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Abstract
In this paper, a Monte Carlo Simulation technique is used to compare the performance of

the standard Bayes estimators of the reliability function of the one parameter exponential
distribution .Three types of loss functions are adopted, namely, squared error loss function
(SELF) ,Precautionary error loss function (PELF) and linear exponential error loss function
(LINEX) with informative and non- informative prior .The criterion integrated mean square
error (IMSE) is employed to assess the performance of such estimators
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1. Introduction
The reliability theory is associated with random occurrence of undesirable events or failure

during the life of a physical or biological system [1]. Reliability is a substantial feature of a
system. Basic concepts related with reliability has been recognized for a number of years,
however, it has got greatest importance during the past decennium as a consequence of the
use of highly complex systems. In reliability theory, the exponential distribution has a
distinctive role in life testing experiments. Historically, it was the first life time model for
which statistical procedures were widely developed. Many researchers gave numerous results
and generalized the exponential distribution as a life time distribution, particularly, in the field
of industrial life testing. The exponential distribution is desirable because of its simplicity and
its own features such as lacks memory and self-producing property.

The probability density, cumulative distribution and reliability functions of one parameter
exponential distribution are respectively defined as [2]:

f(t,e) = ee™®, t,e >0 (D
The cumulative distribution function is given by

FO) =pr(T<t)=1-—e° 2)
R(t) =1—-F(t) = e 3)

The one parameter exponential distribution is a member of exponential class of probability
density functions which has the general form [3]

f(t, ) = exp[p(e)k(t) + s(t) + q(e)] 4)
then the exponential distribution the p.d.f. can be written as

Mathematics | 135



Ibn Al-FHaitham Jour. for Pure & Appl. Sci. IHJPAS

https://doi.org/10.30526/31.3.2006 Yol. 31 (3) 2018

f(t,e) = exp[—et + Ine]
Hence T = }j=, k(t) = XiL, t; is the complete sufficient statistic for e and it can be easily

shown that T follows Gamma distribution with parameters n andg .

2. Standard Bayes Estimators

The researchers employed three types of loss functions, namely, the squared error loss
function (SELF), precautionary error loss function (PELF) and linear exponential error loss
function(LINEX) . The Bayes estimator of the parameter o is the value of e that minimize the
risk function R(6, e) where [4]
R(8,0) = E[L(8,0)]

= f L(8,0)h(elt) do (5)
e

In the case of squared error loss function we have

L(6,6)=(0-6) * 6)

Then, the risk function will be

R (5,0) = f ©—-6)%h (elt)do

o
=f, 8*h (elt)de —26 [, eh (elt)de + [, e*h (elt)de
R(8,0) = 82 — 28E(elt) + E(8?It)
DifferentiatingR (6, e) with respect to 8 and setting the resultant derivative equal to zero,
we get:
26 —2E(elt) = 0
Solving for & implies that

854 = E(elt) (7)
ThePrecautionary error loss function is defined as [5]:

R (e — 8)°
L (8,8) = r— 8

If (PELF)is adopted, it can be in the same manner show that the Bayes estimator of e is

6p = /E (e*11) )

Varian (1975) developed the following a symmetric linear exponential (LINEX) loss function
LA)=eb-A-1 (10)
Where A= (6 — o)

And when the ((LINEX) is adopted, similarity the Bayes estimator of e is

aL,=—lnf e °h(elt) do (11)
(¢]

4. Posterior Density Based on Jeffrey's Prior Information

Let us assume that e has non informative prior density. Jeffrey's (1961) developed a
general rule for obtaining the prior distribution of e [6]. He established that the single
unknown parameter e which is regarded as a random variable follows such a distribution that
is proportional to the square root of the fisher information on e, that is [5]

g(e) a/1(e) (12)
That is
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g(e) = cyi(e)
Where c is a constant of proportionality and I(e) represent fisher information defined as
follows:

Yol. 31 (3) 2018

d%Inf(t,e)
I(e) = —nE[— ]
If g1 (e)denote Jeffrey's prior information then
d2Inf (t; e)
91(e) = CJ—nE <T (13)

For the exponential distribution we have
Inf(t,e) =lne — et

( dnfte) _ 1
) de e
Hence,
0%Inf(t;e) -1

de2 @2
Substituting in Equation (13) it follows that
c

g:1(e) = 5 Vn

From Bayes theorem the posterior density function of e denoted by h, (e| E) can be derived as
[4]
(e)L(s; tq, ..., t
hl(eltlr---,tn) — oogl ( 1 n)
fo gl(e) L(G, t1 y ey tn)de

n-1 ,—eT n

h (elty, ..., ty) °_° T=Zti

- fooo on—1 eg-oTdg’ £
Hence, the posterior density function for e based on Jeffery's prior information will be
" en—l e —eT
I'(n)
The posterior density in Equation (14) is defined identified as a density of the Gamma
distribution, that is

hy(elty, o)ty ) = (14)

