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Abstract
This paper deals with finding the approximation solution of a nonlinear parabolic boundary

value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and
Crank Nicolson (CN) scheme in time, the problem then reduces to solve a Galerkin nonlinear
algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to
solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS
is solved once using the Cholesky method (CHM) as it appears in the matlab package and
once again using the Cholesky reduction order technique (CHROT) which we employ it here
to save a massive time. The results, for CHROT are given by tables and figures and show the
efficiency of this method, from other sides we conclude that the both methods are given the
same results, but the CHROT is very fast than the CHM.

Keywords: nonlinear parabolic boundary value problem, Galerkin finite element methods,
Crank-Nicolson.

1. Introduction
In the last decades many researchers interested to study the solution of boundary value

problems (bvps) in general and the solution of NLPBVP in particular, there are many different
methods for solving the NLPBVP, f.g. in 2000, Karlsen and Riserbo used a corrected operator
Splitting method [1], Pao in 2001 used the time period solutions [2], in 2006, Alam and etc
used the simultaneous space—time adaptive wavelet method [3]. Timothy in 2010 studied the
explicit and implicit difference method [4], in 2011 Ghoreishi and Ismail are used the
Homotopy Perturbation Method (HPM) [ 5], and many others.

The study of the solution for the parabolic bvp using the finite element method (FEM)
back to the beginning of the 17" century, and are studied from many researchers so as
Douglas and Dupont [6], in 1993 Reddy introduced in his book an introduction to the FEM
was applied to linear, one and two-dimensional problems of engineering and applied sciences
[7]. In 1997-2006 Thomee [8] studied the GFEM with backward Euler method for nonlinear
parabolic bvp. According to these studied it was important in this paper to study the
approximate solution for NLPBVP using the GFEM method for the space variable and the CN
scheme for the time variable.

This paper starts with give a description of proposed NLPBVP and its weak form (wf). The
approximation solution of the problem is obtained by discretize the wf by using the GFEM for
the space variable and the CN Scheme for the time variable, the problem then reduces to solve
a GNLAS which transforms it to a LAS which is solved once using the CHM and once again
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using that we give it the name CHROT to save a massive time, which is explained in a two
steps formula. Finally, illustrative examples are given to solve different problems using
MATLAB R2013a software, the results are given by tables and by figures and are show the
efficiency of this method, and are show that the CHROT is very fast to solve the linear
algebraic system than the CHM.
Definition 1, [9]: A point x* € S c R? is said to be fixed point of a given function q:S —
R?,if g(x*) = x*.
Definition 2, [9]: A function g: S € R? - R? is said to be contractive on S, if for each x,y €
S: lgx) —q)Il < Bllx — y|| , where 0 < B < 1 is a constant.
Theorem 3, [9]: A contractive function q on a complete normed space S has a unique fixed
point x* in .
Theorem 4, [9]: Let ||:|| isanormin R? and S € R%. If ¢:S — R? is contractive function
on S, and one of the following is satisfied:
(Hqgx)eS,VxeS.
@) S ={xlllx—yll <p}andllg(y) —yll < 1= P .
(3) S = {x|llx — x* || < pu}, where x* is a fixed point of ¢ Then {x(®} € S, where x® is the
[ — th iterative value of x .
Theorem 5, [9]: Let ||:|| is a norm in R? and S be a closed subset of R?. If q:S - R? is
contractive function on, and {x(”} € S, then
) {x(l)} is converge to a fixed point x* € S
(2) x* is aunique in S
3. Description of the (NLPBVPCC)

Let W={X = (x,%;) € R%:0 < x;, x, < 1}, with Lipischitz boundary W , and let I =
(0,T),0<T<oo,andP=WX1L
The nonlinear parabolic equation is given by: -

u, — Au = H(X,t,u), in P (1)
with the boundary condition (b.c)

u(x,t) =0,0on oW x1 ()
and the initial condition (i.c)

u(®x,0) =u’X), inW 3)
where u=u(%t), Au= ?zlij—; is the Laplace operator and H € C(W).

