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Abstract 

The main objectives of this pepper are to introduce new classes. We have attempted to 

obtain coefficient estimates, radius of convexity, Distortion and  Growth theorem and other 

related results for the classes  (         )       (         )  

 

Keywords: multivalent function ,subordination, starlike function,  Growth theorem , Schwarz 

function. 

1. Introduction  

Let  ( ) be the set of all function  ( ) having the form  

 ( )     ∑   

 

     

                             ( )    

Where    , a set of natural numbers which are p-valent in   for     

Definition 1 [1]: A function  ( )   ( ) is in the subclass  ( ) of starlike function if 

 .
   ( )

 ( )
/    ,              

Definition 2 [2]: A function  ( )   ( ) is in the subclass  ( ) of convex  function if 

 .  
   ( )

 ( )
/    ,        

Definition 3 [3]: A function  ( )   ( ) is in the subclass  (         ) if it satisfy  

  
 

 
{

     ( )

   ( )
    

     ( )

   ( )
       

}  
    

    
                        (2)
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For     ( )                       

Furthermore a function  ( )   ( )is in the class   (         ) if    ( )  
 (         )  

Theorem 1: A function given by  (4.1) is in  (         ).S.S. Miller, P.T. Mocanu [1]. If 

and only if ∑
 

 ( )
     

      

Proof: Let  ( )   (         )Therefore from (2) we have  

 ( )    
 

 
{

     ( )
   ( )

 (   )

     ( )
   ( )

 (      )
}  

    

    
 

 ( )  
    ( )

    ( )
 

Where k(w) is Schwarz function  

 (w)=(    ( ))      ( ) 

 ( )(  ( )   )     ( ) 

 ( )  
 ( )   

    ( )
 

| ( )|    

|

|

|
 
 
[
{
     ( )
   ( )

 (   )}

     ( )
   ( )

       
]

   {  
 
 [

{
     ( )
   ( )

 (   )}

     ( )
   ( )

 (      )
]}|

|

|

   

|
     ( ) (   )   ( )

 (   )*     ( ) (      )   ( )+  *     ( ) (   )   ( )+
|               (3) 

     ( )  (   )   ( )   ∑  (   )   
 

 

     

 

     ( )  (      )   ( )    (   )   ∑  (      )   
 

 

     

 

From (1) we have  ||
 ∑  (   )   

  
     

 (   )2  (   )   ∑  (      )   
  

     3

  2∑  (   )   
  

     3

||    
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|
 ∑  (   )   

  
     

   (   )(   )   ∑ * (      )    (   )+   
  

     

|    

Since   ( )  | | . We obtain after considering  on real axis and letting  w→ 1 we get  

∑  (   )  

 

     

  | | (   )(   )  ∑ | (      )    (   )|   
 

 

     

 

∑  (   )  | *(      )   (   )+|

 

     

  | | (   )(   ) 

That is ∑
 

 ( )
     

      Where 

 ( )  
 | | (   )(   )

∑  (   )  | *(      )   (   )+| 
     

 

Corollary 1: If   ( )   (         )  then     ( ) 

and the equality holds for       ( )      ( )   

Theoremd 2 :  ( )     ∑   
 
                  is in   (         ) if and only if  

∑
 

 ( )
     

      

Proof: Suppose  ( )    (         ) If    ( )   (         )                  

Let  ( )     ( ) Therefore from (1) we have 

 ( )    
 

 
{

     ( )
  ( )

 (   )

     ( )
   ( )

 (      )
}  

    

    
 

This is equivalent to ( since | ( )|   ) 

|

|

|
 
 [

{
     ( )
  ( )

 (   )}

     ( )
   ( )

       
]

   {  
 
 [

{
     ( )
   ( )

 (   )}

     ( )
  ( )

 (      )
]}|

|

|

   

|
     ( )  (   )   ( )

 (   )*     ( )  (      )   ( )+   *     ( )  (   )   ( )+
|    

     ( )  (   )   ( )   ∑   (   )   
 

 

     

 

     ( )  (      )   ( )     (   )   ∑   (      )   
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From (2) we have  

|

|  ∑   (   )   
  

     

 (   ){   (   )   ∑   (      )     
     }

  { ∑   (   )     
     }

|

|
   

=|
 ∑  

 (   )   
  

     

(    (   )(   ))   ∑ (  (      )    (   ))     
     

|    

Since   ( )  | | . We obtain after considering  on real axis and letting  

 w→ 1 we get  

 

