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Abstract

The concepts of the modified tuple coincidence points and the mixed finite monotone
property is introduced in this paper. Also, the existence and uniqueness of modified
tupled coincidence point is discusses without continuous condition for mappings having
mixed finite monotone property in generalized metric spaces.
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1. Introduction

In 2000, Dhage [1] introducedD—metric space as a generalization of metric space
and he proved many results in this space but in 2005, Mustafa and Sims [2] proved
that the results presented by Dhage are invalid in topological structure and hence they
introduced G—metric space and as a generalized of metric space. On other Bhashkar
and Lakshmikantham in [3] introduced the concept of coupled fixed point and proved the
existence of a coupled fixed theorem in partially ordered complete metric space. In 2009,
Lakshmikantham and Ciric [4] defined mixed g—monotone property and coupled
coincidence point in partially ordered metric spaces, also in 2011, Berinde and Borcut [5]
introduced the concept of triple fixed point and proved some results a round and in 2012,
Berinde and Borcut [6] defined the concept of triple Coincidence point and
established some triple Coincidence point theorems in partially ordered metric space. In
this paper, we will give a mixed finite monotone property and modified tupled
coincidence point with study the existence of modified tupled coincidence point in
partially ordered generalized metric space.

2.Background
In this section, we recall some definitions and properties introduced by Mustafa and
Simis [2]

Definition 1

Let X be a nonempty set, G: X X X X X — R_be a function satisfying;:
1.6(x,y,z2) =0 if x=y =2z
2.0 <G(x,x,y) forallx,y € X with x # y.
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3.G(x,x,y) <G(x,y,z) forallx,y,z€ Xwithy # z

4.6(xy,2) = G(x,2y) =G,z x) =
(symmetry in all hree variable)
5.6(x,v,2) < G(x,a,a) + G(a,y,x,z)for all x,y,z,a € X .

Then the function G is called generalized metric and the pair (X, §) is called a
generalized metric space or more specially G_ metric space.

Definition 2
Let (X, G) be a G_ metric space, and let (x,,) be a sequence of points of X.We say that
(xn) is G_convergent to x if lim G(x,x,, x,,,) = 0, that is, for any & > 0 there exist
n,m-co

N € N such that
G(x,xp, %) < g, foralln,m > N.We call x the limit of sequence and write x,, = x or

lim x, = x.
n,—oo
Definition 3

Let (X, G) be a G_ metric space, A sequence (x,) is called G_cauchy sequence if for
any & > 0 there exist N € N such that G(x,,, %, ;) < €
foralln,m,l > N, thatis, G(x,,, X;p, X;) = 0 as n,m,l — ¥,

Proposition 4

Let (X, G) be a G_ metric space. A mapping is called §_continuous at x € X if and if it
is G_sequentially ontinuous at x, that is ,whenever (x,) is §_convergent to
X, (f (xn)) is G_convergent to f(x).
Proposition S

A G_ metric space (X,G) is called G_completeif every §_cauchy sequence
is G_convergent in (X, G).

3. Main Results
In this section, the modification of tupled coincidence point is proposed as the follows:

Definition 6

Let (X, <) be a partially ordered set. If 7,;: X™ =- X, 73,75, ...,T_1, U, V:X = X are
there mappings. An element (xq, X5, ... ... ,X,) € X™ is called modified tupled coincidence
point of 73,75, ... T, U and V if:

T, (Tz o (T g, %Xy o ,xn))) = UV (x,)

7 (TZ (.’Tn(xz,x3, ...... ) X xl))) = UV (x,)

T, (TZ o (T G X e ,xn_l))) = UV(x,)
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Definition 7

Let (X, <) be a partially ordered set. If 7,: X" =» X, 7,7, ...,Tp_1, U, V:X = X are
there mappings we say that f have mixed finite monotone property if

7 (TZ o (T (g, 2, v , xn))) is monotone finite increasing if n is odd, and
7 (TZ o (Tr(oeg, 22, v , xn))) is monotone finite decreasing if n is even
That is, for each xq, x5, ... ... ,Xn €X

vz €X, W) SUW(@) = G (T o (T %2 %3, 0 0))
<7 (Tz (Tn(zl,xz,x3, ...,xn)))

V2,2, €X, UV(y,) <UV(z) > T (Tz (Tn(xp}’z,x& ---;xn)))
>0 (TZ (Tn(xl,zz,x3, ...,xn)))

Yn, Zn € X, UV () < UV(zy) =
T (TZ e (T (g, x5, ...,yn))) <7 (Tz e (T (g, x5, ...,Zn))) (if nis odd)

T (Tz e (T (g, x5, ...,yn))) >T7 (Tz v (T (g, x5, ...,zn))) (if nis even)

Let

i. A is the set of all mappings 7,,: X" - X and 73,75, ..., Ty, Uand V : X - X
such that:
1. UV(X) is complete subspace of X, containing 73 (Tz v (X ”)))
2. 711,73, ..., T, U and V are continuous and commute mappings.
3. 11,75, ..., T,, have mixed finite monotone property.
ii. B is the set of all mappings w: [0, ) — [0, ) increasing mapping
Such that:

. wl)<t Vt>0
2. w(0)=0 and lirr(l) w"™(t) =0, where w™ denotes the n the iterate
n—

of w.