In this work the inner product and norm in L?(W) will be denoted by (-,") and |||l , the
inner product and norm in Sobolev space V = H}(W) will be denoted by (-, -); and |||I;,
the duality bracket between V and its dual V* will be denoted by (-,-) and [|||p be the norm

in L2(P).

Now, the wf of (1-3) is given by:

(ug , €)Y+ (Vu,Vé&)=(HwW),&), Vv EEV ae on I 4)
(), =@’ §), in W (%)
with u® belongs to V and to L(W) since V ¢ L#(W).

Assumptions:

(1) for some positive constants y; ,¥, and foreach n,,n, €V &t €1 , the following
inequality are satisfies

(Y1, V)l < va V0 lly V2114
(vn,vn) = v IV |13
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(2) the function H is of a Carathéodory type on PX R, satisfies the following sub linearity
and Lipischitz conditions

|H(X,t,u)| < 8(%,t) + ¢1|u|, wherec; >0, (X, t) €EP ,,u€ Rand§ € L*(P,R)

|H(%,t,uy) — H(X, t,uy)| < Lluy — uy|, where (X,t) € P,uy,u, € R, L is a Lipischitz
constant.

4. Discretization of the Continuous Equation:

The wt of (4-5) is discretized by using the GFEM, as follows, let the domain W is a
iy
into closed disimplices [8], {Ij"}j=0 be a subdivision of the interval I into NT (n) intervals,
where t/' = [t}*,t44] , of equal length At =T/NT, let O;; = W/ X [* and V, cV =
HL(W) be the space of continuous piecewise affine in W. The Discrete state equation (DSEq)
of the wf (4-5) is obtained after using the CN formula and is given by

(ufyy —ul ) + At (Vugj V)=t (H (t; u;) €)1 i=0,1,...NT-1 (6)
(g, &) = W& (7

1 1 . 0 _
where & € Vp, ugj =3 (ulyy +ult), t%”j =+, =01 NT, u’ € Vand u! =

polyhedron. For every integer n, let {W;"} be an admissible regular traingulation of W

u(t})ev,vj=01,..,NT.

5. The Approximation Solution of the Nonlinear Parabolic Equation:

To find the approximation solution (app.sol) u"™ = (ug,uf, ..., uyy) of (6-7) by using the
GFEM, the following procedure can be used:
(1) For fixedany j,(0 <j < NT —1),let{§;,i=1,2,..,N,with&;(X) =0, ondW}bea
continuous piecewise affine finite basis of 1}, in W , then for any i=1,2,...,N and u]” u}ﬁrl €
V,, (6-7) can be rewritten as:

(ufyy —ul &) + At (Vu;,, Vfi) = At (H (t; L+ %u}l),fi) (8)
c &€V, (uh, &) = W ¢)

9
ug = (2) Using the Galerkin method [8], with the basis (&1, &5, ..., &y) of 1, , one has
1 u}l = ]lg=1X1iS(k , and u]ﬂ“ = 11¥=1X1i+1§k211¥=1X1?§k
where , X ,i =X (t]n) , foreach j = 0,1, ..., NT are unknown constants to be determine.
(3) Substitute u* and uj; in (8) to get the following nonlinear algebraic system
(Y +21862) X0+ = (Y - 2Ae2)X) + b (t;) . j=01,..,NT -1 (10)
and substituting uf in (9) to get the following linear algebraic system
YX% =po (11)

where Y = (Vudnxn > Yik = i)+ Z = Cudnxn > Zik = (Vi VE) XI<I><1 =

e, X7 V= €&, &), b= (B)ywy 5 by = At(HEVTXIH +
WTX1),&) and b = (B)yxy , bY = (%, &), Vik=12,..,N.

