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Abstract 

     The objective of this paper is, first, study a new collection of sets such as  –field and we 

discuss the properties of this collection. Second, introduce a new concepts related to the 

 –field such as measure on  –field, outer measure on  –field and we obtain some important 

results deals with these concepts. Third, introduce the concept of null-additive on  –field as a 

generalization of the concept of measure on  –field. Furthermore, we establish new concept 

related to  - field noted by weakly null-additive on  –field as a generalizations of the 

concepts of measure on and null-additive. Finally, we introduce the restriction of a set 

function   on  –field and many of its properties and characterizations are given.  

Keywords:  –field, measure on  –field, monotone measure, null-additive.  

1. Introduction  

     The theory of measure is an important subject in mathematics. In 1972, Robret [1], 

discusses many details about measure and proves some important results in measure theory. 

The notion of  –field was studied by Robret and Dietmar, where   be a nonempty set. A 

collection   is said to  –field iff      and   is closed under complementation and countable 

union [1, 2]. Zhenyuan and George in 2009 and Junhi, Radko  and Endre in 2014 are used the 

concept of null-additive on  –field, where    be a  –field, then a set function     

,     - is called null-additive on   if     are disjoint sets in   and  ( )   , then 

 (   )   ( ) [3,4]. In 2016, Juha used the concept of  –field to define measure, where   

be a   –field, then a measure on   is a set function     ,    - such that  ( )    and if  

        form a finite or countably infinite collection of disjoint sets in  , then  

 (   
 
   )   ∑   (  

 
   ) [5]. and also used power set to define outer measure,  where   be 

a non-empty set, then a set function    ( ) ,    - is called outer measure, if   ( )    

and if        such that    , then  ( )    ( ) and if         are subsets of  , then              

 (   
 
   )   ∑   (  

 
   ) [5]. The concept of monotone measure was studied by Peipe, 

Minhao and Jun in 2018, where   be a   –field, then a set function     ,    - is called 

monotone measure, if   ( )    and if        such that       , then   ( )    ( ) [6]. 
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    The main aim of this paper is to introduce and study new concepts such as  –field, measure 

on  –field, outer measure on  –field and null-additive on  –field and we give basic 

properties, characterizations and examples of these concepts. 

 

2. The Main Results 

        Let   be a nonempty set. Then a collection of all subsets of a set  , denoted by  ( ), and 

it's called a power set of     

Definition 1 

   Let   be a nonempty set. A collection    ( ) is said to be   –        of a set   if the 

following conditions are satisfied: 

1-    . 

2- If   is a nonempty set in    and       , then     . 

3- If            , then ⋂   
 
     . 

Proposition 2 

   For any  –         of a set  , the following hold: 

1-        

2- If      , then  ⋂     

3- If             , then ⋂   
 
     . 

4- If             , then    
 
     . 

5-          , then    
 
     . 

Proof 

       It is easy, so we omitted.  

Example 3 

   Let   ={1, 2, 3, 4} and   { , {1,2},{1,2,3}, {1,2,4},   }. Then   is a  –       of a set  . 

Definition 4 

   Let   be a nonempty set and     is a   –       of a set    .Then a pair (  ,  ) is called  

measurable space and any member of   is called a measurable set.  

Proposition 5 

   Let *  +   
 be a sequence of  –       of a set  . Then ⋂       is a  –       of a set   . 

Proof 

   Since    is  –            , then  ,            , hence            and ⋂        , 

therefore      ⋂      . Let   ⋂       such that         , then          , but 

     So, we get          , hence    ⋂       . Let           ⋂      . Then 

            ,       and ⋂   
 
       ,       which is implies that ⋂   

 
      ⋂      . Hence 

⋂       is a  –      . 

Definition 6 

   Let   be a   –       of a set   and let   be a non-empty subset of   . Then the restriction of 

  on   is denoted by     and define as: 

    ={ :  = ⋂  , for some     }.  

