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Abstract

In this paper we introduced the concept of 2-pure submodules as a generalization of pure
submodules, we study some of its basic properties and by using this concept we define the
class of 2-regular modules, where an R-module M is called 2-regular module if every
submodule is 2-pure submodule. Many results about this concept are given.
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Introduction
Throughout this paper, R denotes a commutative ring with identity and every R-module
is a unitary. It is well-known that the pure submodules were given by several authors. For
example [1] and [2].

Definition (0.1): [1]
Let M be an R-module. A submodule N of M is called pure if the sequence
0 > EQN > EQM is exact for every R-module E.

Proposition (0.2): [1]
Let N be a submodule of M. The following statements are equivalent:
(1) N is a pure submodule of M.
(2) For each o eN, i e R, mi € M, j=1,2,....k, there exists xi € N, 1= 1,2,...,n such

z r_]lml
i=1
that Zn:rjimi _ Zn:rjiXi for each j.
i=1 i=1
3)

Proposition (0.3): [2]

Let N be an R-submodule of M. Consider the following statements:

(1) N is a pure submodule of M.

(2) NN IM=IN for each ideal I of R.

(3) N IM =IN for each finitely generated ideal I of R.

(4) N N (r)M = (r)N for each principal ideal (r) of R.

(5) NN rM=1N foreachr € R.

Then (1) = (2) < (3) = (4) & (5). And if M is flat then (1) < (2).

Notice that: Anderson was called the submodule N of M pure if it satisfies (2), see [3].

Recall that an R-module M is called regular module if every submodule of M is pure
[2]. M is called a Von Neumman regular module if every cyclic submodule of M is a direct
summand of M, [4].

This paper is structured in three sections. In section one we give a comprehensive study
of 2-pure submodules. Some results are analogous to the properties of pure submodules. In
section two, we study the concept of 2-regular modules. It is clear that every regular module
is 2-regular, but the converse is not true (see Remarks and Examples (2.2)(1)). Section three is
concerned with the direct sum of 2-regular modules. It is shown under certain condition, the
direct sum of 2-regular modules is 2-regular (see corollary 3.3). Also we show that the 2-
regular property of a module is inherited by its submodules (see Corollary 3.7). Other results
are given in this section.

0- 2-Pure Submodules

In this section we introduce the concept of 2-pure submodules. We investigate the basic
properties of this type of submodules, some of these properties are analogous to the properties
of pure submodules.
Definition (1.1):

Let M be an R-module. A submodule N of M is called a 2-pure submodule of M if for
each ideal I of R, I'M N N = I°N.
Remarks and Examples (1.2):
(1) Itis clear that every pure submodule is a 2-pure, but not the converse. For example: the

submodule _ _ of the module Z4 as Z-module is 2-pure submodule since if [= 2Z is an
{0,2}
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ideal of Z, then I’Zsn =474 .On the other hand I> _ =4

{0,2} {0,2} = {0} {02y {0,2}=1{0}
By the similar simple calculation one can easily to show that I’Z4 N =12 for

0,2y {02
every ideal I = nZ of Z where n is any positive integer. Thus _ _ is a 2-pure submodule

of Z4 but is not pure since if | =2Z, then [Zs n _ _ =2Z4n _ _ = _ _ and I
{0,2} {0,2} {0,2}
=2 .
{0,2}  {0,2}={0}
(2) In any R-module M, the submodules M and {0} are always 2-pure submodules in M.
(3) In the module Z as Z-module, the only 2-pure submodules are {0} and Z. To see this, for
every submodule nZ of Z, n* =n’l € <n>?Z nnZ, butn’> ¢ n’(nZ) =n’Z.
(4) Every nonzero cyclic submodule of the module Q as Z-module is a non 2-pure
submodule.
Proof:
Let N be a cyclic submodule of Q as Z-module, generated by an element @ where a and
b

b are two nonzero elements in Z. If we take an ideal <n> of Z where n is greater than one,

2
then <n®>.8 = _13a

-
b b
Also, Q = <n*>-Q, because for any element ¢ €Q we have € _ C 2 e<n>>-Q, thus
d d n’d
Q = <n*>-Q. Therefore <n>>-QN _ @ a _ implies that <n?>-Q N

a 5 a
< —>=<<—>" <—> N >-<—>-
b b b b

(5) Itis clear every direct summand is 2-pure since every direct summand is pure submodule,
hence is a 2-pure submodule, but the converse is not true, for example: the submodule
___ of the module Zo as Z-module. It is easily to check that I’Zo n = T?
{0,3,6} {0,3,6}
__ _ foreach I of Z. So, _ _ _ is 2-pure in Zo but not pure and hence not direct
{0,3,6} {0,3,6}

summand. Since if we take [ = 3Z, then [Zo N _ = and I-

036 036 036 {0
(6) Let N be a 2-pure submodule of M such that N = K for some submodule K of M, then K
may not be a 2-pure. For example: consider the module Z as Z-module. Let N = Z and

K =2Z.1Itis clear Z =27 but 2Z is not 2-pure in Z.
The following propositions give some properties of 2-pure submodules.

