fuzzy singletons of R, and x, € X, V s,l,v € L, such that asb;x,, € A, then either
asb; € (A:g X) or agx, € A or byx,, € A [7]. McCasland and Moore presented the concept of
M-radical of N such: Let N be a proper module of a nonzero R-module M, then the M-radical
of N, denoted by M-rad N is defined to be the intersection of all prime module including N, see
[8]. Mostafanasab et al, were presented the connotation of 2-absorbing primary submodule. So,
A proper submodule N of an R-module M is called 2-absorbing primary submodule of M if
whenever a, b€ R and m€ M and abm€ N, then am€ M-rad N or bm€ M-rad N or ab€ (N:x M),
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[9]. Rabi and Hassan in 2008 were presented the concept of quasi primary fuzzy submodule. A
proper fuzzy submodule 4 of fuzzy module X is said to be quasi primary fuzzy submodule if
(4:B) is a primary fuzzy ideal of R for each fuzzy submodule B of X such that 4 < B [10]. Suat
K. et al, studied and presented the connotation of 2-absorbing quasi primary submodule, i.e.,
A proper submodule N of M is said to be 2-absorbing quasi primary submodule if the
condition abg€ N implies either ab€y/N:x M or ag€ M-rad(N) or bg€ M-rad(N) for every a,
b€ R and g€ M [11]. This paper is composed of two sections.

In section (1) we present the definition of T-ABSO fuzzy ideals and we give some
characterizations of this definition for ideals. Also many properties and outcomes of this
concept are given. In section (2) we present the definition of T-ABSO fuzzy submodules, many
basic properties and outcomes are studied. In section (3) we present the concept of T-ABSO
quasi primary fuzzy submodules and we study the relationships this concept with among T-
ABSO fuzzy submodules and T-ABSO primary fuzzy submodules. Several important results
have been demonstrated. Note that we denote to fuzzy module, submodule.

2. T-ABSO F. Ideals
In this section, we introduce the concepts of T-ABSO and T-ABSO primary ideals. Some
concepts and propositions which are needed in the next section.

Definition 1. [1]

Let F be a non-constant F. ideal of R. Then H is called T-ABSO F. ideal if for any F. points
as, b;, 1, of R, azh; 1, € H implies that either a;h, € H or as 1, € Hor b; 1y, € H.
The following proposition characterize T-ABSO F. ideal in terms of its level ideal.

Lemma 2. [1]
Let A be F. ideal of R. If 4 is T-ABSO F. ideal, then A, is T-ABSO ideal of R, Vv EL,

Recall that Let H be any F. ideal of R. Then the radical F. of H, denoted by \/ﬁ, is defined by:

\/ﬁ =N{U:U is a prime F. ideal of R containing H} [12].
Now, we give these propositions which are used in the next section.

Proposition 3.
Suppose that R be a ring and H is T-ABSO F. ideal of R. Then v H is T-ABSO F. ideal of R

and a2CH for each F. singleton a,,€ VH, Vv € L.

Proof. Let [ be T-ABSO F. ideal and a,< v/, hence a € /A, . Then a? € f,,.
So that A(a?) > v. Thus (a,)? € H. Since (a,)? = a2, so that a% < H. Now, let ag, b;, 1, be

F. singletons of R such that asb;7, S VA. Then (ag b, 1)? = a2 b? r# € H. Since H is T-
ABSO F. ideal, then either a? b? € H or a?r? €H or b? r? € H, since (ash))? = a? b?,
(asr)? = a?r? , (b))% = b} v hence either (agh))? S Hor (asm)? € H or (b))% C

H. So that either ash, € VH or a,n, S \/ﬁ or by, € \/ﬁ Thus \/ﬁis T-ABSO F. ideal of R.
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Lemma 4.

Let HS P be F. ideal of a ring R, where P is a prime F. ideal. Then the following
expressions are equivalent:
1- P is a minimal prime F. ideal of H;
2- For each F. singleton a,,E P, there exists F. singleton b; of R\P and a non-negative integer n
such that b;a? S H,V v, € L.

Proof. (1) = (2) Let P be a minimal prime F. ideal of H and a,, S P, suppose that for every F.
singleton b; of R\P, b;a? & H, Vn€ N. Inparticular, a? & H, Vn EN.

Let A={1, a,, a2 ...} and B={K: K is F. ideal of R such that KN4=@, HS K< P}. Then B#Q,
since HCB, it is obvious B is partially ordered by inclusion. By [13], B has a maximal F. ideal
say U. Then U is a prime F. ideal by [12], such that HE US P. Since P is a minimal prime F.
ideal of H, so U=TP this is a contradiction to a, € P=U, hence b;a? < H.

(2) =>(1) Suppose that for each F. singleton a,, S P, there exists F. singleton b; of R\ P and
neN such that b;a? < H. Let K be a prime F. ideal of R such that HE KS P.

We claim that PC K. Since a, € P, then there exists F. singleton b;< R\ P and n€N such that
b,a? < HE K. Since K is a prime F. ideal, then either b, K or a? € K. Hence a,S K as b,C
R\ P. So that PC K, then P=K; that is P is a minimal prime F. ideal of H.

Proposition 5.

Suppose that F is T-ABSO F. ideal of a ring R. Then there are at most two prime F ideals of
R that are minimal over H.

Proof. Assume that K={P;: P; is a prime F. ideal of R which is minimal over H}. Let K have at
least three prime F. ideals. Let P; , P, € K be two different prime F. ideals. Then there exists F.
singleton a; € P;\P, and there exists F singleton b; € P,\P;.

We show that ash; € H. By lemma (4), there exist F. singletons x,, € P, and y, & P,,
such that x,a? € H and y,b™ € A for some n, m >1. Since H is T-ABSO F. ideal of R, we
have x,a; € H and y,b, € H. Since a,,b; € P, NP, and x,a,, y,b SAS P, NP, ,
we get x, € P,\P; and y, S P;\P,, thus x,,y, € P, NP,. Since x,a;, € H and y,b,
H, have (x, + y,)ash; € H. Observe that (x, + y,) &€ P, and (x,, + y,) € P,. Since (x, +
y)as € P, and (x, + yp)b, & P;, we conclude that neither (x, + y,)as € H nor (x, +
vy )b, € H and hence a;b; S H. Now, suppose there exists P3€ K such that P; is neither P,
nor P,.Then we can choose r, € P;\(P, UP3), ¢, € P,\(P, UP;3) and d,, € P;\(P, U
P,). By the same way we show that 7;.c,, € H. Since HCSP, NP, NP3 and 1, S H, we get
either 1, € P; or ¢, € P this is a discrepancy. Hence K has at most two prime F. ideals of R.

Proposition 6

Let H be T-ABSO F. ideal of R. Then one of the following expressions must hold
1- \/ﬁ =P is a prime F. ideal of R such that P> € H

2- \/ﬁ: P,NP,, P, P, € H and (\/ﬁ)2 c H where P;, P, are the only distinct prime F.
ideals  of R that are minimal over H.
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Proof. By proposition (5), we get either \/E=P is a prime F. ideal of R or \/ﬁ =P, NP,,
where Py, P, are the only distinct prime F. ideals of R that are minimal over FI. Assume that

\/ﬁ =P is prime F. ideal of R. Let F. singletons a,b; € P . By proposition (3), we have
a?,b? € H. So that ag (ag + b;)b, € A. Since H is T-ABSO F. ideal, we get ag (ag + b)) =
a?+asb; €H or (ag+b)b, = asb; +b? €H or agb, € H. From each case implies that
a,b, € H, and so P? € A. Suppose that \/ﬁ = P, N P,, where P, P, are the only distinct
prime F. ideals of R that are minimal over H. Let F singletons ag , b, S \/ﬁ By the same way
of above, we have ash; € H and hence (\/ﬁ)z c H. Now, we show that, P,P, € H. By
proposition (3), we have x2 € H for each F singleton x, S \/ﬁ . Let be F singleton y;, S
P1\P, and 1, € P,\P;. By the proof of proposition (5), we have y,7;, € H. Let F singletons
¢, €VvH and d,, € P,\P;, choose F singleton f, € P;\P, . Then f,d,, S H by the proof of
proposition (5) and (¢, + f,) € P;\P,. Thus c,d,, + fudm = (¢ + fu)dm € H. So that
cpd,, S H. By the same method we show that if ¢, S \/ﬁ and d,, S P;\P, .Thus P,P, € H.

