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Abstract

Positive and negative parity states for ''*Te have been studied
applying the vibration  al limit U(5) of Interacting boson model
(IBM-1).

The present results have shown their good agreement with
experimental data in addition to the determination of the spin/parity of
new energy levels are not assigned experimentally as the levels 0%,
and 5% and the levels 37, and 57 .

Then back propagation multiLayer neural network used for
positive and negative parity states for ''*Te and shown their
membership to the Vibration limit U(5) the network implemented by
MATLAB system.

Introduction
The interacting boson model (IBM) of Arima and Iachello(1,2)
has been successfully applied to a wide range of nuclear collective
phenomena(3) . The essential idea is that the low-energy collective
degrees of freedom in nuclei can be described by proton and neutron
bosons with spins of 0 and 2 . These collective building blocks
interact(4,5) .
Different choices of the L=0 (s boson) and L=2 (d boson) energies
and interaction strengths give rise to different types of collective
spectra(6,7) .
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In addition to the quadrupole d boson , other excitation modes are
expected to play an important role in the description of the nuclear
collective motion of particular importance is the collective 3° mode(1).

Negative parity states are described in the IBM octupole model by
adding a single angular momentum L=3 boson with intrinsic negative
parity (an f boson) to the usual s-d model space(8) .

In order to construct state of octupole character, we consider a
system of two different kinds of bosons (quadrupole d-boson) and
(octupole f-boson) .

This is done in IBM-1 framework , in which neutron and proton

degrees of freedom are not separately distinguished .The total number
of bosons is conserved(1,8)

.....................................

Where N is the total number of bosons , Ns , ng and nr are the
number of's,d, and f bosons , respectively ,and n=0 or 1 .
The most general Hamiltonian describing this system is(9)

H=Hsd+Hf+Vsdf .................................. [2]

Where Hgyy describes the positive parity core , Hy is the f-bosons
Hamilton , and V4 describes the f-sd interaction .
The sd core Hamiltonian [U[5]dynamical symmetry] employed in this
study is(5-7) .

Hsd=snd+a1L2+a3T32+a4T42 ...................... [3]
Where the f-boson Hamiltonian is given by(3,9) .
He=erH" f+0N-Zo[QrxQsg] e [4]

&r is the energy of the L=3 boson , and 6; and Z, are two parameters
which label the interaction of the octupole bosons with the s and d
bosons(1,3) .

The eigenvalue problem of U[5] limit for the system of s,d, and f
boson can be sloved analytically , in that case the various states
arrange themselves into two bands with energies(1,9) .

(N-band ) E=EqtertngXs .oovvvvvernrnnninnnn, [5]
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(N-band) E= EqtertngXs-((2ng-3)/5)Ag...ccvvveen... [6]

and the eigenvalues of the interacting d-boson (E4) Hamiltonian(6) :

The parameters (eq.0,B, v, €,X5,X3, and A4) of equations (5,6,
and 7) can be calculated from the experimental low levels(4,7) .
The typical positive parity spectrum have been shown(3) in table(1)
while in tabel (2) we show the typical negative parity states
corresponding spectrum(1) .

In this figure the states arranged into “bands” are defined as
follows(1,9) .

N —band
N’ - band

d"’,Ld=2nd;f;L=2nd +3,M >
d",Ld =2n,; f;L =20, + 2, M S sereeooooo (8]

The other negative parity states which arise from the coupling
d™ @ f do not form aband structure since they are admixed to other

states . Thus, loosing their collective character and systematic
pattern(1) .

Neural networks

Neural networks are composed of simple elements operating in
parallel. These elements are inspired by biological nervous systems.
The network function is determined largely by the connections
between elements. We can train a neural network to perform a
particular function by adjusting the values of the connections
(weights) between elements(10).

Commonly, neural network are adjusted or trained, so that
particular input leads to a specific target output . Typical many such

input / target pairs are used , in this supervised learning, to train a
network.

Back propagation:  The standard backs propagation for designing
the network has been used in this work.
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The standard back propagation is a gradient descent algorithm, as
is the Widrow- Hoff Learing rule, in which the network weighs are
moved along the negative of the gradient of the performance function.
The term back propagation refers to the manner in which the gradient
is computed for nonlinear multi layer networks.

Typically, a new input Leads to an output similar to the correct
output for input vectors used in training that are similar to the new
input being presented.

This generalization property makes it possible to train network on a
representative set of input / target pairs and get good results without
training the network on all possible input/ output pairs.(11)

There are generally four steps in the training process:
1-Assemble the training data

2-Create the network object.

3-Train the network.

4-Simulate the network response to new inputs.(12)

We use two network ones for
a- Positive parity spectra and Second for
b- Negative parity spectra

The first network contains five sub nets multi- Layer perception are
fed forward nets with. 8 nodes for Y- band, 5 nodes for X-band, 2
nodes Z- band , 2 nodes for B- band and 1 node for — band. These
additional layers contain hidden units or nodes that are not directly
connected to both the input and out put nodes.

