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Abstract

The objective of this paper is, first, study a new collection of sets such as 6-field and we
discuss the properties of this collection. Second, introduce a new concepts related to the

6-field such as measure on &-field, outer measure on 6-field and we obtain some important
results deals with these concepts. Third, introduce the concept of null-additive on 6-field as a
generalization of the concept of measure on §-field. Furthermore, we establish new concept
related to 6- field noted by weakly null-additive on 6-field as a generalizations of the
concepts of measure on and null-additive. Finally, we introduce the restriction of a set
function W on &-field and many of its properties and characterizations are given.
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1. Introduction

The theory of measure is an important subject in mathematics. In 1972, Robret [1],
discusses many details about measure and proves some important results in measure theory.
The notion of o-field was studied by Robret and Dietmar, where X be a nonempty set. A
collection g is said to o-field iff Xe g and g is closed under complementation and countable
union [1, 2]. Zhenyuan and George in 2009 and Junhi, Radko and Endre in 2014 are used the
concept of null-additive on o-field, where g be a o-field, then a set function ¥: g —
[—oo,0] is called null-additive on g if A,B are disjoint sets in g and ¥(B) = 0, then
Y(AUB) = ¥(A) [3,4]. In 2016, Juha used the concept of o-field to define measure, where g
be a o-field, then a measure on g is a set function ¥: o — [0, o] such that ¥(®) = 0 and if
A A,, ... form a finite or countably infinite collection of disjoint sets in g, then
Y(UpZ1 Ay = X0iq P(A)) [5]. and also used power set to define outer measure, where X be
a non-empty set, then a set function ¥: P(X) — [0, ] is called outer measure, if ¥(®) =0
and if A,B € X such that A c B, then W(A) < W¥(B) and if A, A,, ... are subsets of X, then
Y(Upe1 Ay < X502y W(Ay) [5]. The concept of monotone measure was studied by Peipe,
Minhao and Jun in 2018, where g be a o-field, then a set function ¥: g — [0, o] is called
monotone measure, if W(®P) = 0 and if A, Beg suchthat A c B, then ¥(A) < W¥(B) [6].
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The main aim of this paper is to introduce and study new concepts such as &-field, measure

on 6&-field, outer measure on &-field and null-additive on &-field and we give basic
properties, characterizations and examples of these concepts.

