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Abstract 

     The main aim of this paper is to apply a new technique suggested by Temimi and Ansari 

namely (TAM) for solving higher order Integro-Differential Equations. These equations are 

commonly hard to handle analytically so it is request numerical methods to get an efficient 

approximate solution. Series solutions of the problem under consideration are presented by means of 

the Iterative Method (IM). The numerical results show that the method is effective, accurate and easy 

to implement rapidly convergent series to the exact solution with minimum amount of computation. 

The MATLAB is used as a software for the calculations.  
 
 

Keywords: Integro-Differential Equations, Iterative Method, Temimi and Ansari method. 
  

1. Introduction 

    Integro-Differential Equations (IDEs) include in many mathematical formulations of 

physical phenomena, these problems have a major role of interest and arise in many 

applications in various fields of science, such as chemical kinetics, fluid dynamics, 

engineering problems and biological models. In recent years, there exist numerical techniques 

gained a great interest by many authors such as Lagrange Interpolation Method [1]. Wavelet-

Galerkin Method (WGM) [2]. Adomian's Decomposition Method (ADM) [3-5]. Modified 

Adomian Decomposition Method (MADM) [6]. Variational Iteration Method (VIM) [7, 8]. 

Differential Transform Method [9]. Tau Method [10]. Generalized Spline Method [11], and 

Semi Analytical-Numerical Techniques such that Taylor polynomials [12]. and Rationalized 

Haar Functions Method [13]. However, none of a fore mentioned methods are successfully 

solved higher order IDEs. Furthermore, prior studies need more effort to realize the outcomes, 

they are not precise and commonly they are improved for specific sorts IDEs. Temimi and 

Ansari (TAM) have been suggested a new iterative method, i.e., Semi Analytic Iterative 

Method (SAIM) for solving linear and nonlinear functional equations [14]. This method has 

been extensively studied by many researchers recently; it has been successfully applied for 
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solving some linear and nonlinear partial and ordinary differential equations [15-18]. It is 

worth mentioning, SAIM is not yet used to solve higher order IDEs. This method is accurate 

and powerful technique, needn’t to impose any additional restrictions to get the numerical 

solution of these problems. It is qualified method for extremely the number of calculations 

will be reduced while still maintaining the solution is more accurate and efficient. Higher 

Order Linear Fredholm IDEs was solved by Power Series and Chebyshev Series 

Approximation Methods in [19]. IDEs was solved by Modified Taylor Expansion Method in 

[20]. And Voltera IDEs was solved by using the Laplace Transform Method in [21]. In this 

research, we applied this reliable technique to solve higher order IDEs. Generally, Voltera – 

integro – differential equation [21]. Given in the form: 

 

y(n)(x) = h(x) + 𝜆 ∫ k(x, t)𝑦(t)
x

0
d(t),  𝜆 ≠ 0,                                                                              (1) 

  

    And Fredholm – integro – differential equation [19]. given in the form: 
y(n)(x)

= h(x) + ∫ k(x, t)𝑦(t)

b

a

d(t)                                                                                                               (2) 

    Both of Equations. (1) & (2) with Initial Conditions (ICs).  

 

y(k)(0) = ωk, 0 ≤ k ≤ n − 1                                                                                                    (3) 

 

where y(n)(x)  is the n
th

 derivatives, k(x, t)and h(x), are given continuous smooth functions, 𝜆 

is a parameter, 𝑦(x) unknown function to be determined and 𝑎, 𝑏, ωk  are constants. Since the 

results of equation (1) and equation (2) combine the differential and integral operators, then it 

is necessary to define ICs as in (3).The proposed method was applied to establish series 

solutions for Equation (1) or Equation (2). We illustrated that this method is effective and 

perfect in handling to solve higher order IDEs in scientific and engineering problems. Several 

numerical examples are introduced and comparison with existing methods, the results reveal 

that the method is accurate and easy to implement.  

 

2. Fundamental Idea for the Iterative Method 

    The main steps of Iterative Method (IM). It is rewrite that any differential equation can be 

written as [14]. 