Proposition (1.3):

Let M be an R-module and N be a 2-pure submodule of M. If A is a 2-pure submodule in
N, then A is a 2-pure submodule in M.
Proof:

Let I be an ideal of R. Since N is a 2-pure submodule in M and A is a 2-pure submodule
in N, then M N N = I>’N and I’°N N A = I’A. But A c N, implies I’A = ’N N A =
PM AN NA=PM N (NN A)=I’M N A.
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Proposition (1.4):

Let M be an R-module and N is a 2-pure submodule of M. If A is a submodule of M
containing N, then N is a 2-pure submodule in A.
Proof:

Let I be an ideal of R. Since N is a 2-pure submodule in M, hence I'M N N = I>’N and
since N € A M implies I’A N\ N = (’A " IP'M)nN =I’A N (IPM " N) = ’A " I’N = I’N.

Proposition (1.5):
Let M be an R-module and N is a 2-pure submodule of M. If H is a submodule of N, then
N is a 2-pure submodule in M .
H H
Proof:
Let I be an ideal of R. Since
M+H N
~—
H H
_('M+H)NN
- H
_('MNN)+(HNN)

M
F(—)n—=
(H) H

by Modular law

Recall that a ring R is called an arithmetical ring if every finitely generated ideal of R is
a multiplication ideal, where an ideal I of R is called a multiplication ideal if every ideal J < |
there exists an ideal K of R such that J = IK, see [5].

The following proposition gives a characterization of 2-pure submodules of modules
over some classes of rings. First let us state the following theorem, which can be found in [6].

Theorem (1.6):
Let I = (a1, az,..., an) be a multiplication ideal in the ring R. Then for each positive
integer k, (ai, a,..., an)* = (@*,a’,...,a").

Proof: see [6].
Proposition (1.7):

Let M be a module over arithmetical ring R. The following statements are equivalent:
(1) N is a 2-pure submodule of M.

(2) For each irijzxi eN,1j € R, xi e M, j=1,2,...,m, there exists x, € N,i=1,2, ..., n such
i=1

ij i

that Zn:rijzxi =>r’x! for cach j.
i=l i=1
Proof:

(1) = (2) Assume that N is a 2-pure submodule of M, let y, = Enjrijzxi eN for any finite sets,
i=1
{x;}i, in M, {y,}7, in N and {rjj} in R where i =1,2,...,n,j=1,2,...,m. Let I be an ideal of R

i=1
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generated by the finite set {rij,r2j,....rnj}, then rj €l and r; eI’ imply r; xi € M. Thus
y = Zn:rijzxi € I’M, therefore yj € I’'M n N. But I’'M n N = I>N, implies yi; € I’N. Since R is
i=1

arithmetical ring, hence by theorem (1.6), I' =(r,1;,,...,1;). Therefore y, :Zn:rijzx; for some
i=l

5Ly

x! € N.

i

(2) = (1) Let N be any submodule of M. Let yj € PM AN, y, =>r’x, where {x,}", € M,
) i=1
{y)h 2N, i=1.2,....n, j = 1,2,...,m. Therefore by hypothesis, there exists x; € N such that

y, = Y X, = irfx' € I’N implies yj € I°’N. Then I°M N N < I?’N. The reverse inclusion is
i=1 i=1

ij i

clear. Thus I’M N N = I°N, and hence N is a 2-pure submodule of M.

1- 2-Regular Modules

In this section, we introduce and study the class of 2-regular modules.

Definition (2.1):

An R-module M is called 2-regular module if every submodule of M is 2-pure.

Remarks and Examples (2.2):

(1) Itis clear that the following implications hold:
Von Neumman regular = regular = 2-regular
But non of these implications is reversible. For example: the module Z4 as Z-module is
2-regular since every submodule of Z4 is 2-pure submodule in Z4, but Z4 is not regular
since the submodule _ _  of Z4 is not pure, see remark and example (1.2)(1).

{0,2}

(2) The modules Z and Q as Z-modules are not 2-regular modules, see remarks and examples

(1.2)(3), and (4).

The following theorem shows that the cyclic 2-pure submodules is enough to make the
module be 2-regular.