System (10-11) has a unique solution [10]. To solve it, the linear algebraic system (11) is
solved at first to get X, then to solve the nonlinear system (10) the PCT is used here [8],
as follows : For each j (0 < j < NT — 1) we predict at first the value X’/*! by using the
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explicit form (just the value of X/) in the component of b in the right hand side (RHS) of

(10) , then by substitute X’/*! = XJ*1, in the component of b in the RHS of (10),
makes system (10) linear, solving it w.r.t X/*1 to get the corrector solution , (this
procedure can be repeated (more than one time if we need) by substitute the corrector
solution X/*! = X/*! in the RHS of the linear system (10) and solve it again w.r.t
XJ*1 | for fixed j, to get a new corrector solution). Hence the corrector equation
described as follows:

1+1 1+1 !
(P =, &) + 28e(vul? + vy, 7€) = A (H(D, + ), €) (12)
where uj( 4_)1 :=ujy, is the predictor solution at the iteration [ + 1, uj(fll) =y ds its

corresponding corrector solution at the iteration I and u; = u;' is the known corrector

solution for the previous step j, i.e. (12) can be written as :
D = g(u®) (13)

Theorem 6: The discrete state Equation (6-7) with fixed point and for At sufficiently
small has a unique solution u™ = (ug, uf, ..., up) , and the sequence of corrector solutions
is convergence in R.

Proof: Let u(*D = (u((,l“), ...,u}”l) u,(\,l“)) and v =

A e v(l“)) are two solutions of (12) , i.e.

0 LA ] ]
l l 1 (1 1
s =, &) + S At(VultY + vy, vE) = At(H( ul) + Euj),f) (14)
l l l
(oD =y, &) + 386V tY + Vuy, V8) = Ac(H (3v0) +31),8) (15)

LD _ ()

By subtracting (15) from (14), setting & = Ujiq Vi1 in the obtained equation and using

Lipschitz condition on H with respect to for u, once get that
| 1) _ () ” el At”V (+1) _ g, (4D ” AtL ( O _,0 | | 1) _ () )
Uit Vis Uity e Uit1 = Vi (Y Yiy1 |)-
Keep in mind that the 2"¢ term in the left hand side (LHS) is positive and then using Cauchy
Schwarz (CS) inequality on the RHS of above inequality, once get that

| ](_l:rll) ](Jl:;l)” < ﬁ” ](21 — ](_?1” , where 8 = %AtL ,
using (13), to get that

Y1 ) <p ](-ll-)l - ](-f-)1||
RGOl

Since At is sufficiently small and f < 1, then q is contractive, and by theorem (1) we get
uD = pU+D " hence the DSEq has a unique solution, also since {u(’} € R,V 1 then
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q(u®) =u®V e R,V limplies thatq(w) ER,Yu € R, and by using Theorem (3) with
S=R, we get that {u(”} is converged to a pointin R .

6. Cholesky Reduction Order Technique

This technique in fact is based on an idea which is introduce first in [11] about reducing the
diagonal elements of the Galerkin matrix into columns, we formulate it by the following steps
hence we called it by the Cholesky reduction order technique (CHROT):

First, the N X N obtained matrix is reduced to N X M1 matrix A by transform the lower
diagonals (M1) of N X N matrix to columns, second the reduction of matrix A is a new N X
M1 matrix R which is computed by using the following formula :

for=12,..,N,j=i+1,..,mn(+M,N)
eif i =1,then Ry, =/Apy and Ry = —-
Rim1

Jl=i—j+M1

eif i >1,then Rjy = \]AiMl —Yrek—ism RE . K=max(i—M,1):i—1
R, = ij(Aj, ~Yrek-ismiReRs) ,s=r+i—j , with j—K<M.
Example 7: Consider the following nonlinear parabolic b.v.p.:
u, —Au = H(X, t,u) , where X = (x1,x5)
u(®,t) =0 ,on oW x1
u(x,0) = x;%,(1 —x1)(1 — x3) ,on W
where, H(X, t,u) = e[(x1x; — x1x5 — x,x7 + x7x3) (1 — sin(e (x1x, — x1x5 — x,x7 +
x?x3))] +usinu
The exact solution of this problem is: w(X,t) = x;x,(1 — x;)(1 — x,)e’
This problem solved using the GFEM for M=9 and NT=20, the results are shown in Table 1.
and Figure 1. at time £ = 0.5, the table shows the approximate solution #(xy,x,,t), the
exact solution u(xq, x, t) and the absolute error at x; & x,. The Mat lap Software is used to

solve this problem, it takes 5-hours when we use the CHM, while takes 1-hour and 7-

minutes when we use the CHROT.
Table 1. Comparison between exact and approximation solutions