L(y(x)) + N(y(x)) + h(x) = 0                                                                                                         (4) 

    With Boundary Conditions B (y, 
𝑑𝑦

𝑑𝑥
 ) = 0,  

    Where x is the independent variable, L is a Linear operator, N is a non-linear operator and 

the boundary operator is B. The method which proposed as the following way. The initial 

approximation is the primary step in the IM, by assuming that the initial guess 𝑦0(x) is 

solution of problem y(x) and solution of equation can be solving: 

L(𝑦0(x)) + h(x) = 0, B (𝑦0, 
𝑑𝑦0

𝑑𝑥
) = 0                                                                                       (5) 

     To generate the next iteration of the solution as follows: 

 

L(𝑦1(x)) +h(x)+N (𝑦0 (x)) = 0, B (𝑦1     , 
𝑑𝑦1

𝑑𝑥
) = 0                                                                   (6) 
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     After several simple iterative steps of the solution, the general form of this Equation which 

is: 

L(yn+1 (x)) +  h(x)  + N(yn (x)) = 0 ,   B(yn+1,
dyn+1

dx
)  =  0                                                   (7)        

    Evidently each iteration of the function 𝑦𝑛 (x) represent effectively alone solution for 

equation (4). 

   We will implement the steps of method at the equation (1), so Equation (1) can be express as: 

L(y (x)) = h(x) + 𝜆 ∫ k(x, t)𝑦(t)

x

0

d(t) ,    λ ≠  0,                                                                        (8) 

    The differential operator L(y (x)) is the highest order derivative in the equation (8), we 

assume that L is invertible by using the given ICs in equation (3) and applying the inverse 

operator L−1 in both sides of equation (8), we get the following Equation:  

y (x)  = ψ0 + L−1(h(x)) + L−1(λ ∫ k(x, t)y(t)
x

0
d(t)) ,    λ ≠  0,                                             (9)   

   Where the function ψ0 is arising from integrating the source term, from applying the given 

ICs in Equation (3) which are prescribed.  

    Now, we illustrate the method as the following steps: 

Step 1:  to get 𝑦0(𝑡)   solving     L(𝑦0(x)) - h(x) = 0                                                          (10)  

with ICs in Equation (3) and applying the inverse operator L−1 in both sides of Equation (10), 

we obtain: 

y0(𝑥) = ψ0 + L−1(h(x))  

 

Step 2: The next iterate is:  

L(y1(x)) −  h(x) − ∫ k(x, t)y0(t)
x

0
d(t) =  0      with ICs in Eq. (3) ,                               (11)     

solving this equation and applying the inverse operator L−1 in both sides of Equation (11), 

leads to get 𝑦1(𝑥) as: 

y1(𝑥) = ψ0 + L−1(h(x))  + L−1(∫ k(x, t)y0(t)

x

0

d(t)) 

Step (3): After several simple iterative steps of the solution, the general form of this equation 

given as 

    L(yn+1(t)) −  h(x) − ∫ k(x, t)yn(t)

x

0

d(t) =  0      with ICs in Eq. (3) ,                             (12) 

Solving this equation and applying the inverse operator L−1 in both sides of Equation (12), leads 

to get 𝑦𝑛+1(𝑥): 

yn+1(𝑥) = ψ0 + L−1(h(x)) + L−1(∫ k(x, t)yn(t)

x

0

d(t)) 

evidently each iteration of the function 𝑦𝑛 (x) represents effectively solution for Equation (8). 

Similarly, by the same steps we solve Fredholm IDEs. 
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3. Numerical Results    

     We will be applying the SAIM for solving some examples of the Fredholm IDEs and Voltera 

IDEs. 

 

Example 1 

          Consider third- order Fredholm IDE [19]:  

y(3)(x) = 1 − e + ex + ∫ y(t)dt

1

0

  ,                                                                                                (13) 

 with ICs    y(0) = y′(0) = y′′(0) = 1,  the Exact solution is     Y(x) = ex 

Solution  

      Via implementing same steps as described in the previous section, we first begin by 

solving the following initial problem to find the initial approximation 𝑦0 (x), the SAIM will 

be applied as  

L(y0) =  1 − e + ex with 𝑦0 (0)= 𝑦0′ (0) = 𝑦0
′′(0) =1 where h(x) =  e − ex − 1, L(y) =

d3y

dx3 ,  

N(y)  =  0. 

