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Abstract

The objective of this paper is, firstly, we study a new concept noted by A-algebra and
discuss the properties of this concept. Secondly, we introduce a new concept related to the
A-algebra such as smallest A-algebra. Thirdly, we introduce the notion of the restriction of
A-algebra on a nonempty subset D of P and investigate some of its basic properties.
Furthermore, we present the relationships between o- o-field, monotone class, 3— c-field and
A-algebra. Finally, we introduce the concept of measure relative to the A-algebra and prove
that every measure relative to the A-algebra is complete.
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1. Introduction

About forty seven year ago, Robert [1]. Studied the concept of o-field, where a collection
K is called o-field of a set B if PeXK and K is closed under complementation and countable
union. Many authors studied the concept of o-field, for example see [2-4]. And [5]. The
notion of increasing sequence and decreasing sequence studied by Robert, where D;, D, ... are
subsets of a set B, if D, € D, < --- and U2, D; = D. Then we say that D; increase toD; we
write D; T D. If D; 2 D, D -+ and N2, D; = D, we say that D; decrease toD; we write D; { D
[1]. Zhenyuan and George in 2009 studied the concept of monotone class which represents
the generalization of o-field, where a collection K of subsets of a nonempty set ‘B is said to
be monotone class iff whenever Dy, D, ... €X such that D; T D, then De X and if D; I D, then
De K [6]. In 2019, Ibrahim and Hassan introduced some concepts such as a-o-field and
- o-field which represent the generalizations of o-field, where a collection K is said to be
o- o-field iff @, Pe K and K is closed under countable union [7]. And a collection X is said
to be B-o-field if ®,Be K and K is closed under countable intersection [7]. Ibrahim and
Hassan in 2019 also introduced the concept of 8-field as a stronger form of these concepts,
where a collection K is said to 6-field iff ®e K and if & + AeK andA c B € 3, then
BeXand XK is closed under countable intersection [8]. The concept of complete measure on
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o-field was studied by Robert in 1972, but not necessarily that every measure defined on
o-field is complete. In this work, we prove that every measure defined on A-algebra is
complete.

The main aim of this paper is to introduce and study new concept such as A-algebra as a
stronger from of a- c-field and monotone class. And we give basic properties and examples
of this concept.

2. The main results:
Let P(®B) denoted to the power set of a nonempty set P and we start this section by the
definition of A- algebra.

Definition 1
A nonempty collection K of a set B, K # {{} is called A- algebra or (A-field) of a set P
if:
1- PeX.
2- If DeX and E c D c B, then EeX.
3- IfDy, Dy, ... €X,then U2, D;eX.

Definition 2
If K is a A-algebra of a set B .Then a pair (B, K) is called measurable space relative to
the A-algebra X and the elements of K are called the measurable sets.

Example 3
Let B={1,2,3,4} and K ={ D,{1},{2},{4},{1,2},{1,4},{2,4},{1,2,4},B }. Then (B, XK)
is measurable space relative to the A- algebra XK.

Proposition 4
For any A-algebra K of a set®, the following hold:
- PeX
2- 1If Dy, Dy, ..., D, €X, then UL, D; €X.
3- If Dy, Dy, ... €X, then N2, D; €X.
4- 1f D4, Dy, ..., Dy €X, then NiL; D; €X.

Proof
The proof follows from definition of A- algebra.

Lemma 5
Let {K},e1 be a collection of A-algebra on P. Then Ny Ky is a A- algebra on P.

Proof

Since X, is A-algebraVa €l, then PeK,Va€l, hence K,#* PVael and
Noer Ko # P, therefore P € Nger Ky Let De Nger Ky and E € D € P, then DeK, Va € 1,
but K, is A-algebraVa €l and E c D. So, we getEeX, Va €I, hence EeNye Ky -
Let Dy, Dy, ... € Nger K- Then, Dy, D,, ... €K, Va € 1, but K, is A-algebra V a € I which
implies that Up~;D, €Ky, Va €1, hence Up—;Dp€ Nger Ky Therefore, NgerKyis a
A-algebra.
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Definition 6

Let J € P(*B) . Then the intersection of all A- algebra of B which includes (J is called the
A-algebra generated by J and denoted by A(J), that is,
AT =N{Ky K, is a A -algebraof P and € K, , Va € I}.

