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Abstract 
        In this paper we introduced the concept of 2-pure submodules as a generalization of pure 
submodules, we study some of its basic properties and by using this concept we define the 
class of 2-regular modules, where an R-module M is called 2-regular module if every 
submodule is 2-pure submodule. Many results about this concept are given. 
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Introduction 
        Throughout this paper, R denotes a commutative ring with identity and every R-module 
is a unitary. It is well-known that the pure submodules were given by several authors. For 
example [1] and [2]. 
 
Definition (0.1):  [1] 
        Let M be an R-module. A submodule N of M is called pure if the sequence                       
0  EN  EM is exact for every R-module E. 
 
Proposition (0.2):  [1] 
        Let N be a submodule of M. The following statements are equivalent: 
(1) N is a pure submodule of M. 
(2) For each n

ji i
i 1

r m



N, rji  R, mi  M, j = 1,2,…,k, there exists xi  N, i = 1,2,…,n such 

that n n

ji i ji i
i 1 i 1

r m r x
 

 
 for each j. 

(3)  
Proposition (0.3):  [2] 
        Let N be an R-submodule of M. Consider the following statements: 
(1) N is a pure submodule of M. 
(2) N  IM = IN for each ideal I of R. 
(3) N  IM = IN for each finitely generated ideal I of R. 
(4) N  (r)M = (r)N for each principal ideal (r) of R. 
(5) N  rM = rN for each r  R. 
Then (1)  (2)  (3)  (4)  (5). And if M is flat then (1)  (2). 
        Notice that: Anderson was called the submodule N of M pure if it satisfies (2), see [3].  
        Recall that an R-module M is called regular module if every submodule of M is pure              
[2]. M is called a Von Neumman regular module if every cyclic submodule of M is a direct 
summand of M, [4]. 
        This paper is structured in three sections. In section one we give a comprehensive study 
of 2-pure submodules. Some results are analogous to the properties of pure submodules. In 
section two, we study the concept of 2-regular modules. It is clear that every regular module 
is 2-regular, but the converse is not true (see Remarks and Examples (2.2)(1)). Section three is 
concerned with the direct sum of 2-regular modules. It is shown under certain condition, the 
direct sum of 2-regular modules is 2-regular (see corollary 3.3). Also we show that the 2-
regular property of a module is inherited by its submodules (see Corollary 3.7). Other results 
are given in this section. 
 

0- 2-Pure Submodules 
        In this section we introduce the concept of 2-pure submodules. We investigate the basic 
properties of this type of submodules, some of these properties are analogous to the properties 
of pure submodules. 
Definition (1.1):   
        Let M be an R-module. A submodule N of M is called a 2-pure submodule of M if for 
each ideal I of R, I2M  N = I2N. 
Remarks and Examples (1.2):   
(1) It is clear that every pure submodule is a 2-pure, but not the converse. For example: the 

submodule 
{0, 2}

 of the module Z4 as Z-module is 2-pure submodule since if I= 2Z is an 
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ideal of Z, then I2Z4
{0, 2}

=4Z4
{0, 2} {0}

. On the other hand I2

{0, 2}
=4

{0, 2} {0}
. 

By the similar simple calculation one can easily to show that I2Z4  
{0, 2}

 = I2

{0, 2}
 for 

every ideal I = nZ of Z where n is any positive integer. Thus 
{0, 2}

 is a 2-pure submodule 

of Z4 but is not pure since if I = 2Z, then IZ4  
{0, 2}

 = 2Z4  
{0, 2}

 = 
{0, 2}

 and I

{0, 2}
 = 2

{0, 2} {0}
. 

(2) In any R-module M, the submodules M and {0} are always 2-pure submodules in M. 
(3) In the module Z as Z-module, the only 2-pure submodules are {0} and Z. To see this, for 

every submodule  nZ of Z, n2 = n21  < n >2Z  nZ, but n2  n2(nZ) = n3Z. 
(4) Every nonzero cyclic submodule of the module Q as Z-module is a non 2-pure 

submodule. 
Proof:   
        Let N be a cyclic submodule of Q as Z-module, generated by an element a

b
 where a and 

b are two nonzero elements in Z. If we take an ideal <n> of Z where  n  is greater than one, 

then <n2> a

b
 = 

2n a

b
  .  

