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 Abstract 

      The objective of this paper is, firstly, we study a new concept noted by λ–algebra and 
discuss the properties of this concept. Secondly, we introduce a new concept related to the 
λ–algebra such as smallest λ–algebra. Thirdly, we introduce the notion of the restriction of 
λ–algebra on a nonempty subset 𝔇 of 𝔓 and investigate some of its basic properties. 
Furthermore, we present the relationships between α– σ–field, monotone class, β– σ–field and 
λ–algebra. Finally, we introduce the concept of measure relative to the λ–algebra and prove 
that every measure relative to the  λ– algebra is complete.  

Keywords: σ–field, increasing sequence, α– σ–field, monotone class, β– σ–field. 

1. Introduction  
   About forty seven year ago, Robert [1]. Studied the concept of σ–field, where a collection 
𝒦 is called σ–field of a set 𝔓 if 𝔓ϵ𝒦 and 𝒦 is closed under complementation and countable 
union. Many authors studied the concept of σ–field, for example see [2-4]. And [5]. The 
notion of increasing sequence and decreasing sequence studied by Robert, where Dଵ, Dଶ, … are 
subsets of a set 𝔓, if Dଵ ⊂ Dଶ ⊂ ⋯ and ⋃ D୧

ஶ
୧ୀଵ ൌ D. Then we say that D୧ increase toD; we 

write D୧ ↑ D. If Dଵ ⊃ Dଶ ⊃ ⋯ and ⋂ D୧
ஶ
୧ୀଵ ൌ D , we say that D୧ decrease toD; we write D୧ ↓ D 

[1]. Zhenyuan and George in 2009 studied the concept of monotone class which represents 
the generalization of σ–field, where a collection 𝒦 of subsets of a nonempty set 𝔓 is said to 
be monotone class iff whenever Dଵ, Dଶ, … ϵ𝒦 such that D୧ ↑ D, then Dϵ 𝒦 and if D୧ ↓ D, then 
Dϵ 𝒦  [6]. In 2019, Ibrahim and Hassan introduced some concepts such as α– σ–field and 
β– σ–field which represent the generalizations of σ–field, where a collection 𝒦 is said to be 
α– σ–field iff Φ, 𝔓ϵ 𝒦 and 𝒦 is closed under countable union [7]. And a collection 𝒦 is said 
to be β– σ–field if Φ, 𝔓ϵ 𝒦 and 𝒦 is closed under countable intersection [7]. Ibrahim and 
Hassan in 2019 also introduced the concept of δ–field as a stronger form of these concepts, 
where a collection 𝒦 is said to δ–field iff Φϵ 𝒦 and if Φ ് Aϵ𝒦 andA ⊂ B ⊆ 𝔓, then 
Bϵ𝒦and 𝒦 is closed under countable intersection [8]. The concept of complete measure on 
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σ–field was studied by Robert in 1972, but not necessarily that every measure defined on 
σ–field is complete. In this work, we prove that every measure defined on λ– algebra is 
complete.  
    The main aim of this paper is to introduce and study new concept such as λ– algebra as a 
stronger from of α– σ–field and monotone class. And we give basic properties and examples 
of this concept.  
 
2. The main results: 
    Let P(𝔓) denoted to the power set of a nonempty set 𝔓 and we start this section by the 
definition of λ– algebra. 

Definition 1 
      A nonempty collection 𝒦 of a set 𝔓, 𝒦 ് ሼ𝔓ሽ is called λ– algebra or (λ– fieldሻ of a set 𝔓 
if: 

1- 𝔓ϵ𝒦. 
2- If Dϵ𝒦 and  E ⊂ D ⊂ 𝔓, then Eϵ𝒦. 
3- If Dଵ, Dଶ, …   ϵ𝒦, then ⋃ D୧

ஶ
୧ୀଵ ϵ𝒦. 

Definition 2 
      If 𝒦 is a λ– algebra of a set 𝔓  .Then a pair (𝔓 , 𝒦) is called measurable space relative to 
the λ– algebra 𝒦 and the elements of 𝒦 are called the measurable sets.  

Example 3 
      Let 𝔓 ={1,2,3,4} and 𝒦 ൌ{ Φ,{1},{2},{4},{1,2},{1,4},{2,4},{1,2,4},𝔓 }. Then (𝔓 , 𝒦) 
is measurable space relative to the λ– algebra 𝒦.  

Proposition 4 
      For any λ– algebra 𝒦 of a set𝔓, the following hold: 

1- Φϵ𝒦 
2- If Dଵ, Dଶ, … , D୬ ϵ𝒦, then ⋃ D୧

୬
୧ୀଵ ϵ𝒦. 

3- If Dଵ, Dଶ, …  ϵ𝒦, then ⋂ D୧
ஶ
୧ୀଵ ϵ𝒦. 

4- If Dଵ, Dଶ, … , D୬ ϵ𝒦, then ⋂ D୧
୬
୧ୀଵ ϵ𝒦. 

Proof 
     The proof follows from definition of λ– algebra. 

Lemma 5 
      Let ሼ𝒦஑ሽ஑∈஁

  be a collection of λ– algebra on 𝔓. Then ⋂ 𝒦஑஑∈஁  is a λ– algebra on 𝔓. 