From the above definition, we show the following modification
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Theorem 8

Let (X,G,<)be a partially ordered generalized metric space, 7,,:X" - X and
73,5, ., Iy, UandV : X > X are mappings lies in A and hold that following
conditions, V X1, X, ..., Xp, V1, V2, -, Yn EX and L > 0

G(HR(T - Fwxs ), hi (B (T ye —30)) L)

wlg(uv(xl)ﬁ UV(%)' [’)' wZQ(uV(xZ)! uv()’z)' [’)' !}} (1)

< w {max { W, G(UV (x,), UV (), £)

Where is w upper semicontinuous from R* into itself satisfying w (x) < x for allx > 0
If

W (xoY) STy oo Tr(xoh, x02, v eee s X0™)
UV (x?) = Ty oo Try(x02, %03, cov e X0™, X0 1)
(2)
W (x™) < 1T ... T(xo™, x0% %02, e - X" 1Y) ifnis odd
W (x™) = 1T ... T(xo™, x0% %02, e - ,xo" 1) ifnis even
Then 73,75, ..., T, U andV have a modified tupled coincidence point.
Proof
Define W (xY) =TT o Tp(xoh, %02, v v, X™)

uV(xlz) = :71:7-'2 . :T-;l(xoz, x03, ...... ,xon,xol)

UV (™) = 1T o Ty(xo™, X061, X2, o oo , X1
= UV (x,1) < UV (x,D)

UV (x02) = UV (x,2)

UV (x™) < UV (™) if n is odd
UV (x™) = UV (x ™) if n is even
Also, we define, UV(x,Y) = 1T, ... T,(x11, %42, ... .. ,x ™)

'UV(xZZ) = :71\7'2 e Tn(xlz,x13, ...... ,xln,xll)
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UV (x,™) = 1Ty o Ty(x™ x00 e , 6,
Since f has mixed finite monotone property
UV (xoY) < UV (YD) < UV (x,Y)

UV (x?) = UV (x,%) = UV(x,2)

UV (xo™) < UV (™) S UV (x,")  ifnisodd
UV (x™) = UV (™) = UV (x,™)  ifniseven
Continue process until we get to
UV (xoY) S UV (L) <. < UV (xY)

UV (x02) = UV (x,2) 2. .. = UV (x2)

UV (x™) < UV (y™) <. .. UV (x™)  ifnis odd

UV (x™) = UV (™) 2. ... = UV (x,™) ifniseven

In general:
UV () = T o Tttt Xg—1 %y voe o »Xg—1")
UV (?) = T o Tt X1y on oo »Xpe—1™ X1 )
UV (™) = [Ty oo T(pema™ Xim1b Xim s oo Xpe—1" )
And

UV (o) S UV (Y) <ot . S UV (1Y) S UV (xH) <.

UV (x2) = UV (x12) =0 eeo. = UV (x21%) = UV (%) .. e

UV (xo™) S UV (™) S .. S UV (4™ S UV (x™) <...... ifnisodd
UV (x™) = UV (™) 2. 2 UV (xp—1™) = UV (X, ™) 2. ... ifnis even
Now, we have

<UV(xY) >, <UV(x2) >, .. .. and < UV (x,™) > are sequence in gT(X)

UV (D) » L, UV (x?) » 72, ... , UV (™) » 1
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Since 1,72, ... .. , 7™ € UV (X), then there exists x1, x?, ... ... ,x" e X.
Such that, rl =Uv(xh),r? = UV (x2), ..., 7P = UV (x™)
Considering the hypotheses (i) and (ii) give in the theorem we get

W () <Uv(xh) =rt

UV (x,%) = UV (x?) =12

W (™) <UV(x™) =71" (if nis odd)
WY (x,™) = UV(x™) =1 (if nis even)
Since U and V are continuous mapping, then we have:
UV (UV(x D) » UV (@)

UV (UV(x,2)) » UV (r?)

U UV (™) » uvam)
And hence, UV (UV (x D) < UV(rt)

UV UV (x,2)) = UV(r?)

‘UV(UV(xk”)) <SUV(@E™) if nis odd
UV(UV (™) = UV(r™) if nis even
Choose L satisfy:
GUVEY, T, ... T,0r5 72, . 1™, L) < g(Tsz M (L ,rn),L,UV(‘LlV(xk+11)))
=G6(nT .. TG4 r3, , ), UV (UV (xp411)), £)
=G6(NT . T4 7% ), IT o Tn(UWV (D), UV (342, ... UV (™), £)

w, GV D), UV UV (x 1)), L), w,G(UV (r3), UV (UV (x2), L), ... ,}}

< w {max{ wng(uv(rn)"UV('UV(xk”)):L)

GUY (Y, (UV (e H), £), UV (?), UV (UV (x,D)), L), -.. }}

< w {max { GUV ™), uvUv(x™)), L)

But, UV(UV(x,1)) » UV (EY), UV (UV(x2)) » UV (r?),........... and
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U UV (™) » uvam)
Which is implies, by definition G-convergent in G-metric space,

GUVeEY),ny .. ,@4Lr, M, L) =0 = N7, .. T4 7% .. .. ,™)
=Uv(?)