Also, Q = <n2>Q, because for any element c

d
Q we have 2

2
n

n

c c

d d
  <n2>Q, thus                 

Q = <n2>Q. Therefore <n2>Q a a

b b
   , implies that <n2>Q 

 

2n
a a

b b
      . 

(5) It is clear every direct summand is 2-pure since every direct summand is pure submodule, 
hence is a 2-pure submodule, but the converse is not true, for example: the submodule 

{0, 3, 6}
 of the module Z9 as Z-module. It is easily to check that I2Z9  

{0, 3, 6}
 = I2

{0, 3, 6}
 for each I of Z. So, 

{0, 3, 6}
 is 2-pure in Z9 but not pure and hence not direct 

summand. Since if we take I = 3Z, then IZ9  
{0, 3, 6}

 = 
{0, 3, 6}

 and I
{0, 3, 6}

 = 
{0}

. 

(6) Let N be a 2-pure submodule of M such that N  K for some submodule K of M, then K 
may not be a 2-pure. For example: consider the module Z as Z-module. Let N = Z and               
K = 2Z. It is clear Z  2Z but 2Z is not 2-pure in Z. 

        The following propositions give some properties of 2-pure submodules. 
 
Proposition (1.3):   
        Let M be an R-module and N be a 2-pure submodule of M. If A is a 2-pure submodule in 
N, then A is a 2-pure submodule in M. 
Proof:   
        Let I be an ideal of R. Since N is a 2-pure submodule in M and A is a 2-pure submodule 
in N, then I2M  N = I2N and I2N  A = I2A. But A  N, implies I2A = I2N  A =                 
(I2M  N)  A = I2M  (N  A) =I2M  A. 
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Proposition (1.4):   
        Let M be an R-module and N is a 2-pure submodule of M. If A is a submodule of M 
containing N, then N is a 2-pure submodule in A. 
Proof:   
        Let I be an ideal of R. Since N is a 2-pure submodule in M, hence I2M  N = I2N and 
since N  A  M implies I2A  N = (I2A  I2M)N = I2A  (I2M  N) = I2A  I2N = I2N. 
 
Proposition (1.5):   
        Let M be an R-module and N is a 2-pure submodule of M. If H is a submodule of N, then 
N

H
 is a 2-pure submodule in M

H
. 

Proof:   
        Let I be an ideal of R. Since 

2
2

2

M N I M H N
I ( )

H H H H
(I M H) N

H


  

 
  

2(I M N) (H N)

H

  
         by Modular law 

2

2

I N H

H
N

I ( )
H





 

 
        Recall that a ring R is called an arithmetical ring if every finitely generated ideal of R is 
a multiplication ideal, where an ideal I of R is called a multiplication ideal if every ideal J  I 
there exists an ideal K of R such that J = IK, see [5]. 
        The following proposition gives a characterization of 2-pure submodules of modules 
over some classes of rings. First let us state the following theorem, which can be found in [6]. 
 
Theorem (1.6):   
        Let I = (a1, a2,…, an) be a multiplication ideal in the ring R. Then for each positive 
integer k, (a1, a2,…, an)k = k k k

1 2 n( , ,..., )a a a . 

Proof:  see [6]. 
 
Proposition (1.7):   
        Let M be a module over arithmetical ring R. The following statements are equivalent: 
(1) N is a 2-pure submodule of M. 

(2) For each 
n

2

ij i
i 1

r x

 N, rij  R, xi  M, j = 1,2,…,m, there exists ix   N, i = 1,2, …, n such 

that 
n n

2 2

ij i ij i
i 1 i 1

r x r x
 

   for each j. 

Proof:   

(1)  (2) Assume that N is a 2-pure submodule of M, let 
n

2

i ij i
i 1

y r x


  N for any finite sets, 

n

i i 1{x }   in M, m

j j 1{y }   in N and {rij} in R where i = 1,2,…,n, j = 1,2,…,m. Let I be an ideal of R 
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generated by the finite set {r1j,r2j,…,rnj}, then rij I and 2

ijr I2 imply 2

ijr xi  I2M. Thus 
n

2

j ij i
i 1

y r x


   I2M, therefore yj  I2M  N. But I2M  N = I2N, implies yi  I2N. Since R is 

arithmetical ring, hence by theorem (1.6), 2 2 2 2

1j 2 j njI (r , r ,..., r ) . Therefore 
n

2

j ij i
i 1

y r x


   for some 

ix   N. 