Theorem (2.3):
Let M be an R-module. The following statements are equivalent:
(1) M is 2-regular module.
(2) Every cyclic submodule of M is 2-pure submodule of M.
(3) Every finitely generated submodule of M is 2-pure submodule.
(4) Every submodule of M is a 2-pure submodule of M.
Proof:
(1) = (2) it follows by definition (2.1).
(2) = (1) Assume that every cyclic submodule of M is 2-pure. Let N be a submmodule of M
and I is an ideal of R. Let xe I™ N N implies x € I°M and x € N. Therefore
xe PMn<x>=1P<x> cI>?N.
(1) = (3) It follows by definition (2.1), and the proof of (2) = (1).
(3) = (2) Itisclear.
(1) = (4) It follows by definition (2.1).
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2- The Direct Sum of 2-Regular Modules-Basic Results

In this section, we study the direct sum and the epimorphic image of 2-regular module;
various properties of 2-regular modules are discussed and illustrated.

We start with the following proposition.

The following proposition shows that the factor module of a 2-regular module is also
2-regular module.
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Proposition (3.1):
Let M be an R-module. Then M is a 2-regular if and only if M is 2-regular for every
N
submodule N of M.
Proof:

(=) Let N be a submodule of M and K is any submodule of M containing N. Since M is

2-regular then K is 2-pure in M. Thus K is 2-pure in M by proposition (1.5), therefore M
N N N

is 2-regular.

(<) It is easily by taking N = 0.

Now, we have several consequences of the proposition (3.1), the first result shows that
the epimorphic image of 2-regular module is 2-regular.

Corollary (3.2):
Let M and M' be R-modules and f: M —— M' be an R-epimorphism. If M is 2-regular
module then M' is 2-regular.

Proof: Since :M——M' is an R-epimorphism and M is 2-regular. Then —™

— is 2-regular
kerf

module by proposition (3.1).But %5 M' by the first isomorphism theorem. Therefore M' is
er

2-regular.

Corollary (3.3):

Let M1 and M2 be R-modules. If M = Mi® M: is 2-regular R-module, then M1 and M2
are 2-regular R-modules. The converse is true provided ann (M1) + ann (M2) = R.
The following statements are equivalent:

Proof:

For the first assertion, assume that M = Mi® M2 is 2-regular R-module. Let
pi:M —— M; be the natural projective map of M onto Mi for each i = 1, 2. Since p1 is an
R-epimorphism then the epimorphic image of M is 2-regular, implies that M; is 2-regular.
Conversely, assume Mi and M2 are 2-regular R-modules and M = Mi® Ma. Let be
a submodule of M = Mi® M. Since ann(M1) + ann(M2) = R then by the same way of the
proof of [7,prop.(4.2),CH.1], N = Ni® N2 where Ni is a submodule in M and N2 is a
submodule in M. Let I be an ideal of R. To show I’M m N = IN. Since ’M1~N=I’N; and
PM2nN2=I>N2 implies that (PMinND)®(?M2nN2)= IENi@® I°N2. Then (PMi@IPMi)n
(N1@® N2)=I>(N1® N2), therefore M is 2-regular module.

The proof of the following result is similar to that of corollary (3.3).
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Corollary (3.4):
Let M1 and M2 be R-modules. If N is a 2-pure submodule in M1 and N2 is a 2-pure

submodule in M2, then N1® N2 is a 2-pure submodule in M1® Ma.
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Corollary (3.5):

Let M1 and M2 be R-modules and Mi® Mz is 2-regular R-module, then Mi+M: is
2-regular.
Proof:

Define f : Mi® M2 —— Mi1+M2 by f (m1,mz2) = mi + my. It is easily to check that f is an
epimorphism. Since M1® Mz is 2-regular, thus the epimorphic image of M1® Mz is 2-regular
by corollary (3.2). Therefore Mi1+M: is 2-regular.

Corollary (3.6):

Let M1 and M2 be 2-regular R-modules such that ann (M1) + ann (M2) = R, then M1+M2
is a 2-regular R-module.
Proof:

Since Mi and M2 are 2-regular R-modules then Mi® Mz is 2-regular by corollary (3.3)
implies that M1+M: is a 2-regular by corollary (3.5).

The following result shows that every submodule of a 2-regular module inherits the
2-regular property.

Corollary (3.7):

Every submodule of a 2-regular module is a 2-regular module.
Proof:

Let N be a submodule of a 2-regular R-module M. To show that N is 2-regular
R-module. Let K be a submodule in N and I is an ideal of R. Thus we have:

PNNK=IMnNN)nK since N is 2-pure in M
=IPM (N nK)
=IPMnK
=I’K since K is 2-pure in M

Therefore K is 2-pure in N implies N is 2-regular.
We end this paper by the following remark.

Remark (3.8):

If all proper submodules of an R-module M are 2-regular then M may not be 2-regular,
for example: the module Zs as Z-module is not 2-regular. Since <4 > is not 2-pure
submodule of Zg because 2>Zsn<4>=<4> but 22 <4>=<0>, while every proper
submodule of Zs is 2-regular, since < 2 >= Z, and < 4 >= 7, are 2-regular modules.
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