Proof 
      Since 𝒦஑ is λ– algebra ∀ α ∈ Ι, then 𝔓ϵ𝒦஑ ∀ α ∈ Ι, hence 𝒦஑ ് Φ ∀α ∈ Ι and 

⋂ 𝒦஑஑∈஁ ് Φ, therefore 𝔓 ϵ ⋂ 𝒦஑஑∈஁ . Let Dϵ ⋂ 𝒦஑஑∈஁  and E ⊂ D ⊂ 𝔓 , then Dϵ𝒦஑ ∀α ∈ Ι, 
but 𝒦஑ is λ– algebra ∀ α ∈ Ι and E ⊂ D. So, we get Eϵ𝒦஑ ∀α ∈ Ι, hence Eϵ ⋂ 𝒦஑஑∈஁  .                        
Let Dଵ, Dଶ, …  ϵ ⋂ 𝒦஑஑∈஁ .Then, Dଵ, Dଶ, …  ϵ𝒦஑, ∀α ∈ Ι, but 𝒦஑ is λ– algebra ∀ α ∈ Ι which 
implies that ⋃ D୬

ஶ
୬ୀଵ  ϵ𝒦஑, ∀α ∈ Ι, hence ⋃ D୬

ஶ
୬ୀଵ ϵ ⋂ 𝒦஑஑∈஁ . Therefore, ⋂ 𝒦஑஑∈஁  is a 

λ– algebra. 
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Definition 6 
     Let 𝒥 ⊆ Pሺ𝔓ሻ . Then the intersection of all λ– algebra of 𝔓 which includes 𝒥 is called the 
λ– algebra generated by 𝒥 and denoted by  λሺ𝒥ሻ,  that is,   
 λሺ𝒥ሻ = ⋂ሼ𝒦஑: 𝒦஑  is  a  λ – algebra of 𝔓 and ⊆ 𝒦஑ , ∀α ∈ Ιሽ. 

Proposition 7  
     Let 𝒥 ⊆ Pሺ𝔓ሻ. Then λሺ𝒥ሻ is the smallest λ– algebra  of 𝔓 which includes 𝒥. 

Proof 
     Since λሺ𝒥ሻ=⋂ሼ𝒦஑: 𝒦஑  is a   λ – algebra of 𝔓 and 𝒥 ⊆ 𝒦஑, ∀α ∈ Ιሽ. Then λሺ𝒥ሻ is  
λ– algebra of 𝔓 by Lemma 5. To prove λሺ𝒥ሻ ⊇ 𝒥, let each of 𝒦஑ is a  λ– algebra of 𝔓 and 
𝒥 ⊆ 𝒦஑, ∀α ∈ Ι. Then 𝒥 ⊆ ⋂ 𝒦஑஑∈஁ , therefore  𝒥 ⊆  λሺ𝒥ሻ. Now, let  𝒦∗ is a λ – algebra of 𝔓 
such that 𝒦∗ ⊇ 𝒥. Then ⋂ሼ𝒦஑: 𝒦஑  is a λ – algebra of 𝔓 and 𝒥 ⊆ 𝒦஑, ∀α ∈ Ιሽ ⊆ 𝒦∗, hence 
λሺ𝒥ሻ ⊆ 𝒦∗. Therefore, λሺ𝒥ሻ is the smallest λ– algebra of 𝔓 which includes 𝒥. 

     If we take Example 3 and if we assume 𝒥 ={{1},{2}}, then  λሺ𝒥ሻ={Φ,{1},{2},{1,2}, 𝔓} 
is the smallest λ– algebra  of a set 𝔓 which includes 𝒥.  

Theorem 8 
     Let 𝒥 ⊆ Pሺ𝔓ሻ . Then (𝔓 , 𝒥) is measurable space relative to the λ– algebra 𝒥.  
if and only if  𝒥 ൌ λሺ𝒥ሻ.  

Proof 
     Suppose that (𝔓 , 𝒥) is (a) measurable space relative to the λ– algebra 𝒥. From Proposition 
7, we have  λሺ𝒥ሻ is the smallest λ –algebra of a set 𝔓 which includes 𝒥 implies that𝒥 ⊆
 λሺ𝒥ሻ. By hypothesis, we have 𝒥 is a λ– algebra of a set𝔓, but  𝒥 ⊆ 𝒥  and λሺ𝒥ሻ is the 
smallest λ –algebra of a set  𝔓 which includes 𝒥, then  λሺ𝒥ሻ ⊆ 𝒥 , hence 𝒥 ൌ λሺ𝒥ሻ. 
Conversely) Let 𝒥 ⊆ Pሺ𝔓ሻ and let 𝒥 ൌ λሺ𝒥ሻ. Since λሺ𝒥ሻ is a λ– algebra  of a set 𝔓, then 𝒥 is 
 λ– algebra of a set 𝔓. 

     If we take Example 3 and if we assume 𝒥 ={Φ,{1},𝔓}, then we conclude that  λሺ𝒥ሻ = 𝒥. 

     Now, we introduce the notion of restriction and study the basic properties of this notion. 