(2)  (1)  Let N be any submodule of M. Let yj  I2M  N, 
n

2

j ij i
i 1

y r x


   where n

i i 1{x }    M, 

m

j j 1{y }    N, i = 1,2,…,n, j = 1,2,…,m. Therefore by hypothesis, there exists ix   N such that 
n n

2 2

j ij i ij i
i 1 i 1

y r x r x
 

     I2N implies yj  I2N. Then I2M  N  I2N. The reverse inclusion is 

clear. Thus I2M  N = I2N, and hence N is a 2-pure submodule of M. 
 
 

1- 2-Regular Modules 
        In this section, we introduce and study the class of 2-regular modules. 
 
Definition (2.1):   
        An R-module M is called 2-regular module if every submodule of M is 2-pure. 
 
Remarks and Examples (2.2):   
(1) It is clear that the following implications hold: 

Von Neumman regular  regular  2-regular 
But non of these implications is reversible. For example: the module Z4 as Z-module is              
2-regular since every submodule of Z4 is 2-pure submodule in Z4, but Z4 is not regular 
since the submodule 

{0, 2}
 of Z4 is not pure, see remark and example (1.2)(1). 

(2) The modules Z and Q as Z-modules are not 2-regular modules, see remarks and examples 
(1.2)(3), and (4). 
 

        The following theorem shows that the cyclic 2-pure submodules is enough to make the 
module be 2-regular. 
 
Theorem (2.3):   
        Let M be an R-module. The following statements are equivalent: 
(1) M is 2-regular module. 
(2) Every cyclic submodule of M is 2-pure submodule of M. 
(3) Every finitely generated submodule of M is 2-pure submodule. 
(4) Every submodule of M is a 2-pure submodule of M. 
Proof:   
(1)  (2) it follows by definition (2.1). 
(2)  (1) Assume that every cyclic submodule of M is 2-pure. Let N be a submmodule of M 
and I is an ideal of R. Let x I2M  N implies x  I2M and x  N. Therefore                        
x  I2M  <x> = I2 <x>   I2 N. 
(1)  (3)  It follows by definition (2.1), and the proof of (2)  (1). 
(3)  (2)  It is clear. 
(1)  (4)  It follows by definition (2.1). 
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2- The Direct Sum of 2-Regular Modules-Basic Results  
        In this section, we study the direct sum and the epimorphic image of 2-regular module; 
various properties of 2-regular modules are discussed and illustrated. 
        We start with the following proposition. 
        The following proposition shows that the factor module of a 2-regular module is also             
2-regular module. 
 
Proposition (3.1):   
        Let M be an R-module. Then M is a 2-regular if and only if M

N
 is 2-regular for every 

submodule N of M. 
Proof:   
()  Let N be a submodule of M and K is any submodule of M containing N. Since M is                   
2-regular then K is 2-pure in M. Thus K

N
 is 2-pure in M

N
 by proposition (1.5), therefore M

N
 

is 2-regular. 
() It is easily by taking N = 0. 
 
        Now, we have several consequences of the proposition (3.1), the first result shows that 
the epimorphic image of 2-regular module is 2-regular. 
 
Corollary (3.2):   
        Let M and M' be R-modules and f: M  M' be an R-epimorphism. If M is 2-regular 
module then M' is 2-regular. 
Proof: Since f:MM' is an R-epimorphism and M is 2-regular. Then M

ker f
 is 2-regular 

module by proposition (3.1).But M
M '

ker f
  by the first isomorphism theorem. Therefore M' is       

2-regular. 
 