    So, the primary step is: 

 

L(y0) =  1 − e + ex  with     𝑦0 (0)= 𝑦0′ (0) = 𝑦0
′′(0) =1                                                 (14) 

 

    Then, the general relation as follows: 

 

 L(yn+1) −  h(x) − ∫ k(x, t)yn(t)
x

0
d(t) =  0,  yn+1(0) =  y′n+1(0) =  y′′n+1(0) = 1                  (15) 

 

    By solving the problem defined in Equation (14), we have        y0 = ex − 1934613350591413

6755399441055744
x3 .   

The first iteration can be gotten as:  

y1
(3)(x) = 1 − e + ex + ∫ y0(t)dt

1

0
 with 𝑦1 (0)=  y′1(0) =  y′′1(0) =1                          (16) 

    Thus, the solution of Equation (16) as:          y1 = ex − 644871116863805

54043195528445952
x3 . 

 

    The second iteration is: 

y2
(3)(x) = 1 − e + ex + ∫ y1(t)dt

1

0
   with  𝑦2 (0)= 𝑦2′ (0)= 𝑦′′2 (0)=1                            (17) 

    Then, the solution of Eqaution (17) as  y2 = ex − 26869629869327

54043195528445952
x3. 

 

    Also, by same steps, the other solutions can be generated from calculating these problems 

via using MATLAB, we obtain  y3   , y4,  … , we get the solution till  y11  . 

 

y11 = ex −
11

54043195528445952
x3    . 
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Table 1. Numerical results of the illustrative example above of Y11. 

𝒙 Exact solution SAIM Error 

0 1.000000000000000 1.000000000000000 0 

0.1 1.105170918075648 1.105170918075648 0 

0.2 1.221402758160170 1.221402758160170 0 

0.3 1.349858807576003 1.349858807576003 0 

0.4 1.491824697641270 1.491824697641270 0 

0.5 1.648721270700128 1.648721270700128 0 

0.6 1.822118800390509 1.822118800390509 0 

0.7 2.013752707470477 2.013752707470477 0 

0.8 2.225540928492468 2.225540928492468 0 

0.9 2.459603111156950 2.459603111156950 0 

1 2.718281828459046 2.718281828459046 0 

 

 
 Figure 1. Exact and approximate solution of the illustrative example. 

Example 2 

 

    Consider third- order Voltera IDE [20]. 

y(3)(x) − xy′′(x) =
4

7
x9 −

8

5
x7 − x6 + 6x2 − 6 + 4 ∫ x2x

0
t3y(t)dt                                  (18) 

    With ICs    y(0) = 1, y′(0) = 2, y′′(0) = 0,  x≥ 0, 𝑡 ≤ 1,  

    The Exact solution is    Y(x) = −x2 + 2x + 1,   

Solution 

     Applying same steps as in the previous example, we first begin by solving the following 

initial problem in order to find the initial approximation 𝑦0 (x), the SAIM will be applied: 

as L(y0) =  
4

7
x9 −

8

5
x7 − x6 + 6x2 − 6 with 𝑦0(0)= 1, 𝑦0

′(0) = 2, 𝑦0
′′(0) = 0  where  

h(x) =  −
4

7
x9 +

8

5
x7 + x6 − 6x2 + 6  , L(y) =

d3y

dx3 ,  N(y)  =  0. 