Proposition 7

Let A be T-ABSO F. ideal of R such that \/ﬁ =P is a prime F. ideal, of Rand suppose that
H#P. For each F. singleton a,, € P\A, let Ay, ={bi S R:ha, < A}, V v, [ EL. Then Ay, isa
prime F. ideal of R included P. Futhermore, either A, € A, or A, < Ap, for each F.

singletons a,, b, € P\H .

Proof. Let a,, € P\H. Since P? € H by proposition (6), we have PS Ag,- Assume that P£A,
and b;ry, € A, for some F. singleton b, 7y of R. Since PS 4, , we may suppose that b, € P
and 1, & P, hence b;r;, € H. Since b1y, S Ag, we have by a,, © A. Since H is T-ABSO F.
ideal of R and b;r,, & H, we have either b;a,, € H or r,a, S H, thus either b, © Ag, or 1 ©
Ag,. Hence A, is a prime F. ideal of R included P. Now, let a,, b; P\H for F. singletons
ay, by of R and assume that F singleton 1, © A, \ Ap,,. Since P S A4;,s0 1 € A \P . We
show that A;,, S A, . Let F singleton x; of R such that x; & A;,. Since PS A, , we may
suppose that x; € A, P. Since 1, € P and x; & P, we have ryx; € . Since 1. (a, + b)xs S
A and ryx, ,7m.b; € A, we have (a, + b))x, S H. Hence a,x, < H since (a, + b)x; € H and
xsb; € H. Hence x, € Ag, - Sothat A, S Ag .

Proposition 8. Assume that His F.ideal of R such that ﬁ;é\/ﬁ and VvH isa prime F. ideal of
R. Then the following expressions are equivalent:
1- His T-ABSO F. ideal of R;

2- Ay, ={b, S R: ba, < A}, v v,[ €L, is a prime F. ideal of R for each F. singleton a, € \/ﬁ\
A.
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Proof. (1) = (2) This is obvious by proposition (7).

(2)=(1) Assume that a,,b;r, € H for F. singletons a,,, b;, 1, of R.

Since vV H is a prime F. ideal of R, we may suppose that a,, © \/ﬁ .

If a, € H, then a,b, € H. Thus suppose that a, S \/ﬁ)\lﬁl. Hence by, © A,,- But 4, is a

prime F. ideal of R , then by proposition (7), either b,a, SH or n.a, S H. Thus H is T-
ABSO F. ideal of R.

Proposition 9.

Assume that H is a non-constant proper F. ideal of a ring R. Then the following expressions
are equivalent:
1- His T-ABSO F. ideal of R;
2-IfUKT <€ H for F.ideals U,K,T ofR, UK € H or KT € H or UT € H.
Proof. (1)=(2) Assume that UKT € H for F.ideals U, K, T of R. By proposition (5), we have
\/ﬁ is a prime F. ideal of R or \/ﬁ =P, NP, where P,, P, are non-constant distinct prime F.
ideals of R that are minimal over H. If H=v H, then it is readily showed that, UK € H or KT C
H or UT < H. Thus suppose that ﬁ#x/ﬁ. We see the following:
(1) Assume that \/ﬁ is a prime F. ideal of R. Then we perhaps suppose that U € vH andU &
H. Let F. singleton a,, of R such that a,, € U\H. Since a,, KT S H, we have KT € Ag, where
Aq, =
either K € A, or TS A, .If K< Ay and T < A, for each F. singleton x; & U\H, then
UK < A (and UT < H) and we are finished. Hence suppose that K € Apand T & A, for some
F. singleton 1, € U\H. Since {Ay,:wy & U\H}, is a set of prime F. ideals of R that are
linearly ordered by proposition (7), since K € A, andT £ A
singleton z, € U\H. ThusUK < H.

{bl C R:bja, € I:I} . Since A, is a prime F. ideal of R by proposition (8), we have

e We have K € A, for some F.

(2) Assume that \/T =P, NP, where P;,P, are non-constant distinct prime F. ideals of R
that are minimal over H. We suppose that J € P. If either K € P, or T C P,, then either

UK € H or UT € A because P, P, € H by proposition (6). Hence suppose that [J S Ja
andU ¢ A . By the same way in (1) and by proposition (7), we are finished from this proof.

(2)=> (1) itis trivial. Now, we give the concept of T-ABSO quasi primary F. ideal as follows:

Definition 10.

A proper F. ideal H of R is called T-ABSO quasi primary F. ideal of R if \/ﬁ is T-ABSO F.
ideal of R.

Proposition 11.
A proper F. ideal H of R is T-ABSO quasi primary F. of R iff whenever for each F.

singleton ag, by, 1y, of R, Vs, [, h € L, such that a;b;r, € H, then ash, € VH or agr, S \/ﬁ or
blrh c \/ﬁ .
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Proof. (&) Suppose that H is a proper F. ideal of R and whenever for each F. singleton
as, by, mpof R, such that agh;ry, € H, then ash, € VH or agr, S \/ﬁ or byry, € \/ﬁ . Let
asbh;my, € \/ﬁ , a1y € \/ﬁ and byry, & \/ﬁ . Since agh;ry, S \/ﬁ , then there exists n€ Z* such
tha (ash;r)" = al’blr* € H. Since alr* € H and b ¢ H, then we have al'h =

(ash)™ € H. So that a.b;, \/ﬁ . Thus \/ﬁ is T-ABSO F. ideal of R and so that H is T-
ABSO quasi primary F. of R.
(=) Let H be T-ABSO quasi primary F. ideal of R and for each F. singleton a, b;, 75, of R,

such that agb;r, € H. Since H € vVH and \/ﬁ is T-ABSO F. ideal of R. So that ash; C \/ﬁ

or asr, © \/ﬁ or byry, € \/ﬁ . The proposition specificities T-ABSO quasi primary F. ideal in
terms of its level ideal is given as follow

Proposition 12.

A F. ideal H of R is T-ABSO quasi primary F. iff the level ideal A, is T-ABSO quasi
primary ideal of R, V v € L.
Proof. ( =) Let abr€ H, for each a, b, » € R then H(abr)> v hence (abr), S H. So that

ash;r, S H where v=min{s,/, k}. Since H is T-ABSO quasi primary F., then either a,h; S \/ﬁ
or agr, S \/ﬁ or hr, © \/ﬁ hence either (ab), < \/ﬁ or (ar), S \/ﬁ or (br), S \/ﬁ and
so ab€e \/l:l_v or ar € \/l:l_v or br€ \/l:l_v . Thus H, is T-ABSO quasi primary ideal of R.
(&) Let agbh;ry, € H for F. singletons a,, by, , of R,V s, [, k € L. Hence (abr), € A4,
where v =min{s,/, k}, so that H(abr)>v and abr€ H,. But H, is T-ABSO quasi primary ideal

then either ab€ /H, or ar € \/H, or br € \/H,, hence either (ab), S \/ﬁ or (ar), € \/ﬁ

or (br), € \/ﬁ So that either agh; € VH or asr, S VH or by S \/ﬁ . Thus H is T-ABSO
quasi primary F. ideal of R. The following theorem gives a characterization of T-ABSO quasi
primary F. ideal.

Theorem 13.
Let H be a proper F. ideal of R. Then H is T-ABSO quasi primary F. ideal iff whenever

UKT € H for some F. ideals U, K, T of R, then UK € v H or UT €+H or KT € \/ﬁ .Proof.
(&) Assume that UKT € H for some F. ideals U, K, T of R, then UK € \/ﬁ or UTS+H or
KT € VHandlet asb;r, € H for F. singleton a, by, 1 of R . Hence < ag >< b; >< 1, >C
A and so that < a, >< b, >C VA or <a, ><1n, >CVA or <b, >< 1, >C /A . Then

asb SVH or agr S \/ﬁ or b, € \/ﬁ By proposition (11), then H is T-ABSO quasi
primary F. ideal of R.
(=) Assume that H is T-ABSO quasi primary F. ideal of R and UKT < H for some F. ideals

U,K, T of R, then UKT < v/ . Since A is T-ABSO F. ideal of R, then UK €A or UT €
\/ﬁ or KT \/ﬁ by proposition (9).