Definition 9 
     Let 𝒦 ⊆ Pሺ𝔓ሻ and Φ ് 𝔇 ⊆ 𝔓 . Then, the restriction of 𝒦 over the set 𝔇 is denoted by 
𝒦|𝔇 and defined as follows: 
𝒦|𝔇 = {B: B=E⋂𝔇, for some Eϵ 𝒦}.  

Proposition10 
     Let (𝔓 , 𝒦) is measurable space relative to the λ– algebra  𝒦 and Φ ് 𝔇 ⊆ 𝔓. Then                       
𝒦|𝔇 = {E ⊆ 𝔇: Eϵ 𝒦}. 

Proof 
     Let Bϵ 𝒦|𝔇 . Then B=E⋂𝔇, for some Eϵ𝒦. Since E⋂𝔇 ⊆ E and 𝒦 is λ –algebra of a set  
𝔓, then E⋂𝔇ϵ𝒦, hence Bϵ 𝒦. Since, E⋂𝔇 ⊆ 𝔇, then B⊆ 𝔇. Therefore Bϵ{𝐸 ⊆ 𝔇:Eϵ 𝒦} 
and 𝒦|𝔇  ⊆{A ⊆ 𝔇:Aϵ 𝒦}. Let Cϵ{𝐸 ⊆ 𝔇 : Eϵ 𝒦}. Then, C ⊆ 𝔇, and C ϵ 𝒦, hence,  
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C=C⋂ 𝔇, but Cϵ 𝒦, then Cϵ 𝒦|𝔇 which implies that{𝐸 ⊆ 𝔇:Eϵ 𝒦}⊆ 𝒦|𝔇 , 
therefore  𝒦|𝔇 ={A ⊆ 𝔇:Aϵ 𝒦}. 

Corollary 11 
  Let (𝔓 , 𝒦) is measurable space relative to the λ– algebra 𝒦 and Φ ് 𝔇 ⊆ 𝔓. Then 𝒦|𝔇 ⊆
𝒦. 

Proof 
 The result follows from Proposition10 

Proposition 12 
   Let (𝔓 , 𝒦) is  measurable space relative to the λ– algebra 𝒦,and ് 𝔇 ⊆
𝔓. Then (𝔇 , 𝒦|𝔇) is measurable space relative to the λ– algebra 𝒦𝔇 

Proof  
  Since (𝔓 , 𝒦) is measurable space relative to theλ– algebra 𝒦 , then 𝔓 ϵ 𝒦. Since ⊆ 𝔓 , 
then 𝔇 ൌ 𝔓 ⋂𝔇 and 𝔇 ϵ 𝒦|𝔇. Let Bϵ 𝒦|𝔇and F ⊂ B ⊂ 𝔇. Then by Corollary 11, we get 
Bϵ 𝒦. But F ⊂ B ⊂ 𝔇 ⊂ 𝔓 and (𝔓 , 𝒦) is measurable space relative to the λ– algebra 𝒦, 
then Fϵ 𝒦. Now, F ⊂ 𝔇, and Fϵ 𝒦, then by Proposition 10, we have Fϵ 𝒦|𝔇. 
Let Bଵ, Bଶ , … ϵ 𝒦|𝔇. Then there exist  Eଵ, Eଶ , … ϵ𝒦 such that B୧=E୧⋂ 𝔇 where i=1,2,…, 
hence ⋃ B୧

ஶ
୧ୀଵ =⋃ ሺE୧

ஶ
୧ୀଵ  ⋂ 𝔇ሻ= ሺ⋃ E୧

ஶ
୧ୀଵ  ሻ⋂ 𝔇. But (𝔓 , 𝒦) is measurable space relative to the 

λ– algebra 𝒦 and Eଵ, Eଶ , … ϵ𝒦, then, ⋃ E୧
ஶ
୧ୀଵ ϵ𝒦. Hence, ⋃ B୧

ஶ
୧ୀଵ ϵ 𝒦|𝔇. Therefore, 

(𝔇 , 𝒦|𝔇) is measurable space relative to the λ– algebra 𝒦|𝔇.  

Example 13 
     Let 𝔓 ={1,2,3,4,5} and 𝒦 ൌ{ Φ,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5},𝔓 }. Then (𝔓 , 𝒦) 
is measurable space relative to the λ– algebra 𝒦. If 𝔇 ൌ{1,2,4}, then 𝒦|𝔇={Φ,{1},𝔇}, hence 
(𝔇 , 𝒦|𝔇)  is measurable space relative to the λ– algebra 𝒦|𝔇 and 𝒦|𝔇 ⊆ 𝒦. 

Proposition 14 
     Let 𝒥 ⊆ Pሺ𝔓ሻ and Φ ് 𝔇 ⊆ 𝔓. If 𝒦 is a  λ –algebra of 𝔓 which includes 𝒥, then λሺ𝒥ሻ|𝔇  
is a λ– algebra  of a set 𝔇.  

Proof 
     The result follows from Proposition 7 and Proposition 12. 