∑   (   )  

 

     

  | |  (   )(   )  ∑   ((      )   (   ))  

 

     

 

∑ {  (   )  |  ((      )   (   ))|}    | |  (   )(   )

 

     

 

∑
 

 ( )
    

 

     

 

Corollary 2: If   ( )   (         ) then    
  ( )

 
 and the equality holds for    

             ( )     ∑
  ( )

 
 
        

Theorem 3:    ( )   (         ) then 

| |  | |    (   )  | ( )|  | |  | |    (   ) 
With equality hold for  ( )          (   ) 
Proof:  ( )   (         ) Therefore from theorem 2 ∑   

 
       ( ) 

| ( )|  | |  ∑ |  || |  | |  | |   ∑ |  |  | |  | |    (   )

 

     

 

     

 

Similarly 

| ( )|  | |  ∑ |  || |  | |  | |   ∑ |  |  | |  | |    (   )

 

     

 

     

 

Therefore  

| |  | |    (   )  | ( )|  | |  | |    (   ) 

Theorem 4 :    ( )    (         ) then 

| |  | |   
  (   )

(   )
 | ( )|  | |  | |   

  (   )

(   )
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With equality   ( )           (   )

(   )
 

Proof:  ( )    (         ) 

Therefore from theorem 2  ∑
 

 ( )
     

      

| ( )|  | |  ∑ |  || |  | |  | |   ∑ |  |  | |  | |   
  (   )

(   )

 

     

 

     

 

Similarly  

| ( )|  | |  ∑ |  || |  | |  | |   ∑ |  |  | |  | |   
  (   )

(   )

 

     

 

     

 

Therefore  

| |  | |   
  (   )

(   )
 | ( )|  | |  | |   

  (   )

(   )
 

Theorem 5:    ( )   (         ) then 

 | |    (   )| |  (   )  |  ( )|   | |    (   )| |  (   ) 

Proof:  ( )   (         ) Therefore from theorem 1  ∑     ( ) 
      

  ( )        ∑  

 

     

   
    

|  ( )|   | |    ∑  

 

     

|  || |   

  | |    (   )| | ∑ |  |  

 

     

 | |    (   )| |  (   ) 

Similarly 

|  ( )|   | |    ∑  

 

     

|  || |   

  | |    (   )| | ∑ |  |  

 

     

 | |    (   )| |  (   ) 

Therefore 

 | |    (   )| |  (   )  |  ( )|   | |    (   )| |  (   ) 

Theorem 6:    ( )    (         ) then 

 | |    | |   (   )  |  ( )|   | |    | |   (   ) 

Proof:    ( )    (         ) then 

Therefore from theorem 2 ∑
 

 ( )
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  ( )        ∑     
   

 

     

 

|  ( )|   | |    ∑  |  || |     | |    (   )| | ∑ |  |   | |  | |     (   )

 

     

 

     

 

Similarly  

|  ( )|   | |    ∑  |  || |     | |    (   )| | ∑ |  |   | |  | |     (   )

 

     

 

     

 

Therefore 

 | |    | |   (   )  |  ( )|   | |  | |     (   ) 

 ( ) is function in  ( ) is called close to convex of order   (     ) if   ( )*  ( )+  
  for all      

A function  ( )   ( ) is starlike of order   (     )  if   2
   ( )

 ( )
3    for all      

A function  ( )   ( ) is convex of order   (     )  if    ( ) is starlike of order   , 

that is   2
   ( )

 ( )
3    for all      

Theorem 7 :  IF  ( )   (         ) ,then    ( ) if  

| |    (         )     
 

(
   

  ( )
*

 
   

 

Proof: We need to show that |
   ( )

      |       That is  

|
   ( )

      |  ∑  |  || |    
           ……(4) 

From theorem 1 we have ∑
 

 ( )
     

      Note that (4) is true if 
 | |   

   
 

 

 ( )
 

Therefore | |  .
   

  ( )
/

 

   
 (          )   thus we get required result. 

Theorem 8 :  IF  ( )   (         ) ,then     ( ) if  

| |    (         )     
 

((.
   