115



Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHTPAS

https://doi.org/10.30526/32.1.1930 Yol. 32 (1) 2019

3. T-ABSO F. Subm.
In this section we present the concept of T-ABSO F. subm. and we introduce many basic
properties and results about this concept.

Definition 14.

Let X be F. M. of an R-M. M. A proper F. subm. A of X is called T-ABSO F. subm. if
whenever ag , b; be F. singletons of R, and x, € X , Vs,[,v € L such that agh;x,, € A, then
either a.b; € (A:g X) or asx, €A orbyx, €A, see[7].

The proposition specificities T-ABSO F. subm. in terms of its level subm. is given as follow:

Proposition 15.
Let 4 be T-ABSO F. subm. of F. M. X of an R-M. M., iff the level subm. 4,, is T-ABSO
subm. of X, forall v € L, see[7].

Remarks and Examples
1. The intersection of two distinct prime F. subms. of F. M. X of an R-M, M is T-ABSO

F. subm.

Proof. Let 4 and B be two distinct prime F. subms. of X. Suppose that F. singletons ag, b;of R,
X, € X such that agb;x, S ANB, but agx, €ANB and b)x, £ ANB. Then asx, € A,
byx, € A, agx, £ B and b;x,, € B these are impossible since 4 and B are prime F. subms. So
suppose that a;x, € A and b;x,, € B. Since azb;x, € A and asb;x, € B, then b; C (A:x X)
and ag € (B:x X). So that asb; € (A:x X) N (B:x X) = (AN B:x X). Thus AN B is T-ABSO
F. subm. of X. (2). Every prime F. subm. is T-ABSO F. subm. Proof. Let 4 be a prime F. subm.
of F. M. X of an R-M. M. Letash;x;, € A for F. singletons ag, b, of R and x;, € X. Then
(abx), € A where v = min{s, /, k }. Since 4 is a proper subm. of X then A, is a proper
subm. of X, hence A, is prime subm. of X,,. So that A4, is T-ABSO subm. (see [14]), hence
ab € (A:g X), , then either (ab), € (A:g X) or (ax), € A or (bx), € A. So either ab €
(Ay:g Xy) or ax € A, or bx€A, .

Since (4,:g Xy,) = (A:g X), by [5]. So that Then either agb; © (A:x X) or asx, S A or
b;x;, € A. Thus 4 is T-ABSO F. subm. of X. However, the converse incorrect in general, for
example:

Let X: Z,, — L such that X() :{%) Lfoy ; Zy4

It is obvious that X'is F. M. of Z,, as Z-M.

Let A4: Z,, — L such that A(y) :{g if y € (6) VvEeL
0.W.

It is obvious that A is F. subm. of X. Now A, =(6) is not prime subm. of Z,, ,since 2.3 €
(6) but3 & (6) and 2¢((6):, Z,,) = 6Z . But (6) = (2) n (3) is T-ABSO subm.of Z,, as
Z-M. by [14]. So A, is T-ABSO subm., but not prime subm.,implies that 4 is T-ABSO F.
subm., but not prime F. subm. (3) It obvious every quasi-prime F. subm. is T-ABSO F. subm.
However T-ABSO F. subm. may not be quasi-prime F.
subm. for example:

1 ifyeZ

Let X:Z—L such that X0 { f ye
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It is obvious that Xis F. M. of Z-M. Z.
Let A: Z—L such that A(y) ={U ify €6z VvEeL
0 0.W.

It is obvious that 4 is F. subm. of X.

A,=6Zis T-ABSO subm. of Z, since if x, y, z€ Z and xyz€ 6Z= A,, then at least one of x, y
and z is even or one of them is 6. Then either xy€ A,, or xz€ A, or yz€ A,. But 6Z=A,, is not
quasi-prime, since 2.3.1€6Z, but 2.1¢6Z and 3.1€¢6Z. So

that 4 is T-ABSO F. subm., but 4 is not quasi-prime F. subm. (4) Let 4, B be two F. subms.
of F. M. X of an R-M. M, and BcA. If A is T-ABSO F. subm. of X, then it is not necessary
that B is a T-ABSO F. subm., for example:

Let X: Z,, — L such that X(y) ={10 lfz Sv Z2a

It is obvious that Xis F. M. of Z-M. Z,, .

Let A4: Z,, — L such that A(y) ={1(7) ifye@ VYvEeL
0.W.

And B:Z,, = L such that B(y) :{UO if y € (12) VvEeL
0.W.

It is obvious that 4 and B are F. subms. of X.

Now, A, =(2) and B, =(12) where B, c A,, since A, =(2) is maximal subm. of Z,, as Z-
M., then 4, is prime subm. by[15]. Implies that A,, is T-ABSO subm. by [14]. But 2.2.3 € B,,,
2.3 & B, and 2.2=4¢(B,:, Z,,) = 12Z. Thus B, is not T-A
BSO subm. Of Z,, as Z-M. hence B is not T-ABSO F. subm. (5) Let 4 and B be F. subms. of
F.M. Xofan R-M . Mand ACB.If A4is T-ABSO F . subm. of X, then 4
is T-ABSO F. subm. of B. Proof. If B =X, then don't need to prove. Let asb;x; € A for F.
singletons ag, b; of R and x;, © B, implies (abx), € A hence v = min{s, [, k}
abx€A,,, where a,b€ER, x€B,. Since ACB implies where 4, c B, . Since 4 is T-ABS O F.
subm. of X, then 4, is T-ABSO subm. Of X,,. Hence A,, is T-ABSO subm. Of B, by [14], so
that either ab € (A,:x B,) = ab € (A:x B), orax €A, or bx € A, , then (ab), € (A:x B) or
(ax), € A or (bx), € A, implies either agh; € (A:g B) of T-A or axx, €A or
b;x; € A. Thus A4 is T-ABSO F. subm. of B. (6) The sum BSO F. subm. is not necessary T-
ABSO F. subm., for example:

Let X: Z—L such that X(y)= {(1) if g’ ME, Z

It is obvious that X'is F. M. of Z-M. Z.
Let A: Z—L such that A(y) 2{1(7) ify i/ZZ Vv EeL

It is obvious that A4 is F. subm. of X.
v ifye3Zz

Let B: Z—L such that B(y) —{0 f Z "

It is obvious that B is F. subm. of X. Now, A,=2Z , , B,=3Z where 4,, and B, be T- ABSO

subms. of Z-M. Z, but A, + B, = Z = X,, is not T-ABSO subm., implies that

A+B=X is not T-ABSO F. subm. (7) Let 4 and B be two F. subms. of F. M. X of an

R-M. M. If 4 is T-ABSO F. subm. then it is not necessary that B is T-ABSO F. subm., for

example:

Let X: Z—L such that X(y)= {t l]; yWE Z

VvEL
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It is obvious that Xis F. M. of Z-M. Z.
Let A: Z—L such that A(y) ={U ify €12z VveL
0 0.W.

Let B: Z—L such that B(y) :{16 ify i}loz

It is obvious that 4 and B are F. subms. of X . Now, A,=27 , B,=20Z where 4,, is
T- ABSO subm. of Z as Z-M., but 27=20Z and B,=20Z is not T-ABSO subm.
of Z as Z-M. since 2.2.5€B,=20Z, but 2.5¢ B,=20Z and 2.2¢ B,=20Z. Thus A=B where 4 is
T- ABSO F. subm. of X and B is not T-ABSO F. subm. of X. (8) The intersection of two T-
ABSO F. subms. need not be T-ABSO F. subm., for example:

Let X: Z—L such that X(y)= {t lj; yw €z

It is obvious that X'is F. M. of Z-M. Z.

Let A: 7L such that 4() ={? ify eW1zz Vv

Let B: Z—L such that B(y) :{’(’) if y i}lOZ

It is obvious that 4 and B are F. subms. of X . A,=12Z, B,=10Z are T-ABSO subms. in the Z
as Z-M. But A, N B,=12ZN10Z=120Z which is not T-ABSO since 2.6.10 €120Z, but
2.10€120Z and 6.10€120Z and 2.6€¢120Z. Hence 4 and B subms., but ANB is not T- ABSO F.
subm (9) Let 4 be T-ABSO are two T-ABSO F. subm. of F. M. X of an R-M. M. Then for each
BCJX, either BEA or BNA is T-ABSO F. subm. of B.