Proposition 15 
      Let 𝒥 ⊆ Pሺ𝔓ሻ and Φ ് 𝔇 ⊆ 𝔓 and 𝒥|𝔇 is the restriction of 𝒥 over the set 𝔇. 
Then λ ሺ𝒥|𝔇ሻ is the smallest λ– algebra of a set𝔇, which includes 𝒥|𝔇, where λሺ𝒥|𝔇ሻ = 

⋂ሼ𝒦୧|𝔇: 𝒦୧|𝔇 is a  λ -algebra of 𝔇 , and 𝒦୧|𝔇 ⊇ 𝒥|𝔇, ∀i ∈ Ι}. 

Proof 
      From Lemma 5, we get λሺ𝒥|𝔇ሻ is a λ– algebra of a set𝔇. To prove that λሺ𝒥|𝔇ሻ ⊇ 𝒥|𝔇, 
suppose that each of 𝒦୧|𝔇 is a  λ -algebra of a set 𝔇 and𝒦୧|𝔇 ⊇ 𝒥|𝔇, ∀i ∈ Ι, then                   
𝒥|𝔇 ⊆ ⋂ 𝒦୧|𝔇 ୧∈஁ , hence  𝒥|𝔇 ⊆ λሺ𝒥|𝔇ሻ. Now, let 𝒦∗|𝔇 is a λ– algebra of a set 𝔇 such that      
𝒦∗|𝔇 ⊇ 𝒥|𝔇. Then  𝒦∗|𝔇 ⊇ λሺ𝒥|𝔇ሻ. Therefore, λሺ𝒥|𝔇ሻ is the smallest  λ– algebra of a set  𝔇  
includes𝒥|𝔇.  
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Proposition 16 
      Let 𝒥 ⊆ Pሺ𝔓ሻ and Φ ് 𝔇 ⊆ 𝔓, define the collection 𝒦 as: 
 𝒦 ={E ⊆ 𝔓: (E⋂ 𝔇ሻ ϵ λሺ𝒥|𝔇ሻ }. Then (𝔓 , 𝒦) is measurable space relative to the 
λ– algebra 𝒦. 

Proof 
     Since λሺ𝒥|𝔇ሻ } is a λ– algebra of a set 𝔇, then Φ, 𝔇 ϵ λሺ𝒥|𝔇ሻ. Since 𝔇 ⊆ 𝔓, then 𝔇 = 𝔓 
⋂ 𝔇 and 𝔓 ϵ𝒦. Let Eϵ𝒦 and F ⊂ E ⊂ 𝔓. Then, ሺE⋂ 𝔇ሻϵλሺ𝒥|𝔇ሻ. Since, F ⊂ E, then 
ሺF⋂ 𝔇ሻ ⊂ ሺE⋂ 𝔇ሻ. But λሺ𝒥|𝔇ሻ is a  λ– algebra of a set𝔇, which implies that ሺF⋂𝔇ሻϵ λሺ𝒥|𝔇ሻ 
and Fϵ𝒦. Let Eଵ, Eଶ , … ϵ 𝒦. Then ሺE୧⋂𝔇ሻϵ λሺ𝒥|𝔇ሻ, for all i=1,2,…, hence 

⋃ ሺE୧
ஶ
୧ୀଵ  ⋂ 𝔇ሻϵλሺ𝒥|𝔇ሻ and ሺሺ⋃ E୧ሻ

ஶ
୧ୀଵ  ⋂ 𝔇ሻϵλሺ𝒥|𝔇ሻ implies that ⋃ E୧

ஶ
୧ୀଵ  ϵ 𝒦. Therefore 𝒦  

is  λ–algebra of a set 𝔓. 

Theorem 17 
    Let 𝒥 ⊆ Pሺ𝔓ሻ  and Φ ് 𝔇 ⊆ 𝔓. Then λሺ𝒥|𝔇ሻ=λሺ𝒥ሻ|𝔇.  

Proof 
    Let Bϵ𝒥|𝔇, then B=E⋂ 𝔇,  for someEϵ 𝒥. But 𝒥 ⊆ λሺ𝒥ሻ, then  Eϵ λሺ𝒥ሻ, thus  Bϵ λሺ𝒥ሻ|𝔇, 
hence 𝒥|𝔇 ⊆ λሺ𝒥ሻ|𝔇, but λሺ𝒥|𝔇ሻ is smallest λ –algebra of a set 𝔇, which include 𝒥|𝔇 and 
λሺ𝒥ሻ|𝔇is a λ– algebra of a set 𝔇 which include 𝒥|𝔇, then λሺ𝒥|𝔇ሻ ⊆ λሺ𝒥ሻ|𝔇. Now, define 
collection 𝒦 as: 𝒦= {E ⊆ 𝔓 : E⋂ 𝔇  ϵλሺ𝒥|𝔇ሻ }, then from  Proposition 16, we obtain  𝒦 is a 
λ– algebra  of a set 𝔓. Let Cϵ 𝒥, then ሺC ∩  𝔇ሻ ϵ𝒥|𝔇, but 𝒥|𝔇 ⊆ λሺ𝒥|𝔇ሻ implies that ሺC ∩
𝔇ሻϵ λሺ𝒥|𝔇ሻ, hence Cϵ 𝒦  and 𝒥 ⊆ 𝒦. Let  Bϵ λሺ𝒥ሻ|𝔇, then B= F ∩ 𝔇, for some  Fϵ λሺ𝒥ሻ. But 
λሺ𝒥ሻ ⊆ 𝒦, then  Fϵ 𝒦, hence Bϵ λሺ𝒥|𝔇ሻ and λሺ𝒥ሻ|𝔇 ⊆ λሺ𝒥|𝔇ሻ, consequently λሺ𝒥|𝔇ሻ = 
λሺ𝒥ሻ|𝔇. 