Proposition 7
Let J € P(®B). Then A() is the smallest A- algebra of B which includes J.

Proof

Since A(J)=N{HK,:Kyisa A-algebra of P and J < K, Va €1} ThenA(J) is
A-algebra of by Lemma 5. To prove A(J) 2 J, let each of K, is a A-algebra of B and
J € Ky, Va €1 Then J S Nyer Ky therefore J S A(J). Now, let K™ is a A - algebra of B
such that X* 2 J. Then N{Ky: K isa A -algebra of P and J S K, Va € [} € K™, hence
A(J) € K. Therefore, A((J) is the smallest A- algebra of B which includes J.

If we take Example 3 and if we assume J ={{1},{2}}, then A(J)={P,{1},{2},{1,2}, B}
is the smallest A- algebra of a set B which includes J.

Theorem 8
Let J € P(B) . Then (B, J) is measurable space relative to the A- algebra J.
if and only if J = A(J).

Proof

Suppose that (B, J) is (a) measurable space relative to the A- algebra J. From Proposition
7, we have A(J) is the smallest A —algebra of a set P which includes J implies that] <
A(J). By hypothesis, we have J is a A-algebra of a set, but J S J and A(J) is the
smallest A —algebra of a set B which includes J, then A(J) S J , hence J = A(J).
Conversely) Let J € P(®B) and let J = A(J). Since A(J) is a A-algebra of a set B, then (J is
A-algebra of a set B.

If we take Example 3 and if we assume J ={®,{1},B}, then we conclude that A(J) =J.
Now, we introduce the notion of restriction and study the basic properties of this notion.

Definition 9

Let X € P(®B) and ® #= D < P . Then, the restriction of K over the set D is denoted by
K |p and defined as follows:
K|y = {B: B=EEND, for some Ee K'}.

Proposition10
Let (B, XK) is measurable space relative to the A-algebra KX and @ # D C P. Then
K|p={E S D: EeX}.

Proof

Let Be K| . Then B=END, for some E€K. Since END € E and K is A —algebra of a set
B, then ENDeX, hence Be K. Since, END € D, then BE D. Therefore Be{E € D:Ee K’}
and K|p S{AC D:AeK}. Let Ce{E D : EeX}. Then, CS D, and Ce XK, hence,
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C=CND, but CeX, then CeX|pwhich implies that{E € D:EeK}C K|y,
therefore K'|p ={A € D:Ae K'}.

Corollary 11
Let (B, K) is measurable space relative to the A-algebra K and ® # D € PB. Then K|g S
x.

Proof
The result follows from Proposition10

Proposition 12
Let(B,K) is measurable space relative to the A-algebraX,and #=D C
B. Then (D, K'|p) is measurable space relative to the A- algebra Ky

Proof

Since (P, K) is measurable space relative to theA- algebra K , then B e K. Since € P,
then D = P ND and D € K|p. Let Be K|pand F € B € D. Then by Corollary 11, we get
BeX. But Fc Bc D c Pand (B, XK) is measurable space relative to the A-algebra K,
then FeK. Now, Fc D, and FeX, then by Proposition 10, we have FeX|qp.
LetBy,B;, ...€e K'|p. Then there exist E;,E,,...eX such that B;=E;N D where i=1,2,...,
hence Uj2; Bi=Uj21(E; N D)= (Uj2{ E;i )N D. But (P, K) is measurable space relative to the
A-algebraX andEq E,,..€eX, then, Uj2;E;eX. Hence, U{Z,;BjeX|p. Therefore,
(D, K|p) is measurable space relative to the A- algebra K| .

Example 13

Let P={1,2,3,4,5} and K ={ D,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5},B }. Then (B, K)
is measurable space relative to the A- algebra K. If © ={1,2,4}, then K|p={P,{1},D}, hence
(D,X|p) is measurable space relative to the A-algebra X'| and K| € K.