VvEL

€L

VvEeL

Proof. Assume that BZA then BNASB Let ag, b; be F. singletons of R and x;, € B, such that
asb;x, € BNA , implies agzb;x;, € A. Since 4 is T-ABSO F. subm., thus either agsb; S
(A:igX) or asxy €A or byxy € A. Then either agh € (BN A:zgB) or asxy, SBNA or
b;x;, € BN A. Thus BNA4 is T-ABSO F. subm. of B.

Proposition 17.

Let f:M; — M, be an epimorphism, where X;, X, are F. M. of R- M. M; and M, resp. If B
is T-ABSO F. subm. of X,, then f~1(B) is T-ABSO F. subm. of X;. Proof. Since B is F. subm.
of X,, then f~1(B) is F. subm. of X;, since f is epimorphism. Let asb;x, S f~1(B) for F.
singletons ag , b; of R and x;, € X;. Then asbh,f (xx) € B and since B is TABSO F. subm., then
either a,f(x) €B or bf(xx) €SB or agh, € (B:g X;). Hence either asx, € f~1(B) or
bif(xx) € f~Y(B) or ash X, € B. But f(X;) € X,, so that ash;f(X;) € B, hence azh;X;
f~Y(B), implies agh; € (f ~1(B):g X; Thus f~1(B) is T-ABSO F. subm. of X,

Proposition 18.

Let f: M; — M, be an epimorphism, and X;,X, are F. M. of R-M. M, and M, resp. Let
A € X, such that F-ker f € 4 . Then A is T-ABSO F. subm. of X; iff f(4) is T-ABSO F.
subm. of X, .
Proof.(=) Let a, b; be F. singletons of R and y, € X, where y, = f(x;) for some F.
singleton x; € X;, such that agh;y, € f(A4). Hence ash;f(x;) € f(A) asbf (xx) € f(A)
since f* is onto. Then agb;f (x) = f(z,) for some F. singleton z, € A. So that f(ash;x;) =
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f(z,), hence f(ash;x;) — f(z,) = 04; that is f(ash;x); — z,) = 04, implies asb;x; — z, S
F — kerf C A.

So that agb;x;,, © A. Since A is T-ABSO F. subm., then either agh; € (A:x X;) or asx, € A
or byx;, € A. Hence either agh)X; €A - f(ash)X,) € f(A) or f(asxy) € f(A) or
f(bixi) € f(A), implies either asb;f(X;) € f(A) = ash X, S f(A) or asf (xx) € f(A) or
b f (xx) € f(A). Then either agh; € (f(A):r X,) or agy, S f(A) or by, € f(A). Thus f
(A) is T-ABSO F. subm. of X,.

(&) Let aghyxy € A for F. singletons ag, b; of R and x;, € X;. Hence f(ashb;x;) € f(A),
implies asb; f (xx) € f(A). But f(4) is T-ABSO F. subm., then either agh; S (f(A):g X,) or
asf(xx) € f(A) or bif (xi) € f(A).

If agh; € (f(A): X,), then agh; X, S f(A), implies ash;f(X;) € f(A) since f is onto.
Hence f(ash;X;) € f(A), so that a;hX; € A ; that is agh; € (A:ig X1). If asf(x,) S
f(A) then f(asx,) = f(z,) for some F. singleton z, € A,V n€ L. Hence f(asx;) —
f(z,) = 04, implies asx; —z, S F —kerf € A. So that agx;, € A . If b;f(x) € f(A)

, then by the same way above, we have b;x; € A. Therefore, 4 is T-ABSO F. subm. of X;.

Proposition 19. Let 4 be a proper F. subm. of F. M. X of an R-M M. Then A4 is T-ABSO

F. subm. of X iff asb;B € A for F. singletons ag, b; of R and B is F . subm. of X
implies agh; € (A:g X) or agB € A or b;B C A.

Proof. (=) Let 4 be T-ABSO F. subm. and ash;B € A. Assume that agh; € (A:X), asB € A
and b;B & A. Then there exist F. singletons x,,y, € B, such that asx, € A and b;y, & A.
Since agb;x, € A and ash; € (A:g X) , asx, € A, we have b;x,, € A. Also since agh;y, € A
and agh; € (A:g X), byyx € A, we have a;y, € A. Now, since agb;(x, + yx) € A and agb; &
(A:g X), we have as(x, +yx) € A or by(x, +yx) € A. If ag(x, + yi) € A, then (asx, +
asyx) € A and since agy, € A, we get agx, € A, this is a discrepancy. If b;(x, + yx) € 4,
then (b;x, + b;y,) € A and since b;x,, € A, we get b;y, € A this is a discrepancy. Thus either
ash; € (A:gX) or agB<S A or b)B € A.

(&) It is obvious. The next theorem gives a characterization of T-ABSO F. subm.

Theorem 20.
Let A be a proper F. subm. of F. M. X of an R-M. M. Then the following expressions are
equivalent:
1- A4is T-ABSO F. subm. of .X;
2- If HUBCA, for some F. ideals H, U of R and F. subm. B of X, then either HBSA or
UBCSA or HUS(4:X) .

Proof. (1)=(2) Suppose that A is T-ABSO F. subm. of X and HUBZSA for some F. ideals

H, U of R and some F. subm. B of X. Let HU & (4:xX), to prove HBSA or UBCA.
Assume that HBZA and UBZA, then there exist F. singletons a; € H and b; € U, such that
a;B € Aand b;B € A. But a;h;B € A and neither a,B € A nor b;B € A and A is T-ABSO F.
subm., so that ash; € (A:g X). Since HUEZ (4:xX), then there exist F. singletons x, € H and
Vi € U, such that x,y,&(4:xX). But x,y,B <A ,sothat x,BS A or y,BCAby
proposition (19).
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Now we have the following:

() If x,B<S A and y,B & A, since a;yyB <A and y,BZ A, a;B &£ A, so that agy, S
(A:g X) by proposition (19). Since x,B € A and a;B € A, hence (a; + x,)B € A. On the
other hand, (a5 + x,)yxB € A and neither (as +x,)B S A nor y,B S A, we get (a5 +
Xy)Vi € (A:g X) by proposition (19). But (as + x,) vk = (asyx + %, Vi) € (A:g X) and
asyr € (A:ig X), we get x,y, S (A:g X) this is a discrepancy.

2)If yxB € A and x,B € A . By the same way of (1), we get a discrepancy.

(3)If x,B< Aand y,B € A . Since y,B < A and b;B &£ A, we have (b; + y,)B £ A. But
as(b; + yx)B S A and neither a;B <A nor (b;+y,)BS A. Thus as(b +yx) S
(A:g X) Dby proposition (19). Since asb; € (A:g X) and (agh; + asyy) € (A:g X) , we get
asyx € (A:g X). Since (a; + x,)b;B € A and neither b)B € A nor (as+ x,)B € A, we
have(ag + x,)b; € (A:g X) by proposition (19). But (as + x,,)b; = (agh; + x,b;) € (A:x X)
and since agzb; € (A:gx X), we have x,b; S (A:zg X) . Now, since (ag+ x,)(b;+y,)B S A
and neither (ag+ x,)B € A nor (b;+y,)B € A, we get (as + x,)(b; + yi) € (A:g X) by
proposition (19), where(a; + x,,)(b; + yr) = (ash; + asy, + x,b; + x,y;) S (A:g X). But
(ash; + asyy + x,b;) € (A:g X), so that x,,y,, € (A:g X) this is a discrepancy. Thus HBEA or
UBcA

(2) = (1) It is obvious.

Theorem 21.

If A4 is T-ABSO F. subm. of F. M. X of an R-M. M, then (A: X) is T-ABSO F. ideal of R.
Proof. Let agb;ry, © (A:x X) for F. singletons ag, b;, 13, of R.
If agry € (A:xgX) and by, € (A:x X), then there exist F. singletons x,, y, S X\A4, such that
asrex, € A and by, € A . Since agh; (1 (x, + y5)) € A and A is T-ABSO F. subm., then
either agh; € (A:g X) or asr(x, +yp) €A or byry(x, +yp) €A If agr(x, +y,) €A
and since a1 x, € A, then we have a;r,y, € A. So that agh;(ryn) € A and by, € A,
hence agh; € (A:g X). By the same method if b1 (x, + yn) € A, we get agh; € (A:x X) .
Thus (A:g X) is T-ABSO F. ideal of R.