2. The Main Results
Let X be a nonempty set. Then a collection of all subsets of a set ¥, denoted by P(X), and
it's called a power set of X.
Definition 1
Let X be a nonempty set. A collection g < P(X) is said to be 6-field of a set X if the
following conditions are satisfied:
1- dep.
2- If Aisanonempty setin g and A c B € X, then Begp.
3- If AL A, ... €, then N2, A ep.
Proposition 2
For any 6- field g of a set X, the following hold:
1- Nep.
2- If A,Bego, then ANBegp.
3- If AL A, ..., Ajego, then NiL; A ep.
4- If Ay, A, ..., Apefp, then UL, A efo.
5- Ay Ay, ...€6,then U2, A epo.
Proof
It is easy, so we omitted.
Example 3
Let X ={1, 2, 3, 4} and o ={P, {1,2}{1,2,3}, {1,2,4}, X }. Then g is a &~ field of a set X.
Definition 4
Let X be a nonempty set and g is a 6-field of a set X .Then a pair (X, &) is called
measurable space and any member of g is called a measurable set.
Proposition 5
Let {,};c;be a sequence of 5- field of a set X. Then N;¢; ; is a &- field of a set X .
Proof
Since g; is 6-fieldVi €1, then ® Xegp; Vi€ hence g; # ® Vi €1 and Nig 2 # P,
therefore @, X e N1 62;. Let Ae Nier40; such that @ # A € B € X, then Aeg; Vi €1, but
AcB. So, we getBegp; Viel, hence Be Nig ;. Let A A,,...€ Nicrfp;. Then
A, A;, ... ep;, Vi€ and N2, Aj ego;, Vi € 1 which is implies that N2, A; € Nie 423 Hence
Nicr §2; 1S a 6 field.
Definition 6
Let o be a & - field of a set X and let K be a non-empty subset of X . Then the restriction of
g on K is denoted by g|K and define as:
©|K ={B: B=AN K, for some Ae g}.
Proposition 7
Let o be a 6 - field of a set X and K be a non-empty subset of X such that Ke . Then g|K
={A C K: Ae p}.
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Proof
Let Be |K. Then B=AN K, for some Ae g, hence Be . Therefore Be{A < K: Ae g} and
P|IKCS {ACK: Aegp}. Let Ce{A S K: Aegp}. Then C € K and C € o, hence C=CN K, but
Ce o, then Ce @|K which is implies that{A € K : A e p}< #|K, therefore gp|K={AC K :
Ae p}.
Corollary 8
Let o be a & -field of a set X and K a non-empty subset of X such that Ke . Then g|K ©
0.
Proof
From Proposition 7, we have g|K={A € K: Ae g}. Now, for any Be g|K, then Be{A € K:
Ae $}. Hence B € K and Be g, therefore g|K C .
Proposition 9
Let o be a 6 -field of a set Xand let K be a non-empty subset of X such that Ke 0. Then
P|K isad - field of asetK.
Proof
Since g is a 6 -field of X, then @, Regp. Since K € R, then K = XNK and Keg|K. Since
® = PNK, then Degp|K. Let Beg|K such that ® +# B c D € K Then Begp. BuBc D € K ©
Nand g is a 6-field of a set X, then Degp. Now, D € K and Degp, then Degp|K.
Let By, B, , ...€0|K. Then there exist Ay, A,, ... e such that B;=A;N K where i=1,2,..., now