Proposition 14
Let J € P(*B)and ® # D € P. If K is a A —algebra of P which includes J, then A(J)|p
is a A-algebra of a set ©.

Proof
The result follows from Proposition 7 and Proposition 12.

Proposition 15

Let JSP(P)andd # DS P and J|D is the restriction of J over the set D.
Then A (J|D) is the smallest A-algebra of a set®, which includes J|D, where A(J|p) =
N{X;|o: Ki|p isa A-algebraof D, and Ki|p 2 J|p, Vi € 1}.

Proof

From Lemma 5, we get A(J|p) is a A-algebra of a set®. To prove that A(J|p) 2 J|p,
suppose that each of XKj|p is a A-algebra of a set © andXKj|y 2 J|p, Vi €I, then
Jlo € Nier Kilp, hence J|p S A(J|p). Now, let K*|p is a A-algebra of a set D such that
K*|p 2 Jlp- Then K*|p5 2 A(J|p)- Therefore, A(J|p) is the smallest A-algebra of a set D
includesJ|p.
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Proposition 16

Let J € P(B) and @ # D < P, define the collection K as:
K ={E € B: (END) e A(J|p) }- Then (B, K) is measurable space relative to the
A-algebra XK.

Proof

Since A(J|p) } is a A-algebra of a set D, then ®, D € A(J|p). Since D € P, then D =P
ND and PeX. Let EeX and Fc E € P. Then, (EN D)eA(J|p). Since, F c E, then
(FND) c (END). But A(J|p) is a A-algebra of a set®, which implies that (FND)e A(J|p)
and FeX. LetEjE,,..eX. Then (EiND)eA(J|p), for all i=1,2,..., hence
Ui21(Ei N D)er(J|p) and ((Ui2; E)) N D)eA(J|p) implies that U2, E; € K. Therefore K
is A-algebra of a set P.

Theorem 17
LetJ € P(B) and @ # D S PB. Then A(J|p)=A(T)]p-

Proof

Let BeJ|p, then B=EN D, for someEe J. But J € A(J), then Ee A(J), thus Be A(J)|p,
hence J|p S A(J)|p, but A(J|p) is smallest A —algebra of a set D, which include J|g and
AJ)|pis a A-algebra of a set ® which include J|g, then A(J|p) S A(J)|p. Now, define
collection K as: K= {E € B : END €A(J|p) }, then from Proposition 16, we obtain K is a
A-algebra of a set P. Let Ce J, then (CN D) €J|p, but J|p € A(J|p) implies that (C N
D)eA(J|p), hence Ce X and J € K. Let Be A(J)|p, then B=F N D, for some Fe A(J). But
AMJ) € K, then FeX, hence BeA(J|p) and A(J)|p € A(J]|p), consequently A(J|p) =
Mo

We end this section by introduce the relationships between a-o-field, monotone
class, - o-field and A- algebra.

Proposition 18
Every A-algebra is a a— o-field.

Proof

Let K be a A-algebra of a set B. Then by definition of A- algebra, we have @, PekK.
Let D4, D,, ...€X. Since K is a A- algebra, then by definition of X, we have U;2; D;e XK.
Therefore K is a a- o-field.

In general, the converse of above proposition is not true. For example, if P ={1,2,3} and
K ={D {1},{1,3},B}, then K is a-o- field but not A-algebra, because {1,3}€ K and
{31c{1,3}, but {3} & XK.

Proposition 19
Every A-algebra is a - o-field.

Proof
The proof follows from Proposition 4 and definition of A- algebra.

In general, the converse of above proposition is not true as shown in following example.
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Example 20
Let B={1,23,4} and K ={P ,{1},{1,3,4},{3,4},B}. Then, K is p-o- field but not
A-algebra, because {1,3,4}€ K and {3,4}c{1,3,4}, but {3,4}¢ K.

Proposition 21
Every A-algebra is a monotone class.

Proof

Let K be a A-algebra of a set B and D;,D,, ... X such thatD; T D. Then U;2;D; =D
Since K is a A-algebra, then by definition of K, we have Uj2; D; € X which implies that
De K. Let Dy, D,, ... X such that D; I D. Then, N{2; D; = D, but K is a A-algebra, implies
that N2, D; €X and D eX. Hence X is a monotone class.