      We end this section by introduce the relationships between α– σ–field, monotone 
class, β– σ–field and λ– algebra. 

Proposition 18 
     Every λ– algebra is a α– σ–field. 

Proof  
      Let 𝒦 be a λ– algebra of a set 𝔓. Then by definition of λ– algebra, we have Φ, 𝔓ϵ𝒦.                      
Let Dଵ, Dଶ, … ϵ𝒦. Since 𝒦 is a λ– algebra, then by definition of 𝒦, we have  ⋃ D୧

ஶ
୧ୀଵ ϵ 𝒦. 

Therefore  𝒦 is a α– σ–field. 
      In general, the converse of above proposition is not true. For example, if  𝔓 ={1,2,3} and   
𝒦 ൌ{ Φ ,{1},{1,3},𝔓 }, then 𝒦 is α– σ– field but not λ– algebra, because {1,3}∈ 𝒦 and 
{3}⊂{1,3}, but {3}∉ 𝒦. 

Proposition 19 
     Every λ– algebra is a β– σ–field. 

Proof 
     The proof follows from Proposition 4 and definition of λ– algebra. 

     In general, the converse of above proposition is not true as shown in following example.  
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Example 20 
     Let 𝔓 ={1,2,3,4} and  𝒦 ൌ{ Φ ,{1},{1,3,4},{3,4},𝔓 }. Then, 𝒦 is β– σ– field but not 
λ– algebra, because {1,3,4}∈ 𝒦 and {3,4}⊂{1,3,4}, but {3,4}∉ 𝒦. 

Proposition 21 
     Every λ– algebra is a monotone class. 

Proof  
      Let 𝒦 be a λ– algebra of a set 𝔓 and Dଵ, Dଶ, … ϵ𝒦 such thatD୧ ↑ D. Then ⋃ D୧

ஶ
୧ୀଵ ൌ D  

Since 𝒦 is a λ– algebra, then by definition of 𝒦, we have  ⋃ D୧
ஶ
୧ୀଵ ϵ 𝒦 which implies that 

Dϵ 𝒦. Let Dଵ, Dଶ, … ϵ𝒦 such that D୧ ↓ D. Then, ⋂ D୧
ஶ
୧ୀଵ ൌ D, but 𝒦 is a λ– algebra, implies 

that ⋂ D୧
ஶ
୧ୀଵ ϵ𝒦 and D ϵ𝒦. Hence 𝒦 is a monotone class.  

     In general, the converse of above proposition is not true. For example, if  𝔓 ={1,2,3} and   
𝕄 ൌ{ Φ,{1},{1,2} }, then 𝕄 is a monotone class, but not λ– algebra, because {1,2}∈ 𝕄                
and {2}⊂{1,2}, but {2}∉ 𝕄. 

Definition 22 [6] 
          Let 𝒥 ⊆ Pሺ𝔓ሻ . Then the intersection of all monotone classes of 𝔓 which include 𝒥 is 
called the monotone class generated by 𝒥 and denoted by 𝕄ሺ𝒥ሻ, that is, 𝕄ሺ𝒥ሻ = 

⋂ሼ𝕄୧: 𝕄୧  is  a  monotone class of 𝔓 and 𝒥 ⊆ 𝕄୧ , ∀i ∈ Ιሽ. 

Lemma 23 [6] 
      Let ሼ𝕄୧ሽ୧∈஁

 be a collection of monotone classes on 𝔓. Then ⋂ 𝕄୧୧∈஁  is a monotone class on 
𝔓. 

Proposition 24 [6]  
          Let 𝒥 ⊆ Pሺ𝔓ሻ . Then 𝕄ሺ𝒥ሻ is the smallest monotone class of 𝔓 which includes 𝒥. 

Theorem 25 
          Let 𝒥 ⊆ Pሺ𝔓ሻ . Then 𝕄ሺ𝒥ሻ ⊆ λሺ𝒥ሻ. 

Proof  
          Let 𝒥 ⊆ Pሺ𝔓ሻ . Then by Proposition 7, we have λሺ𝒥ሻ is a λ– algebra  of 𝔓 which 
includes 𝒥. From Proposition 21, we have, every λ– algebra is a monotone class, implies that 
λሺ𝒥ሻ is a monotone class which includes 𝒥. But 𝕄ሺ𝒥ሻ is the smallest monotone class which 
includes 𝒥 by Proposition 24, then 𝕄ሺ𝒥ሻ ⊆ λሺ𝒥ሻ. 

3. Measure Defined on 𝛌– 𝐚𝐥𝐠𝐞𝐛𝐫𝐚  
    Our aim in this section is to prove that any measure defined on λ– algebra is complete. 
We begin with the notions of measure on λ– algebra. 