N2, Bi=(Nj2; A;) N K. But, o is a 8- field, then N2, A; €. Hence N2, B; ego|K .Therefore
#|K isa d -field of a set K.
If we take Example 3 and if we assume that K={1,2,4}, then p|K={® {1, 2}, K} is a
6 -field of a set K and |K <€ .
Definition 10
Let o be a 6-field of a set X. A measure on g is a set function ¥: g — [0, o] such that
Y(®) =0andif Cy,C,, ... form a finite or countably infinite collection of disjoint sets in g,
then W(U%o:l Cp) = 21010=1 Y (Cr).
Example 11
Let o be a 6-field of a set X and define ¥: g — [0, ] by ¥ (C) =0, for all Cego. Then ¥
iSa measure on .
A measure space is a triple (X, g, ¥) where X is a nonempty set and g is a 6- field of a set
X and ¥ is a measure on .
Definition 12
Let o be a &-fieldof a set X. A countably subadditive on g is a set function
Y. — [0,0]suchthat ¢ (C) < Yo; ¥(C,) Where Cy,C,, ... epand C = Upy=q Cp.
If this requirement holds only for finite collection of disjoint sets in g, then ¥ is said to be
finitely subadditive on a § - field .
Definition 13
Let o be a 6-field of a set X. Then a set function ¥: g — [0, o] is said to be monotone
measure, if it satisfies the following requirements:
1- (@) =0.
2- If Begpand Bc D € X, then ¥(B) < ¥ (D).
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Definition 14
Let o be a 6- field of a set K. Then a set function ¥: g — [0, oo] is called outer measure, if
it satisfies the following requirements:
1- Y(d) = 0.
2- If Begpand B c D € R, then ¥(B) < ¥ (D).
3- 1f Cy,Cy, ... €0, then W(UZ, Cy) < T2, W(C)).
Lemma 15
Let ¥ be an outer measure on 8- field o of a set X and t € [0,0). If t¥: g0 — [0, 0] S
defined by
(t¥)(A) = t. W (A) VAeg, then (t¥) is an outer measure on .
Proof
Since ¥ is an outer measure on g and ®eg, then ¥ (P) =0 and (t¥)(P) =0.
Let Begpand B c D € X, then Degpand ¥ (B) < ¥ (D). Since
(t¥)(B) = t.¥(B) < t.¥(D)= (t¥)(D).Let Cy, Cy, ... €fo, then UL, C, e
So, we have (t¥)(Up=1Cn) = t. ¥ (Up=1 Cp) < .20, W(C)
But, t.Y 01 P(Cp) = Xmeq .Y (Cp) = 2meq(tW)(Cy). Therefore t¥ is an outer measure
on .
Lemma 16
Let ¥; and ¥, be two outer measures on a - field o of a set R. If ¥;+ ¥, o — [0, o0]
is defined by
(W1 +¥,)(C) = P,(C)+W,(C), VCegp, then ¥+ ¥, is an outer measure on £.
Proof
Since ¥, and ¥, are outer measure on 8- field g and ®eg, then ¥, (P) =¥,(P) =0 and
(P1+¥,)(®) = 0. Let Beg and Bc D € X, then Degpand W¥;(B) < ¥,(D) and
¥,(B) < ¥,(D). So we have,
(P1+¥2)(B) = #1(B)+¥.(B) < ¥, (D) +¥,(D) = (¥1+¥,)(D)
Let Cy, C,, ... €2, then U,—; C, €. SO, we have
(¥ + lluz)(U?loﬂ Cn) = q’1(U1010=1 Cn) + q’z(U;Oﬂ Cn)
< Y= Pi(Go) + Xnny Wa(Gr) = Znny [P2(Go) + P2(GL)]
=Yn=1 (P14 ¥1)(C).
Therefore ¥, + ¥, is an outer measure on .