Theorem 22.

Let X be multiplication F. M. of an R-M. M, and 4 is a proper F. subm. of X. If (A:z X) is
T-ABSO F. ideal of R, then 4 is T-ABSO F. subm. of X.
Proof. Let a.b;x,, € A for F. singletons ag, b; of R and x,, € X, then asb; < x,, >C A. But <
x, >= AX for some F. ideal H of R since X is multiplication F. M., so that a;h;AX C A.
Thus asbH € (4:z X), so we have that < ag >< b; >H S (4:z X). Since (4:zX) is T-
ABSO F. ideal of R, we get either < a; > H S (A:x X) or < b, >HCS (A:;x X) or < ay ><
b, > < (A:g X) by
Proposition (9).
) If <a;>HC (A:xX), then <a;, >HX S A and so < ay >< x, >C A . Hence a,x, C
A
2)If < b, > H S (A:x X), then by the same method b;x, S A .
I <a; >< by >C (A:ig X), then agh; € (A:gX) .

By combining theorem (21) and theorem (22), we have the following corollary:
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Corollary 23.

Let A be a proper F. subm. of a multiplication F. M. X of an R-M. M. Then A4 is T-ABSO F.
subm. of X iff (A:p X) is T-ABSO F. ideal of R.
Remark 24.

The condition X is multiplication F. M. can't be deleted from theorem (22). See the
following example:

Let X: Zye — L such that X(y)={t ify € Zp
0.w.

It is obvious that X is F. M. of Z-M. Zpo .

Let A: Z,o — L such that A(y)={g lfyOEW(O) VvEeL

It is obvious that 4 i1s F. subm. of X.
Now, A, = (0) is not T-ABSO subm. of X, = Z,» , since p? < z% +Z >=(0) but p< p_12 +

Z >+ (0)and p* ¢ ((0):Z Zpoo) = 0. Note (0) is a prime ideal in Z, so that ((O):Z Zpoo) =0
is T-ABSO ideal in Z ; that is (4,:g X;,) is T-ABSO ideal in Z, then (A:y X) is T-ABSO F. ideal
in Z. Thus A4 is not T-ABSO F. subm. of X, but (4:3 X) is T-ABSO F. ideal in Z.
Now, we gave the following theorem is a characterization of T-ABSO F. subm.

Theoerm 25.

Let A be a proper F. subm. of a multiplication F. M. X of M. Then 4 is T-ABSO F. subm.
of X iff A{A,A; € A implies that A{A, € A or AjA; €S Aor A,A; ©€ A, where Ay, A,, A
are F. subm. of X.

Proof. (=)Since X is a multiplication F., then A; = AX , A, = UX and A; = KX for some F.
ideals H,J and K of R . So that the product of A;,A,andA; as follows:
A;A,A; = AUKX € A. by [16]. Hence AUK S (A:z X) . Since 4 is T-ABSO F. subm. of X,
then(A:x X) is T-ABSO F. ideal by theorem (21). So by proposition (9), either HU S (4:; X)
or AK € (A:x X) or UK € (A:z X) . Hence either HUX € A or HKX € A or UKX C A, then
A1A, €A or AjA3 € A or A,A; € A.

(&) Let HUB < A for some F. ideals A, U of R and B is F. subm. of X.

Since X is a multiplication F. M., then B = EX for some F. ideal E of R. Then AUEX € A . Let
A; = HX and A, = UX, so that A;4,B = AUEX € A. So by hypotheses either 4;B € A or
ABS Aor AjA, €A hence HEXCA or UEXCSA or AUX S A Thus HB S A or
UB S A or HU C (A:z X) . Therefore, 4 is T-ABSO F. subm. of X by theorem (20). Now,

the definitions of finitely generated F. M. see [17, Definition (2.11)] and faithful F. M. see [3,
Definition (3.2.6)]. We give the following proposition.

Proposition 26.

Let X be a finitely generated multiplication F. M. of an R-M. M. If H is T-ABSO F. ideal of
R such that F-annX<H, then FLX is T-ABSO F. subm. of X.
Proof. Let a;b,x,, € HX , where as, b; be F. singletons of R and x, € X, hence ab; < x,, >
c AX. But X is a multiplication F. M., then < x,, >= UX for some F. ideal U of R. Thus

121



Ibn Al-Haitham Jour. for Pure & Appl. Sci. IHTPAS

https://doi.org/10.30526/32.1.1930 Yol. 32 (1) 2019

ash,UX € AX. So that a;h,J € A+ F — annX = H since F-annX<H. But H is T-ABSO F.
ideal of R, so that either agzh; S H or a,U S H bU S H. Then we have a,hX € HX or
a;,UX € AX or bUX € HX, so that ash, € (HX:x X) or a; < x, >C HX or b, <x, >C
AX, hence ah; € (AX:xX) or asx, € HX or b;x, € AX. So that FLX is T-ABSO F.
subm. of X.

Corollary 27.
Let X be a faithful finitely generated multiplication F. M. of M. If H is T-ABSO F. ideal of
R, then AX is T-ABSO F. subm. of X.

Proof. By proposition (26), it follows immediately.

Corollary 28.
Suppose that X be a faithful finitely generated multiplication F. M. of M. Then every proper
F. subm. of X'is T-ABSO iff every proper F. ideal of R is T-ABSO.

Proof. (<) By corollary (27), it follows immediately.
(=) Let H be a proper F. ideal of R. Then 4=HX is a proper subm. of X . Since 4 is T-ABSO
F. subm., so that (A:z X) is T-ABSO F. ideal by theorem (21). But X is a multiplication F.
M., hence 4=(A:x X) X by [5]. Thus FLX= (A:x X) X. Since X is a faithful finitely generated
multiplication F. M., then X,, is a faithful finitely generated multiplication M. by [16, 17],
implies that X,, =M is cancellation R-M. by [18]. Hence X is a cancellation F. M. by [8].
Therefore H= (4:x X); that is H is T-ABSO F. ideal of R.

Recall that Let X be F. M. of an R-M. M, and let A be F. subm. of X. 4 is called a pure F.
subm., if for each F. ideal H of R such that HA=FXN4, see [19].

Proposition 29.

Let A be a proper pure F. subm. of F. M. X of M. If 0, is T-ABSO F. subm. of X, then 4
is T-ABSO F. subm. of X.
Proof. Let asb;x,, © A where ag, b; F. singletons of R and x,, € X.
Put i =< a,b; >, hence asb;x, € HX N A, but HXNA=HA . So asb,x, = asb,yy, ,
for some F. singleton y, € A , then agsh;(x, — y,) S 04, but 0; is T-ABSO F. subm., hence
as(x, —yn) € 04 or by(x, —yp) € 0; oragh; € F —annX < (A:x X).
So we have agx, = a;y, € Aorbix, = by, € Aor ash; € (A:ig X) .
Therefore 4 is T-ABSO F. subm. of X.

Now, we give the concept of a cancellative F. M. as follows:

Definition 30. A F. M. X of M is called a cancellative F. if whenever asx, = agy, for F.
singletons a; of R and x,, y;,, € X, Vs,v,k € L, then x,, = yy

Proposition 31.
Let X be a cancellative F. M. of M, and A be a proper F. subm. of X. Then 4 is a pure F.
subm. of X iff 4 is T-ABSO F. subm.of X with (4:z X) = 0;.
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Proof. (=) Assume that A is a pure F. subm. of X and agh;x, € A such that ash;
(A:g X) for F. singletons ag, b; of R and x,, € X . Then agb;x, € asb;X N A = azb;A , hence
asb;x, = agb;y, for some F. singleton y, € A. Since X is a cancellative F. M., then b;x, =
by, € A. Thus 4 is T-ABSO F. subm. of X.

Now, assume that F. singleton 1, € (A4:g X) with 1, # 0. Since A#X there exists F. singleton
x, € X\A such that r,x, €S X NA=mr,A, so there exists F. singleton y, € A, such that
ThXy, = ThYk» hence x,, = yy this is a contradication. So that (4:g X) = 0;.