Proposition 7 

   Let   be a   –       of a set    and   be a non-empty subset of   such that     . Then     

= {   :     }. 
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Proof 

    Let       . Then  = ⋂  , for some     , hence     . Therefore   {   :     } and 

      {   :     }. Let     {     :      }. Then      and      , hence  = ⋂  , but 

    , then        which is implies that{    :      }    , therefore     ={     : 

    }. 

Corollary 8 

   Let    be a   –       of a set   and   a non-empty subset of   such that     . Then     

 . 

Proof 

  From Proposition 7, we have    ={   :     }. Now, for any       , then    {    : 

    }. Hence     and     , therefore       . 

Proposition 9 

   Let   be a   –       of a set   and let   be a non-empty subset of   such that     . Then 

     is a   - field of a set   .  

Proof 

    Since   is a   –       of   , then      . Since     , then    ⋂  and        Since 

   ⋂ , then Φ      Let       such that         Then    . But        

  and   is a   –       of a set  , then    . Now,     and    , then        

Let               Then there exist             such that   =  ⋂    where i=1,2,…, now 

⋂   
 
   =(⋂   

 
   ) ⋂    But,    is a  –      , then  ⋂   

 
     . Hence ⋂   

 
        .Therefore 

     is a   –       of a set  . 

        If we take Example 3 and if we assume that  ={1,2,4}, then    ={ ,{1, 2},  } is a 

  –       of a set   and      . 

Definition 10 

    Let   be a  –       of a set  . A measure on   is a set function     ,    - such that 

 ( )    and if          form a finite or countably  infinite collection of disjoint sets in  , 

then  (   
 
   )   ∑   (  

 
   ). 

Example 11 

    Let   be a  –       of a set   and define     ,    - by  ( ) = 0, for all    . Then   

is a  measure on  . 

   A measure space is a triple (      ) where   is a nonempty set and   is a  –       of a set 

  and   is a measure on    

Definition 12 

     Let   be a  –       of a set  . A countably subadditive on   is a set function             

    ,    - such that  ( )   ∑   (  
 
   )  where             and      

 
   . 

     If this requirement holds only for finite collection of disjoint sets in  , then   is said to be 

finitely subadditive on a   –        . 

Definition 13 

   Let   be a  –        of a set  . Then a set function     ,    - is said to be monotone 

measure, if it satisfies the following requirements: 

1-  ( )      

2- If      and       , then   ( )    ( ). 
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Definition 14 

   Let   be a  –        of a set  . Then a set function     ,    - is called outer measure, if 

it satisfies the following requirements: 

1-  ( )   .  

2- If      and      , then   ( )    ( ). 

3- If           , then   (   
 
   )   ∑   (  

 
   ).   

Lemma 15   

   Let    be an outer measure on  –         of a set   and   ,   ). If    :   ,   -   is 

defined by  

(   )( )      ( )      , then (  ) is an outer measure on  . 

Proof 

   Since    is an outer measure on   and    , then     ( ) =0  and  (   )( ) = 0. 

Let      and      , then     and     ( )      ( ). Since     

(   )( )        ( )          ( )   (   )( )  Let             , then     
 
      

So, we have (  )(   
 
   )       (   

 
   )     ∑   (  

 
   ) 

But,   ∑   (  
 
   )   ∑    (  

 
   )  ∑ (  )(  

 
   ). Therefore      is an outer measure 

on  .  

Lemma 16  

   Let     and    be two outer measures on a  –         of a set  . If       :    ,   -        

is defined by 

(      )( )     ( )    ( ),     , then         is an outer measure  on  . 

Proof 

  Since    and    are outer measure on  –          and    , then     ( ) =   ( ) = 0  and 

 (      )( ) = 0. Let      and      , then     and     ( )      ( )  and 

   ( )      ( ). So we have,   

 (      )( )      ( )    (  )        ( )  +   ( )   (      )( ) 

Let             , then     
 
     . So, we have 

(       )(   
 
   )     (   

 
   )     (   

 
   )    

                                     ∑     (  
 
   )  ∑     (  )

 
     ∑  ,   (  

 
   )      (  )- 

                                                     ∑  (       )(  
 
   ). 