Definition 26 
     Let (𝔓 , 𝒦) is measurable space relative to the λ– algebra 𝒦. Then, a set function 𝔐,     
𝔐: 𝒦 → ሾ0 , ∞ሿ is called measure relative to the λ– algebra 𝒦 if whenever 𝐷ଵ, 𝐷ଶ, … form a 
finite or countably infinite collection of disjoint sets in 𝒦, we have 𝔐ሺ⋃ 𝐷௡

ஶ
௡ୀଵ ሻ ൌ

 ∑  𝔐ሺ𝐷௡
ஶ
௡ୀଵ ሻ and 𝔐ሺΦሻ ൌ 0.    
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Example 27 
      Let 𝔓 ={1,2,3} and 𝒦 ൌ{ Φ,{1},{3},{1,3},𝔓 }. Then (𝔓 , 𝒦) is measurable space 
relative to the λ– algebra 𝒦. If we define a set function 𝔐: 𝒦 → ሾ0 , ∞ሿ by  

𝔐(𝐷) = ቐ

𝑜             ;  𝑖𝑓 𝐷 ൌ Φ                                 
ଵ

ଶ
             ;  𝑖𝑓 𝐷 ൌ ሼ1ሽ 𝑜𝑟 ሼ3ሽ                  

1              ; 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒                                

 

Then 𝔐 is a measure relative to the λ– algebra 𝒦. 

Definition 28 
      A measure space relative to the λ– algebra 𝒦 is a triple (𝔓 , 𝒦, 𝔐) where (𝔓 , 𝒦) is 
measurable space relative to the λ– algebra 𝒦 and 𝔐 is a measure relative to the 
λ– algebra 𝒦. 

     In the following Theorem, we use mathematical induction to prove that the linear 
combination of measure relative to the λ– algebra 𝒦 is also measure relative to the 
λ– algebra 𝒦. 

Theorem 29   
    Let (𝔓 , 𝒦,  𝔐௝)  be a measure space relative to the λ– algebra 𝒦 and 𝑐௝ ∈ ሾ0, ∞ሻ for all 

𝑗 ൌ 1,2, … , 𝑘. If a set function   ∑ 𝑐௝𝔐௝
௞
௝ୀଵ : ℘ → ሾ0, ∞ሿ   is defined by:  

ሺ∑ 𝑐௝𝔐௝ሻ௞
௝ୀଵ ሺ𝐷ሻ ൌ ∑ 𝑐௝ .  𝔐௝

௞
௝ୀଵ ሺ𝐷ሻ ∀𝐷𝜖℘, then (𝔓 , 𝒦, ∑ 𝑐௝𝔐௝

௞
௝ୀଵ ) is measure space 

relative to the λ– algebra 𝒦. 

Proof 
    If  𝑘 ൌ 2, then ሺ𝑐ଵ𝔐ଵ ൅ 𝑐ଶ𝔐ଶሻሺΦሻ ൌ 𝑐ଵ .  𝔐ଵሺΦሻ ൅ 𝑐ଶ .  𝔐ଶሺΦሻ  

 ൌ 𝑐ଵ . 0 ൅ 𝑐ଶ . 0 ൌ 0  
Let 𝐷ଵ, 𝐷ଶ, …  are disjoint sets in 𝒦. Since 𝔐௝ is measure relative to the λ– algebra 𝒦, 𝑗 ൌ

1,2 
Then,  𝔐௝ሺ⋃ 𝐷௡

ஶ
௡ୀଵ ሻ ൌ ∑   𝔐௝ሺ𝐷௡

ஶ
௡ୀଵ ሻ. So, we have 

ሺ𝑐ଵ𝔐ଵ ൅ 𝑐ଶ𝔐ଶሻሺ⋃ 𝐷௡
ஶ
௡ୀଵ ሻ ൌ  𝑐ଵ .  𝔐ଵሺ⋃ 𝐷௡

ஶ
௡ୀଵ ሻ ൅ 𝑐ଶ .  𝔐ଶሺ⋃ 𝐷௡

ஶ
௡ୀଵ ሻ  

                                             ൌ  𝑐ଵ  .  ∑   𝔐ଵሺ𝐷௡
ஶ
௡ୀଵ ሻ  ൅ 𝑐ଶ  .  ∑   𝔐ଶሺ𝐷௡

ஶ
௡ୀଵ ሻ  

                                             ൌ  ∑  𝑐ଵ .  𝔐ଵሺ𝐷௡
ஶ
௡ୀଵ ሻ  ൅  ∑ 𝑐ଶ .  𝔐ଶሺ𝐷௡

ஶ
௡ୀଵ ሻ  

  ൌ  ∑ ሾ 𝑐ଵ .  𝔐ଵሺ𝐷௡
ஶ
௡ୀଵ ሻ  ൅  𝑐ଶ .  𝔐ଶሺ𝐷௡ሻሿ 

                                             ൌ  ∑ ሺ 𝑐ଵ𝔐ଵ
ஶ
௡ୀଵ  ൅ 𝑐ଶ𝔐ଶሻሺ𝐷௡ሻ 

Hence, (𝔓 , 𝒦, ሺ𝑐ଵ𝔐ଵ ൅ 𝑐ଶ𝔐ଶሻ) is measure space relative to the λ– algebra 𝒦. 
Now, we assume that (𝔓 , 𝒦, ∑ 𝑐௝𝔐௝