X1 | Xo | u(xq, x,t) | U(xq, Xy, t) | absolute error | x; | xp | u(xy,x,,t) | U(xy, x5, t) | absolute error
0.1 0.1 | 0.0137 0.0137 0.0000 0.6 | 0.5 0.1014 0.1029 0.0015
0.2 | 0.1 | 0.0243 0.0247 0.0004 0.7 | 0.5 | 0.0887 0.0901 0.0014
0.3 ]0.1 | 0.0319 0.0323 0.0004 0.8 | 0.5 | 0.0676 0.0687 0.0011
04 | 0.1 | 0.0365 0.0370 0.0005 0.9 | 0.5 | 0.0380 0.0386 0.0006
0.5]0.1 | 0.0380 0.0386 0.0006 0.1 | 0.6 | 0.0365 0.0370 0.0005
0.6 | 0.1 | 0.0365 0.0370 0.0005 0.2 | 0.6 | 0.0649 0.0659 0.0010
0.7 0.1 | 0.0319 0.0324 0.0005 0.3 0.6 | 0.0852 0.0865 0.0013
0.8 ] 0.1 | 0.0243 0.0247 0.0004 04 0.6 | 0.0974 0.0988 0.0014
0.9 | 0.1 | 0.0137 0.0140 0.0003 0.5]0.6| 0.1014 0.1029 0.0015
0.1 0.2 | 0.0243 0.0247 0.0004 0.6 | 0.6 | 0.0974 0.0988 0.0014
0.2 | 0.2 | 0.0433 0.0440 0.0007 0.7 | 0.6 | 0.0852 0.0865 0.0013
0.3 0.2 | 0.0568 0.0577 0.0009 0.8 | 0.6 | 0.0649 0.0659 0.0010
0.4 ]0.2 | 0.0649 0.0659 0.0010 0.9 | 0.6 | 0.0365 0.0370 0.0005
0.5]0.2 | 0.0676 0.0687 0.0011 0.1 0.7 | 0.0319 0.0324 0.0005
0.6 | 0.2 | 0.0649 0.0659 0.0010 0.2 1 0.7 | 0.0568 0.0576 0.0008
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0.7] 02| 0.0568 0.0576 0.0008 03]07] 0.0745 0.0757 0.0012
0.8] 02| 0.0433 0.0438 0.0005 04107 0.0852 0.0865 0.0013
0.9] 02| 0.0243 0.0247 0.0004 0.5] 0.7 0.0887 0.0901 0.0014
0.1]03] 0.0319 0.0323 0.0004 0.6 07| 0.0852 0.0865 0.0013
02103 0.0568 0.0577 0.0009 0.7] 07| 0.0745 0.0756 0.0011
03]03] 0.0745 0.0756 0.0011 0.8]0.7 ] 0.0568 0.0577 0.0009
041031 0.0852 0.0865 0.0013 09]07] 0.0319 0.0323 0.0004
0.5] 03| 0.0887 0.0901 0.0014 0.1 08| 0.0243 0.0247 0.0004
0.6 | 0.3 | 0.0852 0.0865 0.0013 0.2]08 | 0.0433 0.0438 0.0005
0.7] 03| 0.0745 0.0757 0.0012 0.3 ] 08| 0.0568 0.0576 0.0008
0.8 03| 0.0568 0.0576 0.0008 04 )08 | 0.0649 0.0659 0.0010
0.9 03| 0.0319 0.0324 0.0005 0.5] 08| 0.0676 0.0687 0.0011
0.1 04| 0.0365 0.0370 0.0005 0.6 | 0.8 | 0.0649 0.0659 0.0010
0.2 ] 04| 0.0649 0.0659 0.0010 0.7] 08| 0.0568 0.0577 0.0009
0.3] 04| 0.0852 0.0865 0.0013 0.8 08| 0.0433 0.0440 0.0007
04104 00974 0.0988 0.0014 0.9 ] 08| 0.0243 0.0247 0.0004
0.5] 04| 01014 0.1029 0.0015 0.109]| 0.0137 0.0140 0.0003
0.6 | 04| 0.0974 0.0988 0.0014 02109 0.0243 0.0247 0.0004
0.7] 04| 0.0852 0.0865 0.0013 03109 0.0319 0.0324 0.0005
0.8] 04| 0.0649 0.0659 0.0010 04109 0.0365 0.0370 0.0005
0.9] 04| 0.0365 0.0370 0.0005 0.5]0.9 | 0.0380 0.0386 0.0006
0.1 05| 0.0380 0.0386 0.0006 0.6 09| 0.0365 0.0370 0.0005
02105 0.0676 0.0687 0.0011 0.7 109 | 0.0319 0.0323 0.0004
0.3 ] 05| 0.0887 0.0901 0.0014 0.8]09 | 0.0243 0.0247 0.0004
04105 01014 0.1029 0.0015 0910900137 0.0137 0.0000
0.5] 05| 0.1057 0.1072 0.0015