Also, choose L satisfy:
GUV (e, n7, ... T,@%r3, .., r1), L%)
<G(RT o TulGhr2, ™), L0, UV (U (x10412)) )
=G(TTy . Tn(2,73, ., D), UV (UV (x3412)), L°)
=G("Ty . T2, 73, v, Ty o T (UV (0 2), UV (2 3), oo, UV (3 ), £°))

w,GUV (), UV (UV (x2), L°)), w, G(UV (r3), UV (UV (x,2), £°)), ... ,}}

= w{max{ W, GUV (D), UV (UV (1)), £°)

GUV(r?), UV (UV(x2), £2)), GUV(r3), UV (UV (x2)), L0), ... ,}}
GUVEh), uvuUv(xh), £°%)

<w {max {
But, UV(UV(xx1)) » UV (EY), UV (UV(x2)) » UV (r?),........... and
UvUv (™) » uviam)

Which is implies, by definition § -convergent in G-metric space,

GUY (3, 7 .. T, 73, .. .. ), =0 = 1,5 .. T, 73, ... , )
= UV (r?)

Continue these processes
Choose L* satisfy: G(UV (™), 1T, ... T, rt, ... ... D), L)
<G (T o Tl o 7D, L5 UV(UV (100™) )
=G(NTy . TG rh e, 7D, UV (UV (x41™), L)
=G(NHT, ... 0™t VD, T L T,(UV (™), UV (2 ), o LUV (), £9)
< w0 max {wlg(’UV(r”),UV(‘UV(xk”)),L*), wzg(UV(rl),UV(’UV(xkl)),L*)}

s e, WG (UWV D), UV (UV (3, 1)), £7)

< w max {Q(‘UV(r"), ‘UV(‘UV(xkn)), L*), Q(UV(rl), ‘UV(’UV(xkl)), L*)}

e, GUVEYH, UV (UV (™)), £7)

But, UV(UV(x, 1)) is G—convergent to UV (1)
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UV(UV(x2)) is G—convergent to UV (r?)

UV (UV(x,™ 1)) is G—convergent to UV (r™~1)

uv (’UV (x;™)) is G-convergent to UV (r™)
Which is implies, by definition of G—convergent in G—metric space,

GauvaEm), fanrt, ), L) =0

> LT .. T, . , 7D =Uuv )
So (r™, 1t ... ... ,7™"1) is a modified tupled coincidence point of 73, 75, ..., T, U and V.
From theorem(8),we can get the following corollaries
Corollary 9

Let (X,G,<)be a partially ordered generalized metric space .Under the same
assumptions of theorem(8) but

G(R(TH - Fnry ) R (T o (T Y2 30))) L)

< w {l {wlg(uv(h)ﬂv(yl),[«) + w,G(UV (x,), UV (y,), L) + }}
- +w,G(UV (), UV (3), L)

Then 73,75, ..., T, U andV have a modified tupled coincidence point.
Corollary 10
Let (X, G, <)be a partially ordered generalized metric space

(@ (H - nxe o x)) 5 (B o (T2 30)) L) <

w {1 {klg(uv(xl):uv(h)'ﬁ) + kG(UV (x2), UV (y2), £) + -
+hnG(UV (x), UV (yn), £)

(0,1] foralli =1,2,..... ,n.Then 7,,7,...,T,,UandV have a modified tupled

coincidence point.

}} ,such that k; €

n

Corollary 11

Let (X,G,<)be a partially ordered generalized metric space .Under the same
assumptions of theorem(8) but

GHRB - GGurenx), R (T o (LY I0))) . £)
S w(max(klg(uv(xl)' uv(yl)' L), kZQ(uv(xZ)J UV(YZ): ‘C);

e knG(UV (), UV (Y1), £) )
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such that k; € (0,1] foralli = 1,2, ...... ,n.Then 73,7, ..., T, U andV have a modified
tupled tupled coincidence point.

Corollary 12

Let (X,G,<)be a partially ordered generalized metric space .Under the same
assumptions of theorem(8) but

G(HR(T7 - Falxe ) R (T o (TG Y2 ), L) <
w1§ (’UV(xl)ﬂV(yl)ﬁ)+wz§(ﬂV(Xz).ﬂV(yz),£)+~~'+wn(UV(xn).UV(yn).£)'
n

Then 73,75, ..., T, U andV have a modified tupled coincidence point .
4.Conclusion

The new concepts of modified tupled coincidence points and mixed finite monotone
property are introduced. Also, we established some modified tupled coincidence
theorems in partially ordered generalized metric space.
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