(<) Suppose that 4 is T-ABSO F. subm. of X. Let agb;x, € a;b;X N A for F. singletons ag, b;
of Rand x, € X . We may suppose that asb; # 0,. Since 4 is T-ABSO F. subm. of X, then
either a;x, € A or b;x, € A. If b;x, € A and b; be F. singleton of R, agb;x,, € asb;A. Thus
ash;X N A € ashb;A. By the same method to prove the case if ayx, € A; that is agh;A ©
agsb;X N A. Thus agh; X N A = agb;A. So that 4 is a pure F. subm.

4. T-ABSO Quasi Primary F. Subm.

In this section we present the concept of T-ABSO quasi primary F. subm. and study the
relationships this concept among T-ABSO F. subm. and T-ABSO primary F. subm. Many basic
properties and outcomes are given. Now, we give the following definition:

Definition 32.

Let 4 be a proper F. subm. of non-empty F. M. X of an R-M. M. Then the X-F. radical of 4,
denoted by X-R(4) is defined to the intersection of all prime F. subm. including 4. We give the
pursue lemma which are needed in the next proposition.

Lemma 33.
Let X be a multiplication F. M. of M, let A be a proper F. subm. of X. Then the
following expressions are equivalent:
1- Aisaprime F. subm. of X.
2- (A:gp X) be aprime F. ideal of R .
3- A=HX for some a prime F. ideal H of R with F-annXCH.

Proof. (1)—(2) It follows by [20, proposition (2.5)].

(2)—(3) Since X is a multiplication F. M., so that A = (A:z X)X by[5].

Put H=(A:zx X) be a prime F. ideal of R. Now, since F-annX=(0,:xX) and (0;:xX) S
(A:x X) = H. So that F-annX € H .

(3)—(1) Let agx,, € A for F. singleton ag; of R and x,, € X, and x,, € A to prove a; € (4:g X).
By(3), A=FLX for some a prime F. ideal H of R with F-annX SH, so that F-annX is a prime F.
ideal of R, but F-annX=(0,:z X), hence (0;:3 X) is a prime F. ideal of R. Let azh; € (0,:5 X) ,
for F. singleton b; of R, and b; &€ (04:z X), then a; € (04:5 X) . Since (01:5 X) € (4:z X), so
that ag © (A:g X). Thus 4 is a prime F. subm. of X.

Lemma 34.
Let X be a finitely generated multiplication F. M. of M and let 4 be F. subm. of X.
Then X — R(A) = /A X . X.
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Proof. If X-R(4)=X, then the result is directly.
So that X-R(4)#£X, if B is any prime F. subm. of X which contains 4, we get (A X) €
(B:g X). We prove that (B:iz X) is a prime F. ideal. Assume that asb; € (B:g X) for F.
singleton ag, b; of R, so that a;b;X € B, then either b;X € B or b;x,, € X/B for some F.
singleton x,, € X . But B is a prime F. subm. and a,;(b;x,) € B, then either (b;x,) S B
or ag € (B:gX). Thus as; € (B:g X) or b; € (B:xr X). So that (B:g X) is a prime F. ideal.
Hence \/mg (B:g X) by [13], then \/m.X C (B:g X)X. Since B is an arbitary
prime F. subm. containing 4 , we get \/m XESX—-R(4) (D).
Now, since X is a multiplication F. M., hence X — R(4A) = (X — R(A):;x X)X.
We must prove that (X — R(A):x X) S \/m . Let K be any prime F. ideal such that
(A:g X) c K. Since K is a prime F. ideal containing F-annX=(0;:g X), then KX is a prime
F. subm. of X containing 4=(A:z X)X by lemma (33). Thus (X —R(A):(x X)X =X —
R(A) € KX, hence (X —R(A):x X) € K, then (X —R(A):(x X) S \/m by [13],
hence X — R(A) = (X — R(A):g X)X € \JA:;x X .X. So that —R(A) € JARr X.X  (2).
From (1) and (2), we get —R(A) = \/m.X .

Before the next proposition we give these lemmas and definition which are needed in
the proof of the next proposition. We give this definition as follows:

Definition 35.

Let Xbe F. M. of an R-M. M. If P is a maximal F. ideal of R then we define F — Gp(X) =
{x, € X: (1, — as)x, = 0, for some F.sigleton a; € P,Vv,s € L}.

It is obvious F — Gp(X) is F. subm. of X . X is calld P-cyclic F. M. if there exist F.
singleton b; € P and x,, € X such that (1, — b;))X €< x, >, V,v € L.

Lemma 36.

Let R be a commutative ring with unity. Then F. M. X of an R-M. M is a
multiplication F. M. iff for every maximal F. ideal P of R either X = F — Gp(X) or X is
P-cyclic F. M.

Proof. (=) Assume that X is a multiplication F. M. Let P be maximal F. ideal of R.
Suppose that X=PX , let F. singleton x, € X, then < x,, >= HX for some F. ideal H of R.
Hence < x, >= AX = APX = PHX = P < x,, >, then x,, = a,x,, for some F. sigleton

a; €P . Thus (1, —ay)x, = 04, so that x, S F — Gp(X) . It follows that X =F —
Gp(X)

Now, suppose that X#PX, then there exists F. sigleton x, € X , x,, € PX. So that there
exists an ideal U of R such that < x, >= UX. It is obvious that UZ P and so (1, — b;) S U
for some F. singleton b; € P. Hence (1, — b))X €< x, > . Thus X is P-cyclic F. M.(&)
Suppose that for each maximal F. ideal P of R either X = F — Gp(X) or X is P-cyclic F. M.
Let A be F. subm. of X and A = (A4:z X). It is obvious that HXSA. Suppose that F. singleton
Ve € A and K = {r, € R: r,y, S HX}. Assume that K#R, then there exists a maximal F. ideal
E of R such that K€ E by [13, proposition(1.3.2.4)]. If X=F — Gg(X) then (1, —ay)y; =
0,for some F. singleton a; € E , and (1, —as;) € K € E this is a discrepancy. Thus by
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hypothesis there exist F. singletons b; € E, z, € X such that (1,—b)X S<z, >. It
follows that (1, — b;)A is F. subm. of < z, > and so tha (1, — b;)A = D z,, where D is F.
ideal {r, € R: 1,7, < (1, — b;)A} of R. Note that (1, —b;)D X =D (1, —b)X €D z, € A.
So that (1, —h)D € H. Thus for F. singleton y, € A, (1, — b))%y, € (1, — b)?A =
(1, — b)D z, € AX.

So that (1, — b;)? € K C E this is a discrepancy. Thus k=R and y, € HX. Therefore A=HX
and X is a multiplication F. M.

Lemma 37.
Let X be a multiplication F. M. of an R-M. M, then
Niea (A;X) = (Njep (A; + F — annX))X for any non-empty collection of F. ideals H;(i € A)
of R.

Proof. Assume that X is a multiplication F. M. Let H;(i € A) be any non-empty collection of
F. ideals of R, let U= Ny (A; + F — annX), then UX=(N;cs (A; + F — annX))X. It is
obvious that UX €n;c, (A;X) . Now, let be F. singleton x, SN;cy (A;X) and let G =
{as € R: agx, € UX}, Vs, v € L Suppose that G#R, then there exists a maximal F. ideal P of R
such that G € P, it is obvious that x, € F — Gp(X) and hence X is P-cyclic F. M. by lemma
(36). Then there exist F. singletons a; €P and y, € X such that (1, —as)X S< y, >.
Hence (1, — as)x, SN;ea (H;yy) . for each i € A there exists F. singleton b, < A, vl €L,
such that (1, — as)x, = by, yx. Choose j € A, for each i € A, bl].yk = by, Yk, so that (bl]. -
by)yx = 01, implies that: (1, — as)(by; — by )X = (b, — by ) (1, — as)X & (by; — by) <y >
=0,, (1, — as)(blj —b;) = 04. Thus (1, — as)b,j = (1, —agb; < H;(i € A), then (1, —
as)by; < U. Hence(1, — ag)?x, = (1, — as)byyx S UX .

It follows that (1, — a;)®> € G € P this is a discrepancy. Thus G=R and x, € UX, so
that N;ep (A X) € UX implies that N;e, (A;X) = UX That is Nyep (HX) = (Njep (H; + F —
annX))X. Now, we give the proposition as follows:

Proposition 38.
Let X be a multiplication finitely generated F. M. of an R-M. M and 4 be T-ABSO F. subm.
of X. Then one of the following satisfy:
1- X-R(A)=P is a prime F. subm. of X such that P? € A.
2- X-R(4)=P; NP, ,P;P, € A and (X — R(A))? S A where P,,P, are the only distinct
minimal prime F. subms. of 4.