Gamma (n,%) with E(e) = g and var(e) %eltl, ty, e, by~
that is e~Gamma (n ,%)
4. Posterior Density Based on Gamma Prior Distribution

Assuming that e has informative prior as Gamma distribution which takes the following form:

Igaea—le—eﬁ

()

Where a,f3 are the shape parameter and scale parameter respectively

g2(e) = ;6>0,8>0,a>0 (15)

The posterior density function is
e)L(e;t,, ..., t
hz(e|£)= Oogz() (65t n)
Jy 92(0)L(8; ty, .., tp)de
Thus
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patn eot+n—1e—eP
h,(elt) =
2(e|_) ['(a+n)
Where P = (B + T)
It can easily be noted that

(16)

1 . + +
(elt)~Gamma (a +n, ;)wrch E(e) =aT" ,Var(e) = (%)

5. Bayes Estimator When (SELF)is Adopted
a: The case of Jeffrey's prior information.
From Equation (7) we found that:

é]sq = E(elg) = J;) Bhl(elg) d9

R n

e]Sq = T (17)

Similarly, the Bayes estimator of the reliability function can be
obtained as follows:

R(t)jsq = E(R(DIL) = f R(t)h, (elt) dO
0
R(t)jsq = Ty
®ysq = G +t
b: The case of Gamma prior distribution.

In this case we have

a+n
Gsq = E[hz(eVE)] =7 (19)

The estimator of the reliability function can be obtained as
R(®)gsq = E(R(DI) =

00 P(x+nea+n—1e—eP
—et

ﬁ(t)asquo e T

Which, implies that

(18)

" @ P

RVosg = [ RORy(o10)d0 = (G (20)
0 P+t

6. Bayes Estimator When (PELF) is Adopted

a: The case of Jeffrey's prior information

From Equation (9) we have

8;p = /E(ezlg)

The 7" moment of eIt can be evaluated as follows:
E(e"1t) = fooo e"h,(elt)de
Hence,

r __I'(n+nr)
E(e"It) = oo (21)

When =2, we get
'n+2) nn+1)
rmrz T

E(e%1t) =

Hence,
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1
o= [L01D 22)

Similarly, the Bayes estimators of the reliability function can be obtained as follows
o 2
R = [EI((RO) L))
Now, we have to determine E[((R(t))?1t)]
oo 2
B(R@)™1E) = [, (R(®) hy(e1t)de

= T n
(T+2t)
Hence,
RO = |G (23)

b: The case of Gamma prior distribution
From Equation (9) we have

6p = /E(ezlg)

The 7" moment of eIt can be evaluated as follows:

E(e"1t) = fooer h,(elt)de
Fo(a+n+r)

E(erlg) - ['(a +n)PT

(24)

If =2 then
(a+n)(a+n+1)

PZ

E(e%1t) =
Hence,

. \/(a+n)(a+n+1)

(25)

Ocp = p2

Similarly, the r"Bayes estimators of the reliability function can be obtained as follows

R(t)gp = ‘/E[((R(t))zlz)]

Now, we have to determine E[((R(t))?It)]

B(R@YD = [ “(R(O) hy(e1t)de

— a+n
(P + Zt)

R = |Gz (26)

7. Bayes Estimator When (LINEX) Is Adopted
a: The case of Jeffrey's prior information
From Equation (11) we have

éLI = _lnf e_eh(elg) d9
]

Mathematics | 139



Ibn Al-FHaitham Jour. for Pure & Appl. Sci. IHJPAS

https://doi.org/10.30526/31.3.2006 Yol. 31 (3) 2018

Hence,

é]LI = _lnf e_ehl(elg)de
0

By evaluating the integral we get
n

T
s = —tn () 2
OjL1 n 1+7T (27)
The estimator of the reliability function can be obtained as

R(t)jy = e~®utt

T n
Ry = (—) t 28
O = (137 (28)
b: The case of Gamma prior distribution
From Equation (11) we have

éLl = _lnf e_eh(elg) d9
e

éGLI = _lnf e_ehz(elz)de
0

By evaluating the integral we get
P at+n

5 =4< ) 29
OgLI n 1+ P (29)
The estimator of the reliability function can be obtained as

R(t)gy = edeutt

at+n

R(t)e1 = (1+—P> t (30)

8. Simulation Study

The simulation study was conducted in order to compare the performance of the Bayesian
estimators of the reliability function R(t)of one parameter exponential distribution.