Figure 1. (a) shows the approximation solution and (b) shows the exact solution

Example 8: Consider the following nonlinear b.v.p.:

u, —Au = H(X, t,u) , where X = (x1,x5;)
Associated with the i.c and b.c

u(,t) =0 ,on oW X1

u(%,0)=0 ,onW

where H(X, t,u) = (x%x, + x2x; — x2x% — x,%)[1 + t sin(t(x,x, — x1x5 — x,x2 +

x1x3))] -

2t(x; + x, —x2 —x2) + usinu

The exact solution of this problem is: u(X,t) = —x;x,t(1 — x;)(1 — x3)
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This problem is solved using the GFEM for M=9 and NT=20, the results are shown in Table
2. and Figure 2. at £ = 0.5, the table shows the approximate solution (x;, x,, t) , the exact
solution u(xy, x5, t) and the absolute error at x; & x, . This problem is take 13 hours when
we use the CHM to solve the PCT, while takes 3 hours and 27 minute when we use the
CHROT.

Table 2. Comparison between exact and approximation solutions

X1 | Xo | u(xq, x,t) | U(xq, X, t) | absolute error | x; | xp | u(xy,x,,t) | U(xy,x,,t) | absolute error
0.1 | 0.1 | -0.0043 -0.0044 0.0001 0.6 | 0.5 ] -0.0315 -0.0328 0.0013
0.2 | 0.1 | -0.0076 -0.0079 0.0003 0.7 | 0.5 | -0.0276 -0.0287 0.0011
0.3 | 0.1 | -0.0099 -0.0103 0.0004 0.8 | 0.5 -0.0210 -0.0219 0.0009
04 ]0.1]-0.0113 -0.0118 0.0005 0.9 | 0.5]-0.0118 -0.0123 0.0005
0.5]0.1|-0.0118 -0.0123 0.0005 0.1 | 0.6 ]-0.0113 -0.0118 0.0005
0.6 | 0.1 | -0.0113 -0.0118 0.0005 0.2 | 0.6 | -0.0202 -0.0210 0.0008
0.7 | 0.1 | -0.0099 -0.0103 0.0004 0.3 | 0.6 | -0.0265 -0.0276 0.0011
0.8 | 0.1 | -0.0076 -0.0079 0.0003 0.4 | 0.6 | -0.0302 -0.0315 0.0013
0.9 | 0.1 | -0.0043 -0.0044 0.0001 0.5 | 0.6 | -0.0315 -0.0328 0.0013
0.1 | 0.2 | -0.0076 -0.0079 0.0003 0.6 | 0.6 | -0.0302 -0.0315 0.0013
0.2 0.2 -0.0134 -0.0140 0.0006 0.7 | 0.6 | -0.0265 -0.0276 0.0011
0.3 ]0.2|-0.0176 -0.0184 0.0008 0.8 | 0.6 | -0.0202 -0.0210 0.0008
0.4 0.2 | -0.0202 -0.0210 0.0008 0.9 | 0.6 | -0.0113 -0.0118 0.0005
0.5]0.2 | -0.0210 -0.0219 0.0009 0.1 | 0.7 | -0.0099 -0.0103 0.0004
0.6 | 0.2 | -0.0202 -0.0210 0.0008 0.2 | 0.7 | -0.0176 -0.0184 0.0008
0.7 1 0.2 | -0.0176 -0.0184 0.0008 0.3 | 0.7 | -0.0232 -0.0241 0.0009
0.8 0.2 -0.0134 -0.0140 0.0006 0.4 | 0.7 | -0.0265 -0.0276 0.0011
0.9 | 0.2 | -0.0076 -0.0079 0.0003 0.5 0.7 | -0.0276 -0.0287 0.0011