   
/

 

 ( )
+

 
   

, 

Proof: We must  show that 

                                        |
   ( )

 ( )
  |       

We have 

|
   ( )

 ( )
  |  

∑ (   )|  || |    
     

  ∑ |  || |    
     

                   (5) 

Hence (4.4.3) holds true if  

∑
(   )

(   )
|  || |      

                                         (6) 
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From theorem 1 we have 

∑
 

 ( )
     

                                                       (7) 

Hence by using (6) and (7) we can obtain required result. 

Theorem 9 :  IF  ( )   (         ) ,then    ( ) if  

| |    (         )     
 

((4
 (   )

 (   )
5

 

 ( )
+

 
   

, 

Proof: We know that   is convex if and only if     is starlike We must show that 

|
   ( )

 ( )
  |     

Where  ( )     ( ) Therefore we have  

∑
 (   )

 (   )
|  || |      

                      ( 8) 

From theorem 1 we have 

∑
 

 ( )
     

                                                  (9) 

Hence by using (8) and (9) we get 

4
 (   )

 (   )
5 | |    

 

 ( )
 

| |  ((4
 (   )

 (   )
5

 

 ( )
+

 
   

, 

Theorem 10: Let   ( )     and   ( )      ( )             then  ( )  
 (         ) if and only if  ( ) can be express in the form  ( )      ( )  
∑     ( ) 

      where             ∑      
      

Proof:  Let   ( )   (         ) We have     ( ) If we take    
 

 ( )
   

      and  ∑        
 
       

Theorem 11: Let   ( )     ∑      
         (           ) 

      be the functions in 

the class  (         ) (           )then the  function: 

    ( )     
 

 
∑ ∑      

  
   

 
       is also in  (         ) where   *  +     

    with 

       

Proof: since   ( )     ∑      
         

      is in  (         ) 

So by theorem 2 we have ∑   
 
       (   ) 

 (   )   
 | | (   )(   )

* (   )  |( (      )    (   ))|+
 

We have ∑
 

 (    )
 
     .

 

 
∑     

 
   /  

 

 
∑ ∑

 

 (    )
 
          .

 

 
∑   

   /    
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Hence by theorem 1 ,  ( )   (         ) 

Theorem 12: Let the function  ( )     ∑    
       ( )     ∑    

  
     

 
      

be in the class (         ) . Then the function  ( ) defined by  

 ( )  (   ) ( )    ( )     ∑    
 

 

     

 

Where    (   )             is also in  (         )  
Proff: we have   ( )  (   ) ( )    ( ) 

 (   )(   ∑    
 

 

     

)   (   ∑    
 

 

     

) 

    ∑ ((   )      )

 

     

   

Since      (         ) so by theorem 1 we have 

∑
 

 ( )
     

      and ∑
 

 ( )
     

      

Therefore 

∑
 

 ( )
((   )      )  (   ) ∑

 

 ( )
    ∑

 

 ( )
  

 

     

 

     

 

     

 

 (   ) ∑
 

 ( )
  ∑

 

 ( )
  

 

     

 

     

 

Therefore 

    (         ) 

Let   (         ) ,           (   )  neighborhood of the function 

   (         ) is defined by  

  
 ( )  {   (         )  ( )     ∑    

  
          ∑ |     | 

     
     

  } ….(4.6.1) 

For the identity function if  ( )          then  

  
 ( )  {   (         )  ( )     ∑    

 

 

     

     ∑ |  | 
     

 

     

 }           (  ) 

Definition 4: A function  ( )     ∑    
       

      is in the class   (         ) 

if there exist  ( )   (         ) such that  

|
 ( )

 ( )
  |                                                                                      (  ) 
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Theorem 13 : If   ( )   (         )      
 

    0
 

   ( )
1                   (12) 

Then   
 ( )    (         ) 

PROOF: Let    
 ( ) , then by (4.6) ∑     |     |    

      

This implies that  ∑ |     |  
 

    
 
                                                                    (13) 

Therefore  

|
 ( )

 ( )
  |  

∑ |     |
 
     

  ∑   
 
     

 
 

    
[

 

   ( )
]  

 

    
[

 

   ( )
]      

Then by definition 13 , we get     (         ) Thus   
 ( )    (         ) . 

The generalized Bernardi integral operator is given by  

  , ( )-  
   

  
∫  ( )                   (         )

 

 

 

  , ( )-     ∑     
  

                                                             (14) 

Where   .
   

   
/ 

Theorem 14: Let    (         ) then   , ( )-   (         ), S.S. Miller, P.T. 

Mocanu [4, 5]. 