The integrated mean squared error (IMSE) as a criterion of comparison where

IMSE[R(t)] = ; Skl B7L, (Ri(6) = R(6,))?]

1w R
=E;Mwm(m)

Where n;is the random limitsof t,., using t=(0.1,0.2,0.3,0.4, 0.5,0.6,0.7,0.8,0.9,1)

L is the number of replications which we assumed that L=1000 in our study, R(t,) is the
estimator of R(t) at the Lt"replication.

The Bayesian estimators of R(t) are derived with respect to three loss function which are the
square error loss function (SELF),precautionary error loss function (PSELF) and linear
exponential error loss function(LINEX) , moreover, the informative and non-informative
prior were postulated .The sample sizes n=10,50, 100 and 200 were chosen to represent small,
moderate, large and very large sample sizes from the one parameter exponential distribution
.The postulated values of the unique parameter e were =0.5,1.5 and the values of the
parameters for Gamma prior were 0=0.3,1 and =1.2,3 .

The results are presented in Tables below:
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Table 1. (IMSE’s) values of the reliability function estimators by using Jeffrey's prior information

at 0=0.5
n 10 50 100 200
Estimator
JSqu 0.000524 0.004635 0.004064 0.002635
JPre 0.000484 0.004524 0.004041 0.002632
JLIN 0.027725 0.010603 0.005875 0.002981

Table 2. (IMSE) values of the reliability function estimators by using Jeffrey's prior
information at e=1.5

n 200
Estimator 10 50 100
JSqu 0.000963 0.003425 0.002309 0.001260
JPre 0.000932 0.003376 0.002301 0.001259
JLIN 0.019773 0.005140 0.002565 0.001279

Table 3. (IMSE’s) of the reliability function estimators by using Gamma prior information at =0.5

10 50 100 200
M

GSqu 0=0.3 B=1.2 0.000416 0.004250 0.003941 0.002618
B=3 0.000312 0.003806 0.003743 0.002543

=1 B=1.2 0.000528 0.004457 0.003954 0.002609

B=3 0.000335 0.003899 0.003749 0.002556

GPre 0=0.3 B=1.2 0.000389 0.004178 0.003918 0.002614
B=3 0.000308 0.003739 0.003719 0.002538

=1 B=1.2 0.000478 0.004384 0.003931 0.002605

B=3 0.000320 0.003832 0.003725 0.002551

0=0.3 B=1.2 0.027407 0.010439 0.005859 0.002981

GLIN p=3 0.026386 0.010204 0.005817 0.002980
a=1 p=1.2 0.028030 0.010539 0.005859 0.002981

B=3 0.026935 0.010251 0.005830 0.002980

Table 4. (IMSE’s) of the reliability function estimators by using Gamma prior information at e=1.5.

10 50 100 200
n
GSqu 0=0.3 p=1.2 0.000838 0.003000 0.002209 0.001250
p=3 0.001465 0.002462 0.002038 0.001227
o=1 p=1.2 0.000713 0.003055 0.002217 0.001250
p=3 0.001173 0.002497 0.002063 0.001227
GPre 0=0.3 p=1.2 0.000909 0.002949 0.002200 0.001249
p=3 0.001665 0.002410 0.002027 0.001226
o=1 p=1.2 0.000760 0.003004 0.002208 0.001249
p=3 0.001336 0.002446 0.002053 0.001225
0=0.3 p=1.2 0.018831 0.005123 0.002564 0.001279
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GLIN p=3 0.017556 0.005081 0.002564 0.001279
o=1 p=1.2 0.019206 0.005127 0.002565 0.001279
p=3 0.017887 0.005087 0.002564 0.001279

9. Simulation Results and Conclusions
From our simulation study, the following results are clear

o From Table 1. and Table 2.: The Bayes estimator under

e Precautionary error loss function with Jeffrey's prior is the best comparing to other
estimators for all sample sizes.

e From Table 3.: The Bayes estimator under precautionary error loss function with
Gamma prior (0=0.3, p=3) is the best comparing to other estimators for all sample
sizes.

e From Table 4.: for (n=10) the performance of Bayes estimator under squared error
loss function with Gamma prior (=1, =1.2) is the best, and for (n=50,100) the
performance of Bayes estimator under precautionary error loss function with Gamma
prior (0=0.3, B=3) is the best and for (n=200) the performance of Bayes estimator
under precautionary error loss function with Gamma prior (0=1, p=3) is the best.

e That is the performance of Bayes estimator under precautionary error loss function is
superior to the performance of other estimators in almost cases that are studied in this
paper, where the integrated mean squared error (IMSE) is employed as a criterion to
assess the performance of such estimators.
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