The proof of the following proposition consequence from Lemma (15 and 16) with
mathematical induction.
Proposition 17

Let ¥; ,¥,,..., ¥, be outer measure on a &-field o of a set X and ¢; € [0, ) for all
i =12, ..,n Ifaset function }}7., t;¥;: ¢o — [0, 0] is defined by:
QL W) (C) =X . ¥ (C) VCesp, then Y7, t;¥; is an outer measure on 8- field .
Proof

Since t; € [0,00) and ¥; is an outer measure on a 6-field go forall i = 1,2, ..., n.
Then by Lemmal5 we get t;¥; is an outer measure on a 6-field o Vi=1,2,...,n.
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Let ¢; = t;¥; Vi = 1,2,...,n. Then we prove that (3}, ;) is an outer measure on g by
mathematical induction. If n = 2, then ¥, + 1, is an outer measure on g by Lemmale6.
Suppose that (XX, ;) is an outer measure on g , then we must prove that

( k+11p)|s an outer measure on g, whenever i; is an outer measure on g Vi =

Skk+ 1L CE ) (@) = X ¥i + Yrr) ()
= B Y)(P) + Pres1 ()
= 0 since (XX, ;) and 1, are outer measure on
Let B,Degpand B  D. Then (2 =1¥) (B) < (Z _1¥:) (D) and Y41 (B) < Ppy1 (D).
L Y) (B) = B9 (B) + Y1 (B)
< (K, 9:) (D) + Ypiq(D)since (TX_, ;) and 1., are outer measure
= (X1 i + Yres) (D)
= (X ) (D).
Let Cy, Cy, ... 0. Then (N2 9) (Unzy €n) = (Tiaq ¥ + Wier1) (Usizq C)
= (X1 ) (Uszy ) + Yrer1 (Usy C)
< et 1) (Co) + Zimy Y1 (G)
= Y=t (19 (C) + Pres1(Cr)]
= Y=t (i1 i + Pis) (Cr)
= Yo CE Y (Co).

k+1¢, W, is an outer measure on g .

Therefore,
Definition 18

Let g be a 8- field of a set K. Then a set function ¥: go — [0, o] is called null-additive on
g iff C, D are disjoint sets in o and ¥ (D) = 0, then ¥ (CUD) = ¥ (C) .
Example 19

Let X ={1,2} and o = { @, {1}, {2}, X} and define ¥: g% — [0, o0] by:
w(C) = {(1’ g - g . Then ¥ is a null-additive.
Proposition 20
Let o0 be a 8- field of a set X. Then every measure is null-additive.
Proof

Let ¥ be a measure on 6-field go and let C,D are disjoint sets in g and ¥ (D) = 0.
Then ¥ (CUD) = ¥(C) + ¥(D) = ¥(C). Hence ¥ is a null-additive .