In general, the converse of above proposition is not true. For example, if P ={1,2,3} and
M ={d,{1},{1,2} }, then M is a monotone class, but not A-algebra, because {1,2}€ M
and {2}c{1,2}, but {2} ¢ M.

Definition 22 [6]

Let J € P(*B) . Then the intersection of all monotone classes of P which include J is
called the monotone class generated by J and denoted by M(J), that is, M(J) =
N{M;: M; is a monotone class of P and J S M , Vi € I}.

Lemma 23 [6]
Let {M; };¢;be a collection of monotone classes on . Then N;e; M is a monotone class on

$.

Proposition 24 [6]
Let J € P(®B) . Then MI(J) is the smallest monotone class of 8 which includes J.

Theorem 25
Let J € P(B) . Then M(J) < A(J).

Proof

Let J € P(®B). Then by Proposition 7, we have A(J) is a A-algebra of § which
includes J. From Proposition 21, we have, every A- algebra is a monotone class, implies that
A(J) is a monotone class which includes J. But M(7) is the smallest monotone class which
includes J by Proposition 24, then M(J) S A(J).

3. Measure Defined on A- algebra
Our aim in this section is to prove that any measure defined on A- algebra is complete.
We begin with the notions of measure on A- algebra.

Definition 26

Let (B, XK) is measurable space relative to the A-algebra K. Then, a set function I,
P: K — [0,00] is called measure relative to the A-algebra K if whenever Dy, D,, ... form a
finite or countably infinite collection of disjoint sets in K, we have M(Up=1Dy) =
Yori M(Dy) and M(P) = 0.
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Example 27
Let B={1,2,3} and K ={P,{1},{3},{1,3},B}. Then (P,XK) is measurable space
relative to the A-algebra K. If we define a set function t: K — [0, oo] by

o ;if D=0
M(D) = % s if D = {1} or {3}
1 ; other wise

Then Mt is a measure relative to the A-algebra K.

Definition 28

A measure space relative to the A-algebra X is a triple (B, K, M) where (P, K) is
measurable space relative to the A-algebraX and Ptis a measure relative to the
A-algebra XK.

In the following Theorem, we use mathematical induction to prove that the linear
combination of measure relative to the A-algebraX is also measure relative to the
A-algebra K.

Theorem 29

Let (B, X, M;) be a measure space relative to the A-algebra K and ¢; € [0, o) for all
j=1,2,.., k. If a set function 2?:1 ¢;M;: g - [0,00] is defined by:
(Zﬁl M) (D) = Z;-Ll ¢j. M; (D) VDego, then (PB,K, 2?:1 ¢;M;) is measure space
relative to the A- algebra XK.

Proof
If k=2, then (c; My + ;) (P) =¢; . My (P) + ¢, . PM,(P)
=¢.0+c,.0=0

Let Dy, Dy, ... are disjoint sets in K. Since M; is measure relative to the A-algebra ¥, j =
1,2
Then, M;(Up=1 Dp) = X5=1 D;(Dy,). So, we have
(1T + ;M) (Up=1 Dn) = ¢1- My (UpZy D) + ¢2 . My (UnZy D)

= ¢1. Zn=1 D (Dp) +¢3 . Yp=1 My(Dy)

= Y=t G- (D) + Xpzica - Ma(Dr)

= Yn=alc1. W (Dy) + cz. My(Dy)]

= Yn=1(c1My + ;M) (Dy)
Hence, (B, K, (c; M, + c,M,)) is measure space relative to the A- algebra K.
Now, we assume that (B, K, 2?:1 cjimj) is measure space relative to the A- algebra K, when
k = m and we prove this fact when k = m + 1. Let (B, X, M;) be a measure space relative
to the A-algebra X and ¢; € [0, o) forall j = 1,2, ...,m,m + 1. Then
ETE G (@) = (L1 ¢y + Cmy1 M 41) ()