So, the primary step is: 

L(y0) =  
4

7
x9 −

8

5
x7 − x6 + 6x2 − 6  with   𝑦0 (0)=1, 𝑦0

′ (0) =,  𝑦0
′′(0) = 0                   (19) 

    Then, the general relation as follows: 

 L(yn+1) − h(x) − ∫ k(x, t)yn(t)
x

0
d(t) = 0,  yn+1(0) = 1, y′n+1(0) = 2, y′′n+1(0) = 0              (20) 

    By solving the problem defined in Equation (19) we have: 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
The solution at n=12

x-axis

y
-a

x
is

 

 
Approximate Y11 of Ex1

Exact Solution
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 y0 = x12

2310
− x10

450
− x9

504
+ x5

10
− x3 + 2x + 1 

by same way in the previous example. The next step is to find y1 as follows: 

The first iteration can be gotten as: 

 

y1
(3)(x) =

4

7
x9 −

8

5
x7 − x6 + 6x2 − 6 + xy0

′′(x) + 4 ∫ x2x

0
t3y0(t)dt  (21)  and has solution 

y1 =  x21

73735200
− x19

9157050
−  x18

8019648
+ 4x14

85995
− x12

6600
− x11

6930
+

x7

105
− x3 + 2x + 1   and 

y2 =  
𝑥30

11226184200000
−

𝑥28

1034948105100
−

𝑥27

774096523200
+

20747𝑥23

13750604627760
− 

709x21

75209904000
−

1657𝑥20

147891744000
+

31𝑥16

8731800 
−

𝑥14

109200
− 

𝑥13

108108
+

𝑥9

1260
− x3 + 2x + 1 . 

Hence, in iteration steps, we have: 

𝑦12 =

 3.062817340869851 × 10−82 × 𝑥120 − 1.101677695323877 × 10−80 × 𝑥118 − 2.725562818772886 ×

10−80 × 𝑥117 + 1.778958719423882 × 10−75 × 𝑥113 − 5.682824661052544 × 10−74 × 𝑥111 −

1.370653337095081 × 10−73 × 𝑥110 + 3.984172272372894 × 10−69 × 𝑥106 − 1.119818251782719 ×

10−67 × 𝑥104 − 2.628843074816043 × 10−67 × 𝑥103 + 4.503028638092516 × 10−63 × 𝑥99 −

1.101417450504745 × 10−61 × 𝑥97 − 2.511985562347862 × 10−61 × 𝑥96 + 2.827909775701136 ×

10−57 × 𝑥92 − 5.940775524869664 × 10−56 × 𝑥90 − 1.313503431540083 × 10−55 × 𝑥89 +

1.026299389853779 × 10−51 × 𝑥85−1.822336772542073 × 10−50 × 𝑥83 − 3.896422990960605 ×

10−50 × 𝑥82 + 2.175609109040211 × 10−46 × 𝑥78 − 3.200678509627877 × 10−45 × 𝑥76 −

 6.598849111192931 × 10−45 × 𝑥75 + 2.671403340873855 × 10−41 × 𝑥71 − 3.173731777895746 ×

10−40 × 𝑥69 − 6.287576987469821 × 10−40 × 𝑥68 + 1.85332923203967 × 10−36 × 𝑥64 −

1.718197579672121 × 10−35 × 𝑥62 − 3.257269778930915 × 10−35 × 𝑥61 + 1.027480158702644 ×

10−49 × 𝑥59 + 6.961493020520868 × 10−32 × 𝑥57 − 4.798561225077398 × 10−31 × 𝑥55 −

8.659823953316347 × 10−31 × 𝑥54 + 3.114021333121303 × 10−44 × 𝑥52 + 1.32543948187801 ×

10−27 × 𝑥50 − 6.307772348188415 × 10−27 × 𝑥48 − 1.076556205716984 × 10−26 × 𝑥47 +

2.671419265527734 × 10−39 × 𝑥45 + 1.154719813291063 × 10−23 × 𝑥43 − 3.330521444892846 ×

10−23 × 𝑥41 − 5.329596586395636 × 10−23 × 𝑥40 + 7.831725504493517 × 10−35 × 𝑥38 +

3.873151195225192 × 10−20 × 𝑥36 − 4.991934045359734 × 10−20 × 𝑥34 − 7.402102900997027 ×

10−20 × 𝑥33 + 7.642681309794397 × 10−31 × 𝑥31 + 3.461646293785214 × 10−17 × 𝑥29 +

2.098836527787579 × 10−27 × 𝑥24 +  1.058401144288997 × 10−24 × 𝑥17 − 𝑥3 + 2𝑥 + 1  

Table 2. Numerical results of the illustrative example above of Y12. 