௞
௝ୀଵ ) is measure space relative to the λ– algebra 𝒦, when 

𝑘 ൌ m  and we prove this fact when 𝑘 ൌ m ൅ 1. Let (𝔓 , 𝒦,  𝔐௝)  be a measure space relative 

to the λ– algebra 𝒦 and 𝑐௝ ∈ ሾ0, ∞ሻ for all 𝑗 ൌ 1,2, … , 𝑚, 𝑚 ൅ 1. Then  

 ሺ∑ 𝑐௝𝔐௝ሻ௠ାଵ
௝ୀଵ ሺΦሻ ൌ ሺ∑ 𝑐௝𝔐௝

௠
௝ୀଵ ൅ 𝑐௠ାଵ𝔐௠ାଵሻሺΦሻ  

       ൌ ∑ 𝑐௝ .  𝔐௝ሺΦሻ௠
௝ୀଵ ൅ 𝑐௠ାଵ .  𝔐௠ାଵሺΦሻ 

                              ൌ 0  since,  𝔐௝ is measure relative to the λ– algebra 𝒦. 

       Let 𝐷ଵ, 𝐷ଶ, …  are disjoint sets in 𝒦. Since (𝔓 , 𝒦, ∑ 𝑐௝𝔐௝
௠
௝ୀଵ ) is measure space relative to 

the λ– algebra 𝒦, then  ∑ 𝑐௝𝔐௝
௠
௝ୀଵ ሺ⋃ 𝐷௡

ஶ
௡ୀଵ ሻ ൌ ∑  ሾ∑ 𝑐௝𝔐௝

௠
௝ୀଵ ሿሺ𝐷௡

ஶ
௡ୀଵ ሻ. So, we have 
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ሺ∑ 𝑐௝𝔐௝ሻ௠ାଵ
௝ୀଵ ሺ⋃ 𝐷௡

ஶ
௡ୀଵ ሻ  ൌ ሺ∑ 𝑐௝𝔐௝

௠
௝ୀଵ ൅ 𝑐௠ାଵ𝔐௠ାଵሻሺ⋃ 𝐷௡

ஶ
௡ୀଵ ሻ  

                                         ൌ ∑ 𝑐௝ .  𝔐௝ሺ⋃ 𝐷௡
ஶ
௡ୀଵ ሻ௠

௝ୀଵ ൅ 𝑐௠ାଵ .  𝔐௠ାଵሺ⋃ 𝐷௡
ஶ
௡ୀଵ ሻ 

                                         ൌ ሺ∑ 𝑐௝𝔐௝ሻሺ⋃ 𝐷௡
ஶ
௡ୀଵ ሻ௠

௝ୀଵ ൅ 𝑐௠ାଵ .  𝔐௠ାଵሺ⋃ 𝐷௡
ஶ
௡ୀଵ ሻ 

                                         ൌ ∑  ሺ∑ 𝑐௝𝔐௝
௠
௝ୀଵ ሻሺ𝐷௡

ஶ
௡ୀଵ ሻ ൅ 𝑐௠ାଵ  .  ∑ 𝔐௠ାଵሺ𝐷௡ሻஶ

௡ୀଵ   

                                         ൌ ∑  ሾ∑ 𝑐௝ .  𝔐௝
௠
௝ୀଵ ሺ𝐷௡

ஶ
௡ୀଵ ሻሿ ൅   ∑ 𝑐௠ାଵ .  𝔐௠ାଵሺ𝐷௡ሻஶ

௡ୀଵ   

                                         ൌ ∑  ሾ∑ 𝑐௝ .  𝔐௝
௠
௝ୀଵ ሺ𝐷௡

ஶ
௡ୀଵ ሻ ൅  𝑐௠ାଵ .  𝔐௠ାଵሺ𝐷௡ሻሿ  

 ൌ ∑  ሾ∑ 𝑐௝𝔐௝
௠
௝ୀଵ ൅ 𝑐௠ାଵ𝔐௠ାଵሿሺ𝐷௡

ஶ
௡ୀଵ ሻ 

 ൌ ∑  ሾ∑ 𝑐௝𝔐௝ሿ௠ାଵ
௝ୀଵ ሺ𝐷௡

ஶ
௡ୀଵ ሻ. 

Hence,  ∑ 𝑐௝𝔐௝
 ௠ାଵ

௝ୀଵ  is measure relative to 𝒦, therefore (𝔓 , 𝒦, ∑ 𝑐௝𝔐௝
௞
௝ୀଵ ) is  measure space 

relative to the λ– algebra 𝒦. 

Definition 30 [1] 
    A measure on a σ– field 𝒦 is a nonnegative, extended real-valued set function 𝔐 on 𝒦 
such that whenever 𝐴ଵ, 𝐴ଶ, … form a finite or countably infinite collection of disjoint sets in 
𝒦, we have, 𝔐ሺ⋃ 𝐴௡

ஶ
௡ୀଵ ሻ ൌ  ∑  𝔐ሺ𝐴௡

ஶ
௡ୀଵ ሻ. 