While the converse is not true and Example 19 indicate that ¥ is null-additive but not

measure, because {1},{2} are disjoint sets in g but ¥ ({1}U{2}) = ¥ ({1}) + ¥ ({2}).
Lemma 21

Let ¥ be a null-additive on a 8- field g of a set X and t € (0,00). If t¥: o — [0,00] is
defined by:
(t¥P)(C) = t.W(C) VCegp,then (t¥) is a null-additive on .
Proof

Let C,D be disjoint sets in g such that (t#)(D) = 0. Then t.¥ (D)= 0 and hence
¥ (D) = 0 since t > 0. Now, (t¥)(CUD) = t.#(CUD)

= t.¥(C) = (t.¥)(0O)

Therefore, t¥ is a null-additive on .
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Lemma 22
Let ¥, and ¥, be two null-additives on a 6-field g of a set R. If¥;+ ¥,: o — [0, 0]
is defined by:
(P1+ ¥,)(C) =,(C)+ W,(C) VCep,then ¥;+ ¥, is anull-additive on .
Proof
Let C, D be disjoint sets in g such that( ¥, + ¥,)(D) = 0. Then ¥;(D)+ ¥, (D) = 0, hence
Y. (D) =¥,(D) =0 since ¥; and ¥, are null-additive on .
Now, (¥;+ ¥,)(CUD) = ¥;(CUD) +¥,(CUD)
= ¥.(0) +¥%,(0)
= (Y1 +¥)(0).
Therefore, ¥;+ ¥, is a null-additive on .
Proposition 23
Let ¥, ,¥,,..., ¥, be a null-additive on a 6-field g of a set X and t; € (0, ) for all
k =1,2,..,n. If asetfunction YX}_; t,¥x: o — [0, ] is defined by:
Qhe1te¥r) (C) = Yp=1 te- Vi (C) VCeg, then Y2_; t, ¥ is a null-additive on g.
Proof
Since t, € (0,) and ¥, is null-additive on g for all k = 1,2, ...,n, then by Lemma 21,
we get t, ¥, isanull-additiveon o Vk =1,2,...,n. Lety, = t, ¥y
If n = 2, then y¥; + ¢, is a null-additive on g by Lemma 22. Let C, D are disjoint sets in g
such that(X -, ¥x) (D) = 0. Then Y (D) = 0 forall k = 1,2, ..., n.
(Xk=1¥x) (CUD) =1 (CUD) + -+ + ¥, (CUD)
=y, (C) + -+ + Y, (C) since Y, is a null-additive and ¢, (D) = 0, Vk
= (Xr=1¥r) (). Hence Y2_; t; ¥, isanull-additive on g.
Definition 24
Let o be a 6-field of a set X and let ¥: o —[0, o] be a set function and Beg. If
Yy —|0, o] is define by W5 (C) = ¥(C n B) for all Cegp, then ¥ is called B — restriction
of .
Proposition 25
Let g be a 6-field of aset X and B € g. If ¥ is a measure on g , then:
(1) W5 is a measure on .
(2) ¥5(C) =¥(C), whenever C € B.
(3) ¥5(C) =0, whenever C, B are disjoint sets in .
Proof
(1). Since g is a 6-field, then ® e and ¥ (P) = 0. From definition of ¥ we get,
Ye(@)=¥(PNB)=¥(P)=0.Let Cy,C,, ... are disjoint sets in g, then U=, C, €. Since
B,C,eo0 V n=12,..., then C,NBegpand hence U,-,(C,NB)egp. So, we have
IIUB(U;.lo:l Cn) = W((U%o:l Cn) n B)
=¥(Unz (G N B))
=T W(C N B)
=Y, Wp(C,). Therefore, ¥ is a measure on .
(2). Since € < B,then C N B=C. So, we have ¥5(C) =¥ (CNnB)=%(C)
(3). Since C, B are disjoint sets in g, then C N B=® and Y3 (C) =¥ (C N B)
=y () =0.
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Proposition 26
Let o be a 6-field of a set X and Be . If ¥ is an outer measure on g, then ¥y is an outer
measure on .
Proof
Since g is a 6-field, then @ ego and ¥ (P) = 0. From definition of ¥ we get, Wy(P) =
P(PNB) = Y(d) = 0. Let Aep and AcC<c X , then ANBc CNB and each of
C,ANB, CNBeg. Since ¥ is an outer measure on g, then Y (ANB) < ¥ (CNB) .So, we have
Y(A) < ¥5(C). Let Cy,Cy, ... €. Then Up-;C, € and C, N Begp Vn=1,2,..., hence
Un=1(C, N B) €. So, we have,
¥p(Unz1C) =¥ ((UyZ, G) N B)
= l’U( U?f:l(cn N B)) = Z?Lo=1 llU(Cn N B) = Z‘;?:l l‘UB(Cn)-
Therefore, Wy is an outer measure on .
From Proposition 26, we conclude that if ¥ is a monotone measure on g, then ¥ is a
monotone measure on g, where g is a 6-field of a set X and Be .
Proposition 27
Let g be a 6-field of X and Be g. If ¥ is a null-additive on g, then ¥; is a null-additive
on .
Proof
Let A, C be disjoint sets in o and ¥z (C) = 0. Then ¥(CNB) = 0.
Now, Y5 (AUC) = ¥ (JAUC]NB)
=¥ (JANBJU[CNB])
=¥(ANB) since ¥ is a null-additive on g
=W¥g;(A) by definition of ¥g.
Hence, ¥y is a null-additive on g.
Proposition 28
Let g be a 6-field of X and Beg. If ¥ is a measure on £, then ¥ is a null-additive on .
Proof
It is easy, so we omitted.
Definition 29
Let o be a 6-field of a set X and ¥: o —[0, oo] be a set function and K be a non-empty
subsets of X such that Ke 0. If ¥|K :g0|K —[0, o] is define by:
YIK(A)=¥(A) forall Ae ¢|K, then ¥|Kis called the restriction of ¥ on g|K
Proposition 30
Let ¥ be a measure on &- field g of a set X and & # K < X such that Ke . Then ¥|K is a
measure on a 6- field g|K of a set K.
Proof
Since g is ad-fieldof a set R, then P ep and ¥ (P) = 0. Since d € p|K, then by
definition of ¥|K, we get ¥|K(®) = ¥(P)= 0. Let C;,C,, ... be disjoint sets in g|K. Then
C, € Kand C,e for all n=1,2,..., hence Uj;-;C, € #|K. So, we have
YIK(Upz1 Co) =¥ (Un=1 C)
= Yo, ¥P(C,) since ¥ is a measure on g
=Yy PIK(Cy)
Therefore, W|K is a measure on a 6- fieldgo|K of a set K.
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If ¥ is an outer measure on 6-field g of a set X, then we need the following two facts