Proof. By theorem (21), (A:g X) is T-ABSO F. ideal of R. So that either R((A:xg X)) =U is
a prime F. ideal of R such that U2 € (4:x X) or R((A:x X)) =U; N, , YU, € (Ad:ig X)
and R((A:g X))? € (A:g X) where U;,U, are the only distinct minimal prime F. ideals of
(A:g X) by proposition (6), where R((A:g X)) = \/m . if the first case satisfies, then since X
is F. multiplication, we have X-R(4)=R((4:g X))X=UX is a prime F. subm. of X. Put UX=P by
lemma (33) and lemma (34), and (UX)? = U%2X C (A:x X)X = A. Now, suppose that the latter

case satisfies, then by lemma(33), U; X and U,X are the only distinct minimal prime F. subms.
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of 4 and X- R(4) = R((A:r X)X = (U nU)X =U; X NU,X by lemma (37). Moreover
UXUeX) = (LUDX S Ui DX =4 and (X — R(A))? = (R((A:x X)X)? =
(R((A:r X)))%X € (A X)X = A.

We give the definition of T-ABSO primary F. subm. as follows:

Definition 39. Let A be a proper F. subm. of F. M. X of M, 4 is called T-ABSO primary F.
subm. of X if whenever F. singletons ag, b; of R and x, € X such that agb;x, € A, then
either asx, € X —R(A) or bix, € X —R(A) or ash; S (A:x X).

The following proposition characterize T-ABSO primary F. subm. in terms of its level
subm.

Proposition 40.

Let 4 be T-ABSO primary F. subm. of F. M. X of M. for all v€ L, iff the level subm. 4,
is T-ABSO primary subm. of X,,.
Proof. (=) Let abx€A,, for any a,b€R and x € X,, , then A(abx)> v, so (abx), S A implies
that agb;x;, S A where v =min{s, [, k}. Since 4 be T-ABSO primary F. subm., so either
asxy €S X —R(A)orbyx, € X —R(A) orash; € (A:x X) .
Ifagx, € X — R(A) , then (ax), € X — R(A),soax €X, — R(4,) .
If bjx;, € X — R(A) , then (bx), € X — R(A) , so bx€X,, — R(4,) .
If agh; € (A:g X) then (ab), € (A:g X),soab €(A:x X), = (A Xy).

Hence ab€(A,:x X,) . Thus A, is T-ABSO primary subm. of X,,.
(&)Let agh;x;, € A for F. singletons ag, b; of R and x, € X,Vs, [, k €L,
hence (abx), € A where v = min{s, [, k} so that A(abx)> v, implies abx€A,, but 4, is T-
ABSO primary subm. of X, so either ax€ X, —R(4,) or bx€ X, —R(4,) or
ab€ (A,:r X,) . Since (Ay:g Xy) = (A:g X)y, hence ab€(A:g X),. Then either (ax), €
X —R(A) or (bx), €X—R(A) or (ab), € (A:g X) , implies either azx; S X — R(A) or
bix, € X — R(A) or agb; © (A:x X). Thus 4 be T-ABSO primary F. subm. of X.

Remark 41.
Every T-ABSO F. subm. is T-ABSO primary F. subm., but the converse in general
incorrect, for example:
1 ifyez

Let X: Z > L such that X(y) = {0 Je
It is obvious that X'is F. M. of Z-M. Z.
Let A: Z - L such that A(y) :{76 if y €12z

0.W.
It is obvious that 4 is F. subm. of X.

Now, A, = 12Z and X, =Z as Z-M. Note that 4, = 12Z is not T-ABSO subm. since
223€12Z=A,but 22¢12Z=A, and2.3 ¢ 12Z =4, .

But X, —R(4,) =Z —R(12Z) = 2Z N 3Z = 6Z where 2Z and 3Z are prime subms. of X,
containing A4,. So that 4, is T-ABSO primary subm. of X,, since 2.3=6€6Z. Thus 4 is not T-
ABSO F. subm., but it is T-ABSO primary F. subm. of X . We give the concept of T-ABSO
quasi primary F. subm. as follows:

VvelL
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Definition 42. A proper F. subm. 4 of F. M. X of M is called T-ABSO quasi primary F.
subm. If agh;x,, € A implies either agh; € \/A:x X or ayx, € X — R(A) or bjx, € X — R(A)
for each F. singleton ag, b; of R and x,, € X , Vs,/,v € L.

The following proposition characterize T-ABSO quasi primary F. subm. in terms of its
level subm.

Proposition 43.
Let A be T-ABSO quasi primary F. subm. of F. M. X of M iff the level subm. 4, is T-
ABSO quasi primary subm. of X, ¥ v€L.

Proof. (=) Let abx€ A, for any a, b€ R and x€ X,, , then A(abx)> v, so (abx), € A

implies that agh;x;, € A where v =min{s, /, k}. Since 4 be a T-ABSO quasi primary F. subm.,
so either agh; € \JA:(rg X or agx, € X—R(A) orbx, €X—R(A).

If agh, € [A:x X then (ab), S \[A:x X, so ab

€ (\/A:R X) v = \/AV:R X,. Henc eab Em .

If a;x;, € X —R(A), then (ax), € X — R(A4), so ax€ X, — R(4,) .

If b;x;, € X — R(A), then (bx), € X — R(A) ,so bx€ X, — R(4,) .

Thus A, is a T-ABSO quasi primary subm. of X,,.

(&) Let agh;x;, € A for F. singletons ag, b; of R and x; € X , hence (abx), S A where
v = min{s, [, k} so that A(abx)> v, implies abx€A,, but A, is T-ABSO quasi primary subm. of
X,, so either abem or ax €X,—R(A,) or bx€ X, —R(A,) . Since m =
(m) » » hence abE(\/m) »- Then either (ab), € \/m or (ax), € X —R(A) or
(bx), € X —R(A4), implies either ash; C \/m asxy S X —R(A) or bixy € X —R(A)
where v = min{s, [, k}. Thus 4 be T-ABSO quasi primary F. subm. of X.

Theorem 44.
Let 4 be a proper F. subm. of F. M. X of M. Then the following expressions are equivalent:
1- A is T-ABSO quasi primary F. subm. of X;
2- For every F. singleton ag, b; of R, Vs, (A:x ai’b]*) = X for some n€ Z*or
(Aix ash) © (X —R(A)ix as) U (X — R(A):x by) .
3- For every F. singleton ay, b; of R, Vs,l € L, (A:x alb]') = X for some n€ Z* or
(A:xagh) € (X —R(A):xas) or (A:ixash) € (X —R(A):x b)) .

Proof. (1)—(2) Assume that 4 is T-ABSO quasi primary F. subm. of X let F. singleton ay, b;
of R.

If agh; < m , then (agh))™ = al?b]' < (A:g X) for some n€ Z*, hence (A:x aib') = X .
Now, suppose that a;b; & \/m Let x, © (A:x asb;) , then azb;x, € A. Since 4 is T-ABSO
quasi primary F. subm., then agx, € X — R(4A) or b;x, € X — R(A). So that (A:x asbh;) S
(X —R(A):ixas) U(X —R(A):x b)) .

(2)—(3) By (2), we have (A:y ash;)) S (X —R(A):ixas) U(X —R(A):ix b)) .

So that (A:y ash;) € (X — R(A):x as) or (A:xash) € (X —R(A):x by) .
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(3)—(1) Let agh;x, € A and ash; € \/A:x X for F. singletons ag, b; of R and x,, € X, hence
(agh)™ = allbl € (A:g X) for some n€ Z*, then (A:x al?b]') # X. By (3), we have that x,, ©
(A:ixagh)) € (X —R(A):xas) or x, € (A:ixash) € (X —R(A):x b)) . Thus x,a, € X —
R(A) or x,b; € X — R(A). So that 4 is T-ABSO quasi primary F. subm. of X.

Lemma 45.