𝒙 Exact solution SAIM Error 

0 1.000000000000000 1.000000000000000 0 

0.1 1.199000000000000 1.199000000000000 0 

0.2 1.392000000000000 1.392000000000000 0 

0.3 1.573000000000000 1.573000000000000 0 

0.4 1.736000000000000 1.736000000000000 0 

0.5 1.875000000000000 1.875000000000000 0 

0.6 1.984000000000000 1.984000000000000 0 

0.7 2.057000000000000 2.057000000000000 0 

0.8 2.088000000000000 2.088000000000000 0 

0.9 2.071000000000000 2.071000000000000 0 

1 2.000000000000000 2.000000000000000 0 
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Figure 2. Exact and approximate solution of the illustrative example. 

 

Example 3 

         Consider fourth – order Fredholm IDE [19, 22]. 

y(4)(x) = 1

4
+ (1 − 2ln2)x −  

6

(1+x)4 + ∫ (x − t)y(t)dt 
1

0
                                                      (21) 

with ICs  y(0) = 0 , y′(0) = 1, y′′(0) = −1, y′′′(0) = 2, 

    The exact solution   Y(x) = ln(1 + x). 

Solution 

      To find y0 we take L(y0) = 1

4
+ (1 − 2ln2)x −

6

(1+x)4
 with y0 (0) = 0, y0

′(0) =

1,  y0
′′(0) = −1,y0

′′′(0) = 2 where h(x) = 1

4
+ (1 − 2ln2)x −

6

(1+x)4 , L(y) =
d4y

dx4 , N(y)  =

 0. So, the primary step is: 

 

L(y0) = 1

4
+ (1 − 2ln2)x −

6

(1+x)4 with 𝑦0(0)=0, 𝑦0
′(0) = 1, 𝑦0

′′(0) = −1,𝑦0
′′′(0)

= 2                  (22)    

  

Then, the general relation as:  

 

L(yn+1) − h(x) − ∫ k(x, t)yn(t)
x

0
d(t) = 0,  yn+1(0) = 0, y′

n+1
(0) = 1, yn+1

′′ (0) = −1, y′′′n+1(0) = 2    (23)   

                                                                                                            

    By solving the problem defined in Equation (22) we have: 

y0 = ln(x + 1) +
x4

96
 − 

579905046931621

180143985094819840
x5 

    By same way the next step is to find 𝑦1 as follows: The first iteration can be gotten as: 

𝑦1
(4)(x) = 1

4
+ (1 − 2ln2)x −  

6

(1+x)4 + ∫ (x − t)𝑦0(t)dt 
1

0
                                             (24)   

and has a solution: 

 𝑦1 =  ln(x + 1) −
3621025736840333

68094426365841899520
𝑥4 +

104493422922097

8106479329266892800
𝑥5 

𝑦2 =  ln(x + 1) +
398426818305727

1361888527316837990400
𝑥4 −

2407976480303

34047213182920949760
𝑥5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4
The solution at n=13 

x-axis

y
-a

x
is

 

 
Approximate Y12 of Ex2
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    Hence, in iteration steps, we have: 

𝑦7 = ln(x + 1) −  1446180158675437

980744084899180960278380544000000
𝑥4 + 977445743089

1539253760479322796195840000000
𝑥5. 

Table 3. Numerical results of the illustrative example above of Y7.  

𝒙 Exact solution SAIM Error 

0 0 0 0 

0.1 0.095310179804325 0.095310179804325 0 

0.2 0.182321556793955 0.182321556793955 0 

0.3 0.262364264467491 0.262364264467491 0 

0.4 0.336472236621213 0.336472236621213 0 

0.5 0.405465108108164 0.405465108108164 0 

0.6 0.470003629245736 0.470003629245736 0 

0.7 0.530628251062170 0.530628251062170 0 

0.8 0.587786664902119 0.587786664902119 0 

0.9 0.641853886172395 0.641853886172395 0 

1 0.693147180559945 0.693147180559945 0 

  

   

Figure 3. Exact and approximate solution of the illustrative example. 