Corollary (3.3):   
        Let M1 and M2 be R-modules. If M = M1 M2 is 2-regular R-module, then M1 and M2 
are 2-regular R-modules. The converse is true provided ann (M1) + ann (M2) = R. 
The following statements are equivalent: 
 
Proof:   
        For the first assertion, assume that M = M1 M2 is 2-regular R-module. Let                        
i:M  Mi be the natural projective map of M onto Mi for each i = 1, 2. Since I is an             
R-epimorphism then the epimorphic image of M is 2-regular, implies that Mi is 2-regular. 
Conversely, assume M1 and M2 are 2-regular R-modules and M = M1 M2. Let be                        
a submodule of M = M1 M2. Since ann(M1) + ann(M2) = R then by the same way of the 
proof of [7,prop.(4.2),CH.1], N = N1 N2 where N1 is a submodule in M1 and N2 is a 
submodule in M2. Let I be an ideal of R. To show I2M  N = I2N. Since I2M1N1=I2N1 and 
I2M2N2=I2N2 implies that (I2M1N1)(I2M2N2)= I2N1 I2N2. Then (I2M1I2M1)                 
(N1 N2)=I2(N1 N2), therefore M is 2-regular module. 
 
 
        The proof of the following result is similar to that of corollary (3.3). 
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Corollary (3.4):   
        Let M1 and M2 be R-modules. If N1 is a 2-pure submodule in M1 and N2 is a 2-pure 
submodule in M2, then N1 N2 is a 2-pure submodule in M1 M2. 
 
Corollary (3.5):   
        Let M1 and M2 be R-modules and M1 M2 is 2-regular R-module, then M1+M2 is                   
2-regular. 
Proof:   
        Define f : M1 M2  M1+M2 by f (m1,m2) = m1 + m2. It is easily to check that f is an 
epimorphism. Since M1 M2 is 2-regular, thus the epimorphic image of M1 M2 is 2-regular 
by corollary (3.2). Therefore M1+M2 is 2-regular. 
 
Corollary (3.6):   
        Let M1 and M2 be 2-regular R-modules such that ann (M1) + ann (M2) = R, then M1+M2 
is a 2-regular   R-module. 
Proof:   
        Since M1 and M2 are 2-regular R-modules then M1 M2 is 2-regular by corollary (3.3) 
implies that M1+M2 is a 2-regular by corollary (3.5). 
 
 
       The following result shows that every submodule of a 2-regular module inherits the                   
2-regular property. 
 
Corollary (3.7):   
        Every submodule of a 2-regular module is a 2-regular module. 
Proof:   
        Let N be a submodule of a 2-regular R-module M. To show that N is 2-regular                     
R-module. Let K be a submodule in N and I is an ideal of R. Thus we have: 
I2N  K = (I2M  N)  K                    since N is 2-pure in M 
              = I2M  (N  K) 
              = I2M  K 
              = I2K                                        since K is 2-pure in M 
Therefore K is 2-pure in N implies N is 2-regular. 
        We end this paper by the following remark. 
 
Remark (3.8):   
        If all proper submodules of an R-module M are 2-regular then M may not be 2-regular, 
for example: the module Z8 as Z-module is not 2-regular. Since 4   is not 2-pure 
submodule of Z8 because 22Z8 4  = 4   but 22 4  = 0  , while every proper 
submodule of Z8 is 2-regular, since 42 Z   and 4  Z2 are 2-regular modules. 
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   2-النمط المقاسات المنتظمة من 
  نھاد سالم عبد الكريم

 جامعة بغداد /كلية العلوم /قسم الرياضيات
 غالب أحمد حمود   

جامعة بغداد / )ابن الھيثم( الصرفةكلية التربية للعلوم /الرياضياتقسم    
  

  ٢٠١٥حزيران  ٧ في:البحث  ، قبل٢٠١٥نيسان  ٢٨ في:أستلم البحث 
 خلاصةال

كتعميم لمفھوم المقاسات الجزئية النقية وباستعمال  2 –في بحثنا ھذا نقدم مفھوم المقاسات الجزئية النقية من النمط         
اذا كان  2 –بأنه منتظم من النمط  Rعلى الحلقة  Mإذ يقال ان المقاس  2 –ھذا المفھوم نعرف المقاسات المنتظمة من النمط

  . أعطينا العديد من النتائج حول ھذا المفھوم.2 –كل مقاس جزئي فيه يكون نقيا ً من النمط 
  
  
  

، المقاسات الجزئية النقية، 2 –، المقاسات النتظمة من النمط 2 –المقاسات الجزئية النقية من النمط  المفتاحية:الكلمات 
  المقاسات المنتظمة.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