Let Xbe F. M. of M. Suppose that 4 is T-ABSO quasi primary F. subm. of X and a;h;B S
A for F. singleton ag, b; of R,V s,l€e L, and F. subm. B of X . If agh; € \/m , then agB C
X —R(A) or bB € X — R(4).
Proof. Since B € (A:x agh;) and (A:y allbl") # X for some n€ Z*, by theorem (44), we get
B € (A:ixash) € (X —R(A):ixas) or B S (A:iyagh) € (X —R(A):x by).
ThenasB € X — R(A) or hhbB<S X —R(A) .

Theorem 46.

Let A be a proper F. subm. of F. M. X of M, then the following expressions are equivalent:
1- A is T-ABSO quasi primary F. subm. of X;
2- For F. singleton ag of R, Vs€L, F. ideal H of R and F. subm. B of X with a,HB S A4, then
either

a;Ac JA:r X or a;B<S X —R(A) or AB € X — R(A);
3-For F. ideals H, U of R, and F. subm. B of X with HUB C 4, then eithe AY € \/A:z X or
AB € X —R(A) or UB € X — R(A).

Proof. (1)—(2) Assume that a,AB € A with a,H & \/m and HB & X — R(A). Then
there exist F. singletons b;, 73, € H , such that a.b; & \/TRX and 1n,B € X — R(A). Now, we
prove that a;B € X — R(A). Suppose that a;B € X — R(A4) . Since agh;B € A, by lemma
(45), we have b;B € X — R(A), hence (b; + 1, )B € X — R(A) . By using lemma (45), we
have ag(b, + 1) = ash; + agry, € JA:g X , because ay(b, + 1,)B € A. Since ash; + agry, S
\/m and asb; € \/m , we have a,n, € \/m . Since as1 B € A, by lemma (45), we
have B € X — R(A) or asB € X — R(A) this is a discrepancy. So that agB € X — R(A).
(2)—(3) Suppose that HUB € A with AU & \/m for F. ideals H, U of R and F. subm. B of
X. Hence a;UJ & JA:g X for some F. singleton a; € f . Now, we prove that AB € X — R(A)
or UB € X — R(A). Assume that AB € X — R(A) and UB & X — R(A) . Since a,UB C 4,
by (2), we have a,B S X — R(A), then there exists y, S H such that y,B € X — R(A) since
the assumption AB & X — R(A). Since y,UB € A, we have y,U C \/m , hence (as +
YU & \/m . Since (as + y»)UB € A, we get (as + y,)B € X —R(A) and so y,B € X —
R(A) this is a discrepancy. Thus AB € X — R(A).

(3)—(1) Let ash;x, S A, for F.singletons as, b, of Rand x, € X. Put A =<a, >, J=<
b, > and B =< x, >, then AUB € A. By (3), we have either AU € \/m or ABS X —
R(A) or UB S X — R(A); that is either < a; >< b; >C \JAiz X or <a;><x,>CS X —
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R(A) or < b; >< x, >S X — R(A). Hence either agh; € \/A:(x X or agx, € X —R(A) or
b;x, € X — R(A). Thus 4 is T-ABSO quasi primary F. subm. of X.

Theorem 47.
Let Xbe F. M. of M, and 4 be F. subm. of X. Then the following are satisfied:
1- If is a multiplication F. M. and (A:g X) is T-ABSO quasi primary F. ideal of R, then 4 is
T- ABSO quasi primary F. subm. of X.
2-If Xis a finitely generated multiplication F. M. and A4 is T-ABSO quasi primary F. subm.
of X, then (A:i X) is T-ABSO quasi primary F. ideal of R.

Proof. (1) Assume that X is a multiplication F. M., (4:g X) is T-ABSO quasi primary F. ideal
of R and HUBCA for F. ideals H, U of R and F. subm. B of X. Since X is a multiplication F.
M., we have B=KX for some F.ideal K of R. So that HUB=HUKXC 4, then AUK € (A X) .
Since (A: X) is T-ABSO quasi primary F. ideal of R, so by theorem (13), we have HU €
JARrX or HK €. JA:x X S (X —R(A):x X) or UK S . /A:;x X © (X — R(A):x X). Hence
Ay c \/m or HB € X —R(A) or UB S X —R(A) . Then 4 is T-ABSO quasi primary F.
subm. of X by theorem (46).

(2) Assume that 4 is T-ABSO quasi primary F. subm. of a finitely generated multiplication F.
M. X. Let F. singletons ag, b;, 1, of R, such that asb;r, € (A:g X) with ash; & \/m .
Hence agb;(rx,) € A for evey F. singleton x,, € X. Since A4 is T-ABSO quasi primary F.
subm. of X and asb; & \/m Then we have agrix, € X —R(A) or byrx, € X — R(A)
for all x, € X. Hence we have (X — R(A):x asr,) U (X — R(A):x byr,) = X , so that (X —
R(A):xa,ry) =X or (X —R(A):xbry) =X . Then we have a,r, € (X — R(A):(x X) =
\/m orbr, € (X —R(A)rX) = \/m Thus (A:z X) is T-ABSO quasi primary F. ideal
of R.

Theorem 48.

Let X be a finitely generated multiplication F. M. of M. For any F. subm. 4 of X, the
following expressions are equivalent:

1- 4 is T-ABSO quasi primary F. subm. of X;

2- X-R(4) is T-ABSO F. subm. of X.

Proof. (1)—(2) Assume that 4 is T-ABSO quasi primary F. subm. of X. By theorm (47) and
proposition (6), then we have \/m = U is a prime F. ideal of R or \/m =U; NU,
where Uy, U, are distinct prime F. ideals minimal over (A:z X) . If \/m = U, hence X-
R(4)=UX is a prime subm. by lemma (43), so that X-R(4) is T-ABSO F. subm. of X.

Now, if \/m = U; N U, where U;, U, are distinct prime F. ideals minimal over (4:g X),
then we have X-R(4)=(U; N U,)X. Since F- annX=(01:p X) and (0;:xX) € (A:x X) and
U;, U, are distinct prime F. ideals minimal over (4:z X). So that F — annX € U;, U,.

Then X-R(4)= ((Uy + F —annX) N (U, + F — annX))X = U; X N U,X by lemma (47).
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Since U; X, U,X are two distinct prime F. subms., so that X-R(4) is T-ABSO F. subm. of X by
remarks and examples(16)part(1).

(2)—(1) Assume that X-R(4) is T-ABSO F. subm. of X. Let asb;x,, € A, for F. singletons
as, by of R and x,, € X . Since AS X-R(4), then ash;x, © X — R(A). But X-R(4) is T-ABSO
F. subm. of X, so that ash; € (X — R(A):x X) = JA:(x X or asx, €X—R(A) or bx, S
X — R(A). Thus 4 is T-ABSO quasi primary F. subm. of X. By combining theorem (47) and
theorem (48), we get the following corollary is beneficial to determine T-ABSO quasi primary
F. subm. of a finitely generated multiplication F. M.

Corollary 49.
For any F. subm. 4 of a finitely generated multiplication F. M. X of M. Then the following
expressions are equivalent:
1- A is T-ABSO quasi primary F. subm. of X;
2- X-R(A4) is T-ABSO F. subm. of X;
3- X-R(4) is T-ABSO primary F. subm. of .X;
4- X-R(A4) is T-ABSO quasi primary F. subm. of X;
5-JA:g X is T-ABSO F. ideal of R;
6- /A:p X is T-ABSO primary F. ideal of R,
7- \JA:g X is T-ABSO quasi primary F. ideal of R;
8- (A:g X) is T-ABSO quasi primary F. ideal of R.

4. Conclusions

Through our research we concluded to the concepts (prime and quasi-prime) F. subm. lead
to the concept T-ABSO F. subm. we reached the concept T-ABSO F. subm.one of the most
important conclusions is the theorem (20), and explan the relationship if A is T-ABSO F.
subm. with (4:; X) is T-ABSO F. ideal under the class of a multiplication F. M. in corollary

(23). Also we concluded the relationship X — R(A) with \/A:x X under the class of a
multiplication F. M. in lemma (45), and explan the relationships A4 is T-ABSO quasi primary F.
subm.with (A:g X) is T-ABSO quasi primary F. ideal and 4 is T-ABSO quasi primary F.
subm.with X — R(A) is T-ABSO F. subm. under the class of a multiplication F. M. as in
theorem (47), and theorem (48).
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