 

Example 4 

         Finally, consider fourth – order Voltera–IDE [21, 23]. 

y(4)(𝑥) = sinx + cosx + 2 ∫ sin(x − t) y(t)dt

x

0

                                                                          (25) 

 with ICs    y(0) = y′(0) = y′′(0) = y′′′(0)
= 1, the Exact solution         Y(x) = ex 

Solution 

     To find 𝑦0 we take L(y0) =  sinx + cosx  with y(0) = y′(0) = y′′(0) = y′′′(0) = 1, 

where  g(x) = − sinx − cosx  ,   L(y) =
d4y

dx4 ,  N(y) =  0. So, the primary step is taken: 

 L(y0) = sinx + cosx  ,       y0(0) = y0
′(0) = y0

′′(0) = y0
′′′(0) = 1                                (26) 

    Then, the general relation as:  

 L(yn+1) − h(x) − ∫ k(x, t)yn(t)
x

0
d(t) = 0,  yn+1(0) = y′n+1(0) = y′′n+1(0) = y′′′n+1(0) = 1  (27) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3
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The solution at n=8

x-axis
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     By solving the problem defined in Eq. (26) we have   y0 = cosx + sinx + x2 +
x3

3
 

as same way, the next step is to find y1 as follows: The first iteration can be gotten as: 

y1
(4)(𝑥) = sinx + cosx + 2 ∫ sin(x − t) y(t)dt

x

0
                                                                         (28)      

and has a solution: 

y1 = 9cosx − 8x + 10sinx − xcosx + xsinx + 4x2 +
4x3

3
−

x4

6
−

x5

30
+

x6

180
+

x7

1260
− 8 

y2 = 97cosx − 96x + 223sinx

2
− x2cosx

2
−

x2sinx

2
−

29𝑥𝑐𝑜𝑠𝑥

2
+

27𝑥𝑠𝑖𝑛𝑥

2
+ 36𝑥2 + 12𝑥3 − 2𝑥4 −

2𝑥5

5
+

2𝑥6

45
+

2𝑥7

315
−

𝑥8

2520
−

𝑥9

22680
+

𝑥10

453600
+

𝑥11

4989600
− 96 .  

 

Table 4. Numerical results of the illustrative example above of Y2. 

𝑥 Exact solution SAIM Error 

0 1.000000000000000 1.000000000000000 0 

0.1 1.105170918075648 1.105170918075658 1.0E
-014

 

0.2 1.221402758160170 1.221402758160139 3.0E
-014

 

0.3 1.349858807576003 1.349858807575984 1.9E
-014

 

0.4 1.491824697641270 1.491824697641278 7.E
-015

 

0.5 1.648721270700128 1.648721270700122 6.E
-015

 

0.6 1.822118800390509 1.822118800390498 1.0E
-014

 

0.7 2.013752707470477 2.013752707470502 2.5 E
-014

 

0.8 2.225540928492468 2.225540928492492 2.4 E
-014

 

0.9 2.459603111156950 2.459603111156937 1.2 E
-014

 

1 2.718281828459046 2.718281828459041 4. E
-015

 

 

 

Figure 4. Exact and approximate solution of the illustrative example. 

  

    The essence of this method, SAIM in comparison with the other analytical methods does 

not need large computations such as Lagrange multiplier in the VIM or any complex 

assumptions like nonlinear Adomian’s polynomials in the ADM. It also does not need to 

constrict Homotopy in the HPM. Furthermore, this method proved that it is efficient in 

overcoming the difficulties in calculating and solving high -order integro-differential 

equations with easier steps. 

 

4. Conclusion 

      Most integro-differential equations are difficult to be solved analytically. For this purpose, 

the efficient Iterative analytic method (Temimi and Ansari) is applied to solve such 
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mentioned type of these equations. The present iteration method has strength features among 

other analytic methods. The obtained solutions can be shown as a series form that converges 

to the exact solution with simple computations. No complicated calculations have been shown 

with the presented method. Finally, the advantage of this method is to apply some examples 

to show that the present iterative method is very accurate and suitable for solving the high- 

order Voltera - Fredholm Integro-Differential Equations. 
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