= 271:1 Cj - EUEJ-(CD) + Cms1 - PMippr (@)
= 0 since, M; is measure relative to the A- algebra K.
Let Dy, Dy, ... are disjoint sets in K. Since (B, K, XiL; ¢;M;) is measure space relative to

the A-algebra X, then YL, ¢;I; (Up=q Dp) = X0=1 [X751 ¢;;](Dy). So, we have
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(271:11 ngnj) (Unz1Dp) = (Z;n=1 Cjimj + Cm+1Mims1) (Un=1 D)
= Z;n:1 Gj - Emj(U%o:1 Dy) + cmar - M1 (Un=1 Dy)
= (ZT:l ¢;M;)(Unz1Dn) + cmu1 - Mimy1(UnZ1 D)
= Yn=1 (Z§"=1 ¢jMM;)(Dy) + Cmgr - Yn=1 M1 (D)
= Yn=1 [Z}n=1 G- Smj D]+ Xrz1Cmer - Mper(Dr)
= Z?lozl [Z;n:l G- s~IRj (Dn) + Cm41 - EDtm+1(Dn)]
= Y=t [Z§"=1 ;M + 1 Mn11(Dn)
= Yo [Z7E5 9] (Dn).
Hence, Z}":ll cjimj is measure relative to ¥, therefore (%, K, Zﬁl c,-sm,-) is measure space

relative to the A- algebra XK.

Definition 30 [1]

A measure on a o- field K is a nonnegative, extended real-valued set function 9t on K
such that whenever 44, 4,, ... form a finite or countably infinite collection of disjoint sets in
K, we have, M(Up=14,) = Yn=q1 T(4,).

Definition 31 [1, 3]
A measure M on a o-field K is said to be complete iff whenever A eXand MM (A4) = 0, we
have B eXfor all B c A.

The following example shows that, if )t is a measure on o-field K, then not necessarily
that 3 is complete.

Example 32
Let P={1,2,3} and K ={ D,{1},{2,3},B }. Then K is o-field of a set P . If we define a
set function M: K — [0, o] by

(o ; if D=®orD = {23}
M(D) { 1 ;other wise
Then M is a measure on o-field K, it is clear that Mt is not complete, because {2,3}€ K and

M({2,3}) = 0, now {2},{3}c{2,3}, but {2},{3}¢ K.

Theorem 33
Every measure relative to the A- algebra is complete.

Proof
Let Ot be a measure relative to the A- algebra K. Assume that A €X such that Dt(4) = 0,
since X is a A-algebra, then B eXfor all B c A. Therefore Mt is complete measure.

Example 34
Let P={ab,c.d} and K ={d,{a},{c},{d},{a,c},{c,d},{a,d},{a,c,d}, B}. ThenK is
A-algebra of a set P . If we define a set function M: K — [0, o] by

(o s ifD%P
mo) ] L ifD=%
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Then Mt is a measure on A-algebra K. Now, for any AeX such that 0(A) = 0, then BeX
for all B c A. Therefore I is complete measure.

4. Conclusions
The main results of this paper are the following:
(1) Let {]};c;be a collection of A-algebra on B. Then Ni¢; X is a A- algebra on ‘B.
(2) LetJd € P(B) . Then A(J) is the smallest A- algebra of P which includes J.
(3) LetJ < P(B). Then J is a A -algebra of a set P if and only if J = A(J).
(4) Let JSP(B) and P+ DS P. If X is a A-algebra of P which includes J, then
MDlo
is a A-algebra of a set D.
(5) LetJ € P(PB) and ® # D < PB. Then A(J|p)=A(T)|D.
(6) Every A-algebra is a a- o-field.
(7) Every A-algebra is a 3- o-field.
(8) Every A-algebra is a monotone class.
(9) LetJ be a collection of subsets of a nonempty set B . Then MI(J) S A(J).
(10) Let (B, K, M;) be a measure space relative to the A-algebra K and c; € [0, o) for all

j =12,.., k. Ifaset function Y'_, ¢;T;: o - [0,0] is defined by:
Efo1 M) (D) = X% 1 ¢;. M; (D) VDeg, then (P, K, X5, ;M) is measure space
relative to the A-algebra K.
(11) Every measure relative to the A- algebra is complete.
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