0.1 | 0.3 | -0.0099 -0.0103 0.0004 0.6 | 0.7 | -0.0265 -0.0276 0.0011
0.2 | 0.3 | -0.0176 -0.0184 0.0008 0.7 | 0.7 | -0.0232 -0.0241 0.0009
0.3 | 0.3 | -0.0232 -0.0241 0.0009 0.8 | 0.7 | -0.0176 -0.0184 0.0008
0.4 | 0.3 | -0.0265 -0.0276 0.0011 0.9 | 0.7 | -0.0099 -0.0103 0.0004
0.5 ] 0.3 | -0.0276 -0.0287 0.0011 0.1 | 0.8 | -0.0076 -0.0079 0.0003
0.6 | 0.3 | -0.0265 -0.0276 0.0011 0.2 1 0.8 | -0.0134 -0.0140 0.0006
0.7 | 0.3 | -0.0232 -0.0241 0.0009 0.3 0.8 |-0.0176 -0.0184 0.0008
0.8 | 0.3 |-0.0176 -0.0184 0.0008 0.4 | 0.8 | -0.0202 -0.0210 0.0008
0.9 | 0.3 | -0.0099 -0.0103 0.0004 0.5 0.8 |-0.0210 -0.0219 0.0009
0.1 |04 ]-0.0113 -0.0118 0.0005 0.6 | 0.8 | -0.0202 -0.0210 0.0008
0.2 | 0.4 | -0.0202 -0.0210 0.0008 0.7 | 0.8 | -0.0176 -0.0184 0.0008
0.3 | 0.4 | -0.0265 -0.0276 0.0011 0.8 0.8 -0.0134 -0.0140 0.0006
0.4 |04 |-0.0302 -0.0315 0.0013 0.9 | 0.8 | -0.0076 -0.0079 0.0003
0.5 |04 |-0.0315 -0.0328 0.0013 0.1 | 0.9 | -0.0043 -0.0044 0.0001
0.6 | 0.4 | -0.0302 -0.0315 0.0013 0.2 | 0.9 | -0.0076 -0.0079 0.0003
0.7 | 0.4 | -0.0265 -0.0276 0.0011 0.3 | 0.9 | -0.0099 -0.0103 0.0004
0.8 | 0.4 | -0.0202 -0.0210 0.0008 04 ]0.9]-0.0113 -0.0118 0.0005
0.9 |04 ]-0.0113 -0.0118 0.0005 0.5]0.9]-0.0118 -0.0123 0.0005
0.1 ]0.5]-0.0118 -0.0123 0.0005 0.6 | 0.9 ] -0.0113 -0.0118 0.0005
0.2 | 0.5 | -0.0210 -0.0219 0.0009 0.7 | 0.9 | -0.0099 -0.0103 0.0004
0.3 | 0.5 | -0.0276 -0.0287 0.0011 0.8 | 0.9 | -0.0076 -0.0079 0.0003
0.4 |0.5|-0.0315 -0.0328 0.0013 0.9 | 0.9 | -0.0043 -0.0044 | 0.0001
0.5 0.5 |-0.0328 -0.0342 0.0014

Mathematics | 132



Ibn Al-Haitham Jour. for Pure & Appl. Sci.

IHJPAS

https://doi.org/10.30526/31.3.2002

VYol. 31 (3) 2018

Figure 2. (a) shows the approximation solution and (b) shows the exact solution

7. Conclusion

The GFEM associated with the PCT is suitable, efficient and very fast to solve the
nonlinear parabolic boundary value problems.

The CHROT is very fast than the CHM with same results and this is important when
we have problems gives very large algebraic systems which take a long time in the
classical CHM.

The value of t is chose arbitral in the interval I , same results with same accuracy will
obtained if we can take any other value of £ provided this value belong to I.
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