Therefore         is an outer measure on  .  

   

   The proof of the following proposition consequence from Lemma (15 and 16) with 

mathematical induction. 

Proposition 17 

   Let     ,    ,…,     be outer measure on a  –         of a set   and    ,   ) for all 

         . If a set function ∑     
 
   :    ,   -   is defined by:  

(∑     )
 
   ( )  ∑      

 
   ( )     , then ∑     

 
    is an outer measure on  –        . 

Proof 

   Since    ,   ) and      is an outer measure on a  –         for all          . 

Then by Lemma15  we get        is an outer measure on a  –             =         
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Let        
            . Then we prove that  (∑   )

 
    is an outer measure on    by 

mathematical induction. If     , then       is an outer measure on    by Lemma16. 

Suppose that (∑   )
 
    is an outer measure on   , then we must prove that 

(∑   )
   
    is an outer measure on   , whenever    is an outer measure on       

           . (∑   )
   
   ( )  (∑   

 
        )( )  

                             (∑   )( )
 
        ( ) 

                                                       since (∑   )
 
    and      are  outer measure on    

Let       and    . Then (∑   )
 
   ( )  (∑   )

 
   ( ) and     ( )      ( )  

 (∑   )
   
   ( )  (∑   )

 
   ( )       ( ) 

                          (∑   )
 
   ( )      ( )since (∑   )

 
    and      are outer measure  

                          (∑   
 
         )( ) 

                          (∑   
   
   )( )  

Let           . Then (∑   )
   
   (   

 
   )  (∑        )

 
   (   

 
   ) 

                                                                       (∑   )
 
   (   

 
   )      (   

 
   ) 

                                                                          ∑  (∑   )
 
   (  

 
   )  ∑      (  )

 
     

                                 ∑  ,(∑   )
 
   (  

 
   )       (  )-  

                                 ∑  (∑   
 
        )(  

 
   ) 

                                 ∑  (∑   
   
   )(  

 
   ). 

Therefore,  ∑     
    

    is an outer measure on     

Definition 18 

   Let   be a  –       of a set  . Then a set function     ,    - is called null-additive on 

  iff     are disjoint sets in   and  ( )   , then  (   )   ( ) . 

Example 19 

   Let   = {1,2} and   = {  , {1} , {2},  } and define      ,    - by: 

 ( ) = {
            
            

       . Then   is a null-additive. 

Proposition 20 

Let   be a  –       of a set  . Then every measure is null-additive. 

Proof 

   Let   be a measure on  –         and let     are disjoint sets in   and  ( )   .                    

Then  (   )   ( ) +  ( )   ( ). Hence   is a null-additive . 

      While the converse is not true and Example 19 indicate that   is null-additive but not 

measure, because {1},{2} are disjoint sets in   but  (* + * +)   (* +) +  (* +). 

Lemma 21 

   Let    be a null-additive on a  –         of a set   and   (   ). If    :    ,   -   is 

defined by:  

(   )( )       ( )       , then (  ) is a null-additive on  . 

Proof 

    Let     be disjoint sets in   such that (   )( )   . Then      ( )    and hence           

   ( )     since    . Now, (  )(   )        (   )    

                                                                            ( )  (   )( )             

Therefore,     is a null-additive on  .  
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Lemma 22  

  Let     and    be two null-additives on a  –         of a set  . If       :    ,   -               

is defined by:  

(      )( )    ( )    ( )       , then         is a null-additive on  . 

Proof 

   Let     be disjoint sets in   such that(       )( )   . Then   ( )    ( )   , hence 

   ( )    ( )      since     and     are null-additive on  . 

 Now,  (      )(   )        (   ) +   (   )  

                                               ( ) +   ( ) 

                                            (    +   )( )  

Therefore,         is a null-additive on   . 