Definition 31 [1, 3]  
    A measure 𝔐 on a σ–field 𝒦 is said to be complete iff whenever A ϵ𝒦and 𝔐ሺ𝐴ሻ ൌ 0, we 
have B ϵ𝒦for all 𝐵 ⊂ 𝐴. 

    The following example shows that, if 𝔐 is a measure on σ–field 𝒦, then not necessarily 
that 𝔐 is complete. 

 Example 32 
      Let 𝔓 ={1,2,3} and 𝒦 ൌ{ Φ,{1},{2,3},𝔓 }. Then 𝒦 is σ–field of a set 𝔓 . If we define a 
set function 𝔐: 𝒦 → ሾ0 , ∞ሿ by  

𝔐(𝐷) =൜
 𝑜                ;  𝑖𝑓 𝐷 ൌ Φ 𝑜𝑟 𝐷 ൌ ሼ2,3ሽ                             
1                ; 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒                                                  

 

Then 𝔐 is a measure on σ–field 𝒦, it is clear that 𝔐 is not complete, because {2,3}∈ 𝒦 and 
𝔐ሺሼ2,3ሽሻ ൌ 0 , now {2},{3}⊂{2,3}, but {2},{3}∉  𝒦. 
 
Theorem 33 
    Every measure relative to the λ– algebra is complete. 

Proof 
    Let 𝔐 be a measure relative to the λ– algebra 𝒦. Assume that A ϵ𝒦 such that 𝔐ሺ𝐴ሻ ൌ 0, 
since 𝒦 is a λ– algebra, then  B ϵ𝒦for all 𝐵 ⊂ 𝐴. Therefore 𝔐 is complete measure. 

Example 34 
   Let 𝔓 ={a,b,c,d} and 𝒦 ൌ{ Φ,{a},{c},{d},{a,c},{c,d},{a,d},{a,c,d},𝔓 }. Then 𝒦 is 
λ– algebra  of a set 𝔓 . If we define a set function 𝔐: 𝒦 → ሾ0 , ∞ሿ by  

𝔐(𝐷) =൜
 𝑜                ;  𝑖𝑓 𝐷 ് 𝔓  
1                ;   𝑖𝑓 𝐷 ൌ 𝔓  
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Then 𝔐 is a measure on λ– algebra 𝒦. Now, for any Aϵ𝒦 such that 𝔐ሺ𝐴ሻ ൌ 0, then Bϵ𝒦                   
for all 𝐵 ⊂ 𝐴. Therefore 𝔐 is complete measure. 

4. Conclusions 
    The main results of this paper are the following: 
(1)   Let ሼ𝒦୧ሽ୧∈஁

 be a collection of λ– algebra on 𝔓. Then ⋂ 𝒦୧୧∈஁  is a λ– algebra on 𝔓. 
(2)   Let 𝒥 ⊆ Pሺ𝔓ሻ . Then λሺ𝒥ሻ is the smallest λ– algebra  of 𝔓 which includes 𝒥. 
(3)   Let 𝒥 ⊆ Pሺ𝔓ሻ. Then 𝒥 is  a λ –algebra of a set 𝔓 if and only if  𝒥 ൌ  λሺ𝒥ሻ.  
(4)   Let 𝒥 ⊆ Pሺ𝔓ሻ   and Φ ് 𝔇 ⊆ 𝔓. If 𝒦 is a  λ –algebra of 𝔓 which includes 𝒥, then 

λሺ𝒥ሻ|𝔇    
  is a λ– algebra  of a set 𝔇.  

(5)   Let 𝒥 ⊆ Pሺ𝔓ሻ   and Φ ് 𝔇 ⊆ 𝔓. Then λሺ𝒥|𝔇ሻ=λሺ𝒥ሻ|𝔇.  
(6)   Every λ– algebra is a α– σ–field.  
(7)   Every λ– algebra is a β– σ–field. 
(8)   Every λ– algebra is a monotone class. 
(9)   Let 𝒥 be a collection of subsets of a nonempty set 𝔓 . Then 𝕄ሺ𝒥ሻ ⊆ λሺ𝒥ሻ. 
(10) Let (𝔓 , 𝒦,  𝔐௝) be a measure space relative to the λ– algebra 𝒦 and 𝑐௝ ∈ ሾ0, ∞ሻ for all  

        𝑗 ൌ 1,2, … , 𝑘. If a set function   ∑ 𝑐௝𝔐௝
௞
௝ୀଵ : ℘ → ሾ0, ∞ሿ   is defined by:  

ሺ∑ 𝑐௝𝔐௝ሻ௞
௝ୀଵ ሺ𝐷ሻ ൌ ∑ 𝑐௝ .  𝔐௝

௞
௝ୀଵ ሺ𝐷ሻ ∀𝐷𝜖℘, then (𝔓 , 𝒦, ∑ 𝑐௝𝔐௝

௞
௝ୀଵ ) is measure space       

relative to the λ– algebra 𝒦. 
 (11) Every measure relative to the λ– algebra is complete. 
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