Proof : We need to prove that ∑
 

 ( )
     

      

Since    (         ) then from theorem 1 ∑  ( )     
      But     therefore 

theorem 14 holds and the proof is over. 

Theorem 15: Let    (         ) then   , ( )- is starlice of order         in 

| |     Where  | |  4.
   

   
/ .

 

  ( )
/5

 

   

 

Proof:   , ( )-     ∑     
  

      

It is enough to prove  

|
 (  , ( )-) 

  , ( )-
  |      

|
 (  , ( )-) 

  , ( )-
  |  |

∑  (   )   
    

     

  ∑         
     

| 

 
∑  (   )  | |    

     

  ∑    | |    
     

     

∑  (   )  | |   

 

     

    (  ∑    | |   

 

     

) 

∑
(   )

(   )
 
        | |                                                           (15) 
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From theorem 1     ∑
 

 ( )
     

                                                                  (16) 

Hence by using (15) and (16) we get  

(   )

(   )
 | |    

 

 ( )
 

| |    .
   

   
/ (

 

  ( )
* 

Therefore 

| |  (.
   

   
/ (

 

  ( )
*+

 
   

 

The definitions given below are of the fractional calculus studied by , S. Ruscheweyh [4].  

Definition 5 [6]: For a function f( ) which is analytic function in    plane containing the 

origin which is a simply connected region , we define the fractional integral of order   as  

  
  

 ( )  
 

 ( )
∫

 ( )

(   )   
            

 

 

 

Definition 6: For a function  ( ) which is analytic function in    plane containing the 

origin which is a simply connected region , we define the fractional integral of order   as  

  
 
 ( )  

 

 ( )

 

  
∫

 ( )

(   ) 
               

 

 

 

Theorem 16: Let    (         ) then  

 (   )

 (     )
| |   4  

(   ) ( )

(     )
| |5  |  

  
 ( )|

 
 (   )

 (     )
| |   4  

(   ) ( )

(     )
| |5                  (  ) 

Proof: From definition 5 we have  

  
  

 ( )  
 (   )

 (     )
     ∑

 (   )

 (     )
   

    
                                 (18) 

                  

Let  ( )  
 (   )

 (     )
 

Clearly  ( ) is non – increasing function of n ,    ( )   (   )  
 (   )

 (     )
  

From theorem 1 we have  

∑ |  |   ( ) 
                                                                                     (19) 

From (18) and (19) it follows that  
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|  
  

 ( )|  | |   (
 (   )

 (     )
  (   )| | ∑ |  |

 

     

) 

 
 (   )

 (     )
| |   4  

(   ) ( )

(     )
| |5 

Similarly  

|  
  

 ( )|  | |   (
 (   )

 (     )
  (   )| | ∑ |  |

 

     

) 

 
 (   )

 (     )
| |   4  

(   ) ( )

(     )
| |5 

This proves the theorem 

Theorem 17: Let    (         ) then  

 (   )

 (     )
| |   4  

(   ) ( )

(     )
| |5  |  

 
 ( )|

 
 (   )

 (     )
| |   4  

(   ) ( )

(     )
| |5                  (  ) 

Proof: From definition 6 we have  

  
 
 ( )  

 (   )

 (     )
     ∑

 (   )

 (     )
   

    
             (21) 

                    

Let  ( )  
 (   )

 (     )
 

Clearly  ( ) is non – increasing function of n ,    ( )   (   )  
 (   )

 (     )
  

From theorem 1 we have   ∑ |  |   ( ) 
     ……(22) 

From (21) and (22) it follows that  |  
 
 ( )|  | |   .

 (   )

 (     )
  (   )| |∑ |  |

 
     / 

 
 (   )

 (     )
| |   4  

(   ) ( )

(     )
| |5 

Similarly |  
 
 ( )|  | |   .

 (   )

 (     )
  (   )| |∑ |  |

 
     / 

 
 (   )

 (     )
| |   4  

(   ) ( )

(     )
| |5 
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Conclusions 

    The main impact of this research work is to motivate to construct new Subclasses of 

Holomorphic (or analytic) multivalent functions belonging the disk and study their various 

geometrical properties. We have derived new Sub classes of Meromorphic (analytic except 

for isolated singularities i. e. poles) Holomorphic (an analytic) multivalent functions in the 

punctured disk. The well-known properties like distortion theorem, radii of star likeness, 

coefficient inequalities and convexity etc.  by using Subordination. 
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