Proposition 23   

   Let     ,    ,…,     be a null-additive on a  –         of a set   and    (   ) for all              

         . If  a set function ∑     
 
   :    ,   -   is defined by:  

(∑     )
 
   ( )  ∑      

 
   ( )       , then  ∑     

 
    is a null-additive  on  . 

Proof 

  Since    (   ) and     is null-additive on   for all          , then by Lemma 21,  

we get       is a null-additive on               . Let         

If    , then       is a null-additive  on     by Lemma 22. Let     are disjoint sets in   

such that(∑   )
 
   ( )   . Then   ( )    for all          . 

(∑   )
 
   (   ) =   (   )      (   ) 

                       =   ( )      ( ) since    is a null-additive and   ( )   ,    

   = (∑   )
 
   ( ). Hence  ∑     

 
     is a null-additive on       

Definition 24 

   Let   be a  –       of a set   and let       [0,  ]  be a set function and    . If                

  :   [0,  ] is define by   ( ) =  (   ) for all    , then    is called    – restriction 

of      

Proposition 25  

Let   be a  –       of a set   and    . If    is a measure on   , then: 

(1)    is a measure on  . 

(2)   ( ) =  ( ),  whenever     . 

(3)   ( ) = 0,  whenever      are disjoint sets in  . 

Proof 

    (1). Since     is a  –       , then      and   ( ) = 0. From definition of    we get, 

  ( )= (   ) =  ( ) = 0. Let          are disjoint sets in   , then     
 
     . Since 

         n=1,2,…, then         and hence  (  
 
     )   . So, we have   

  (   
 
   ) =  ((   

 
   )   ) 

                       =  (  (  
 
     )) 

                       = ∑  (    )
 
      

                       = ∑    (  )
 
   . Therefore,    is a measure on     

   (2). Since    , then    =  . So, we have    ( ) =  (   ) =  ( ) 

   (3). Since     are disjoint sets in  , then    =   and   ( ) =  (   )  

                                                                                         =  ( ) = 0. 
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Proposition 26  

   Let   be a  –       of a set   and     . If    is an outer measure on  , then    is an outer 

measure on     

Proof 

   Since   is a  –      , then      and  ( ) = 0. From definition of    we get ,        ( ) = 

 ( ⋂ ) =  ( ) = 0. Let      and       , then  ⋂   ⋂  and each of 

   ⋂   ⋂   . Since    is an outer measure on  , then   ( ⋂ )    ( ⋂ ) .So, we have 

  ( )     ( ). Let           . Then    
 
       and         n=1,2,…, hence 

 (  
 
     )   . So, we have, 

  (   
 
   ) =  ((   

 
   )   ) 

                       =  (  (  
 
     ))    ∑  (    )

 
    = ∑    (  )

 
     

Therefore,    is an outer measure on     

   From Proposition 26, we conclude that if    is a monotone measure on  , then    is a 

monotone measure on  , where    is a  –       of a set   and     .  

Proposition 27  

    Let   be a  –       of   and     . If    is a null-additive on  , then    is a null-additive 

on     

Proof 

    Let     be disjoint sets in   and   ( )   . Then    ( ⋂ )     

Now,   (   ) =  (,   -⋂ )  

                           =  (, ⋂ - , ⋂ -) 

                           =  ( ⋂ )   since   is a null-additive on   

                           =   ( )       by definition of     

Hence,     is a null-additive on     

Proposition 28  

   Let   be a  –       of   and    . If    is a measure on  , then    is a null-additive on     

Proof 

   It is easy, so we omitted. 

Definition 29 

   Let   be a  –       of a set   and       [0,  ]  be a set function and   be a non-empty 

subsets of   such that     . If      :    [0,  ] is define  by:   

     ( ) =  ( )     for all        , then     is called the restriction of   on      

Proposition 30 

   Let   be a measure on  –         of a set   and         such that     . Then     is a 

measure on a  –           of a set   .  