to prove that ¥|K is an outer measure on a 6- field g|K of a set K.
Lemma 31

Let ¥ be a monotone measure on &-field go of a set X and ® # K < X such that Ke .
Then ¥|K is a monotone measure on a 6- field g|K of a set K.
Proof

Let ¥ be a monotone measure on g, then ¥ () = 0. Since |K is a 5-field, then ® € p|K.

From definition of ¥|K, we get ¢ |K (@) = ¥ (P)=0.

Let Be go|Ksuchthat B ¢ C € K, then Be o and B c C < . Since ¥ is a monotone measure
on g, then ¥(B) < ¥(C). But B, Ce g|K, then ¥|K(B)=%¥(B) and ¥|K (C) = ¥(C), hence
¥|K(B) < ¥|K (C) and ¥|K is monotone measure on g |K of K.

Lemma 32

Let ¥ be a countably subadditive on 6-field go of a set ¥ and & # K < X such that Ke g,
then ¥|Kis a countably subadditive on a 6- field |K of a set K.
Proof
Let Cy,Cy, ... e@|K and C = U, =4 Cy, ,then Cy, Cs, ... €0 and Cego. Since ¥ be a countably
subadditive on g, then ¥(c) < Yo=q W(Cy), but C,Cy,Cs, ... €p|K . So, we have ¥ (C) =
Y|K(C) and ¥(C,) = ¥|K(C,) for all n=1,2,..., hence W|K(C) < Y-, W|K(C,) and
¥|K is a countably subadditive on g@|K of a set K.
Proposition 33
Let ¥ be an outer measure on &- field g of a set X and ® # K < X such that Ke go. Then
¥|K is an outer measure on 6- field g|K of a set K.
Proof
Since ¥ is an outer measure on g, then ¥ is a monotone measure and countably
subadditive. By Lemma 31 and Lemma 32 we have ¥|Kis a monotone measure and
countably subadditive on g|K of K. Therefore ¥|K is an outer measure on g|K of K.
Proposition 34
Let ¥ be a null-additive on &-field g of a set X and ® # K < X such that Ke o. Then
YK is a null-additive on 6- field g|K.
Proof:
Let C, D be disjoint sets in go|Kand ¥|K (D) = 0. Then ¥ (D) = 0.
Now, ¥ |K (CUD) = ¥([CUD)
=¥ (C) since ¥ is a null-additive on g
=Y|K (C) by definition of ¥|K.
Hence, ¥|K s a null-additive on .
3. Conclusions
The main results of this paper are the following:
(1) Let X be a nonempty set. A collection g < P(R) is said to be &-field of a set X if the
following conditions are satisfied:
1. Dep.
2. If Aisanonempty setin g and A c B C X, then Begp.
3. IfAL A, ... €, then N2, A ep.
(2) Let {;};;be a sequence of 5-field of a set X. Then N;¢; ; is a 6-field of aset X .

69



Ibn Al-Haitham Jour. for Pure & Appl. Sci. 32 (2) 2019

(3) Let go be a 6 - field of a set X and let K be a non-empty subset of X . Then the restriction of
g on K is denoted by g|K and g|K ={B: B=AN K, for some Ae g}.
(4) Let g be a 6- field of a set X. Then every measure is null-additive.
(5) Let ¥, ,¥,,..., ¥, be null-additive on a 6-field g of a set X and t; € (0, ) for all
k =1,2,...,n. If asetfunction YX}_; t,¥x: o — [0, ] is defined by:
Qa1 te¥r) (C) = Yho1 tr- Wi (C) VCego, then Y7 t, ¥ is anull-additive on g.
(6) Let o be a 6-field of a set X and Be g. If ¥ is a measure on g , then:

1. Yy isameasure on .

2. Y5(C)=%¥(C), whenever C € B.

3. ¥5(C) =0, whenever C,B are disjoint sets in .
(7) Let g be a 6-field of a set X and Be . If ¥ is an outer measure on g, then ¥ is an
outer measure on .
(8) Let g be a 6-field of X and Be g. If ¥ is a null-additive on g, then ¥ is a null-additive
on .
(9) Let ¥ be a measure on 8- field g of a set X and ® # K < X such that Ke 0. Then ¥|K is a
measure on a 6- field g|K of a set K.
(10) Let ¥ be a monotone measure on 8- field g of a set X and ® # K < X such that Ke .
Then ¥|K is a monotone measure on a 6- field g|K of a set K.

References

1. Robret, B.A. Real Analysis and Probability, Academic Press, Inc, New York.1972, 4-16.

2. Dietmar, A.S. Measure and Integration, ETH Zurich [Internet].2016.Available from:
https://people.math.ethz.ch/~salamon/PREPRINTS/measure.pdf.

3. Zhenyuan, W.; George, J.K. Generalized Measure Theory, Springer Science and
Business Media, LLC. 2009, 133-134.

4. Jun, Li.; Radko, M.; Endre, P. Atoms of weakly null-additive monotone measures and integrals.
Information Sciences. elsevier Inc. 2014, 257, 183-192, doi: 10.1016/j.ins.2013.09.013.

5. Juha, K. measure and Integrals. Aalto Math [internet].2016.Available form:
https://math.aalto.fi/~jkkinnun/files/measure_and_integral.pdf.

6. Peipei, W.; Minhao, Yu.; Jun, Li. Monotone Measures Defined by Pan-Integral.
Advances in Pure Mathematics. 2018, 8, 535-547, doi:10.4236/apm.2018.86031.

70


https://math.aalto.fi/~jkkinnun/files/measure_and_integral.pdf
https://math.aalto.fi/~jkkinnun/files/measure_and_integral.pdf