The second network contains the sub nets multi- Layer perception

are Fed for ward nets with 8 nodes for Y-band , 6 nodes for N- band ,
and 4 nodes for N” - band.

Simulation process :The function sim simulates a network , sim takes
the network input p, and the network object net, and neturns the
network outputs a were a = sim (net ,p).

We use some tables for simulation network these tables are show on

page .

Calculation

In the present paper we apply the U[5]limit of Interacting Boson
model-1 (IBM-1) to compare its predictions for the positive and
negative parity energy levels with experimental (13-16) data .

71



IBN AL- HAITHAM J. FOR PURE & APPL. SCI VOL.18 (2) 2005

The values of IBM-1 parameters which gave the best fit to
experimental(13-16) data are given in table (3) and low-lying
quadrupole and Octupole bands energies for '"*Te nuclei are shown In
Fig.(2).
Learning process

Once the network weight and biases have been initialized , the
network is ready for training. The training process requires a set of

examples of proper network behavior network input p and target
outputs t.

During training the weights and biases of the network are iteratively

adjusted to minimize the network per for mance Function net-
performfun. The defavit performance Function for feed for ward
network is mean Square error mse — the average. Squared error
between the network outputs a and the target outputs t. As with
momentum, if the new error exceeds the old error by more than a
predefined ratio max — perf — inc (typically 1.04) ,
and biases are discarded. (1 7)

In addition, the Learning rate is decreased (typically by multiplying
by Ir — des =

0.7). Other wise, the new weights , etc., are kept. If the
new error is less than the old error, the learing rate is increased
(typically by multiplying by Ir-inc= 1.05)

This procedure increases the learning rate , but only to the extent
that the network can learn without large error increases . When a

larger learning rate could result in stable learnin
increased .

When the learning rate is too high to guarantee a decrease in error ,
it gets decreased until stable learning resumes .

In this work Backpropagation training with the Function traingda,
which is called just like trained, except for the additional traj
parameters max- perf- inc , in- des , and Ir- inc.

The present resuits have shown their good agreement with
experimental data for U[5] network (save in Ram memory with other
network such as O(6) network and SU(3) network.

the new weights

g , the learning rate is

ning

Discussion and Conclusion

The low -lying states in ''*Te Isotope display the characteristics of
nearly spherical nuclei(18) collective excitations that occur in these
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nuclei at low energies are quadrupole and octupole vibrations Indeed ,
the ratio of the energies of 4" and 2* Yrast states is nearly two and
indicates the vibrational character of these states . Furthermore

3 states are known around (2.5) MeV in these nuclei(18,19).

The present work demonstrates that a microscopically based

vibrational picture is quite successful to explain many aspects of the
structure of ''*Te for the lowest 2* and 4" states this is not surprising
in view of their pure phonon structure which was shown(20) .
The experimental 2%, and 4%, states at (1390.7 keV and 1483.3 keV)
which are commonly considered as members of the two phonon
triplets are well described in the framework of the IBM , this is not the
case for the only experimentally found 0" state (1875 keV) in this
energy region .

Concerning the three-phonon quintuplet it is easy to identify the
experimental(13-16) 0" ,2"3",and 4" states at (1875 keV , 1800
keV,1975 keV, and 2026.1 keV) respectively , as members of this
multiplet .

The situation of 6°(2216.7 keV) state of the quintuplet is more
complicated but the comparing of energy ratio of this state
(Rs"2"=3.1) with the values given by the ideal vibrator model®” one
sees that the '"Te nucleus follow very well this vibrator description .

Our new results from IBM-1 calculations are generally in good
agreement with experimental(13-16) data . However , our much
improved energy levels precision allowed us to remove some

ambiguities for a detailed comparison with previous calculations see
Raf.(13).

H
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Table(1): positive parity spectra a-positive parity spectra (MeV).
Y-BAND | X-BAND | Z-BAND B-BAND -BAND
0 1.29 1.96 1.14 1.9
0.65 1.9 2.6 Lo
1.3 2ad
2.5 3.4
2.8 4.2
3.5
4.4
i

Table(2): Negative parity spectra b-negative parity spectra (MeV).

Y-BAND N-BAND N-BAND
0 2 3.2

0.65 29 4.06
1.3 3.4 4.6

2.5 3.8 3.3

2.8 4.4

3.5 4.8

4.4

5.2

Table (3) : IBM parameters In KeV for '"“Te nucleus

Nicic, Positive parity state par. Negative parity state par.
7 €4 A Bl v Ef Xs Xs Ay
650 10 -16 3 2550 | -300 [ -905.9 -2047.8
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Fig.(1): Neural network including connections
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Fig.(2): Comparing experimental™*' and IBM )
energy levels of ""Te isot ope calculations
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