Proof 

    Since     is a  –      of a set  , then       and  ( ) = 0. Since        , then by  

definition of    , we get    ( ) =  ( )= 0. Let          be disjoint sets in    . Then 

     and      for all n=1,2,…, hence     
 
         . So, we have 

     (   
 
   ) =  (   

 
   ) 

                           =  ∑  (  )
 
        since   is a measure on   

                           = ∑     (  )
 
    

Therefore,     is a measure on a  –          of a set  .  
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         If   is an outer measure on  –          of a set  , then we need the following two facts 

to prove that      is an outer measure on a  –           of a set  .  

Lemma 31 

   Let   be a monotone measure on  –         of a set   and       such that     . 

Then     is a monotone measure on a  –           of a set  .  

Proof 

   Let   be a monotone measure on  , then  ( ) = 0. Since     is a  –      , then        . 

From  definition of    , we get     ( )  =   ( )= 0.  

 Let        such that      , then      and      . Since   is a monotone measure 

on  , then  ( )   ( ). But         , then    ( )= ( ) and     ( ) =  ( ), hence 

   ( )      ( ) and     is monotone measure on     of  . 

Lemma 32 

   Let   be a countably subadditive  on  –         of a set   and       such that     , 

then    is a countably subadditive on a  –           of a set     

Proof 

    Let              and      
 
    ,then            and    . Since   be a countably 

subadditive on  , then   ( )   ∑   (  
 
   ), but                 . So, we have  ( )  

   ( ) and  (  )     (  ) for all n=1,2,…, hence     ( )   ∑     (  
 
   ) and 

    is a countably subadditive on     of a set  . 

Proposition 33 

     Let   be an outer measure on  –         of a set   and       such that     . Then 

    is an outer measure on  –           of a set  . 

Proof 

    Since   is an outer measure on  , then   is a monotone measure and countably 

subadditive. By Lemma 31 and Lemma 32 we have     is a monotone measure and 

countably subadditive on     of  . Therefore     is an outer measure on     of  . 

Proposition 34 

    Let   be a null-additive on  –         of a set   and       such that     . Then 

     is a null-additive on  –          .  

Proof: 

     Let     be disjoint sets in     and      ( )   . Then  ( )     

Now,     (   ) =  (,   )  

                              =  ( )   since   is a null-additive on   

                              =     ( )  by definition of    . 

Hence,      is a null-additive on     

3. Conclusions 

    The main results of this paper are the following: 

(1) Let   be a nonempty set. A collection    ( ) is said to be   –        of a set   if the 

following conditions are satisfied: 

1.    . 

2. If   is a nonempty set in    and       , then     . 

3. If            , then ⋂   
 
     . 

(2) Let *  +   
 be a sequence of  –       of a set  . Then ⋂       is a  –       of a set   . 
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(3) Let   be a   –       of a set   and let   be a non-empty subset of   . Then the restriction of 

  on   is denoted by     and     ={ :  = ⋂  , for some     }. 

(4) Let   be a  –       of a set  . Then every measure is null-additive. 

(5) Let     ,    ,…,     be null-additive on a  –         of a set   and    (   ) for all 

         . If  a set function ∑     
 
   :    ,   -   is defined by:  

(∑     )
 
   ( )  ∑      

 
   ( )       , then  ∑     

 
    is a null-additive  on  . 

(6) Let   be a  –       of a set   and     . If    is a measure on   , then: 

1.    is a measure on  . 

2.   ( ) =  ( ),  whenever     . 

3.   ( ) = 0,  whenever      are disjoint sets in  . 

(7) Let   be a  –       of a set   and     . If    is an outer measure on  , then    is an 

outer measure on     

(8) Let   be a  –       of   and     . If    is a null-additive on  , then    is a null-additive 

on     

(9) Let   be a measure on  –         of a set   and         such that     . Then     is a 

measure on a  –           of a set   . 

(10) Let   be a monotone measure on  –         of a set   and       such that     . 

Then     is a monotone measure on a  –           of a set  .  
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