

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Chromatic Number of Pseudo-Von neuman Regular Graph

Nabeel E. Arif Nermen J. Khalel

Department of Mathematic, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq.

nabarif@tu.edu.iq nrnjamal88@gmail.com

Article history: Received 18 June 2019, Accepted 17 July 2019, Published in April 2020. Doi: 10.30526/33.2.2436

Abstract

Let *R* be a commutative ring, the pseudo – von neuman regular graph of the ring *R* is define as a graph whose vertex set consists of all elements of R and any two distinct vertices a and b are adjacent if and only if $a = a^2b$ or $b = b^2a$, this graph denoted by $P-VG(R)$, in this work we got some new results a bout chromatic number of *P-VG(R)*.

Keywords: Graph, Chromatic Number, Commutative Ring.

1. Introduction

 Beck [1]. Studied coloring of commutative rings and studied chromatic number of it is graph such that two different elements *x* and *y* are adjacent iff $xy = 0$, Bhavanari S. et.al. studied prime graph of a ring with some properties of its graph [2]. Kalita S. [3]. Computed chromatic number of prime graph of some finite ring, patra k. et.al [4]. Studied chromatic number of prime graph of some rings namely Z_n , where n= $\prod_{i=1}^r p_i^{\alpha_i}$, Elizabeth R. [5]. Studied colorings of zero divisor graphs of commutative rings , in this paper we define pseudo-von neman regular graph of the ring *R* with some result of it graph and we study chromatic number of pseudo-von neman regular graph.

2. Primer lay

Definition 1: [6]. A nonempty set *R*, together with two binary operations $(+)$ and $(')$ is said to be a ring if the following are satisfied

i- (*R*,+) is an a belian group

ii- (*R*,∙) is a semi-group

iii-s⋅ $(t+1) = s \cdot t + s \cdot l$ and $(s+t) \cdot l = s \cdot l + t \cdot l$ for any *s, t, l* ∈*R*

Definition 2: [7]. let *R* be a ring and $a \in R$, *a* is called regular element if there exist *b*∈*R* such that $a = aba$, if any element in *R* is regular then *R* is regular ring, if *R* is commutative then $a =$ a^2b and we say that *R* is Von Neumann regular ring.

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (2) 2020

Definition 3: [8]. A graph *G* is defined by an ordered pair $(V(G), E(G))$, when $V(G)$ is a non empty set whose elements are called vertices and $E(G)$ is a set (may be empty) of unordered pairs of distinct vertices of *V*(*G*) . the element of *E*(*G*) are called edges of the graph *G* . we denote by \overline{uv} , an edge between two end vertices *u* and *v*.

Definition 4: [8]. An edge whose end-vertices are the same is called loop.

Definition 5: [8]. If there are more than one edges associated with a given pair of vertices, then these edges are called multiple edges or parallel edges.

Definition 6: [8]. A simple graph that has no self-loops or multiple edges .

Definition 7: [8]. A graph *H* is said to be a subgraph of a graph *G* if all the edges and all the vertices of *H* are in *G* , and each edge of *H* has the same end vertices in *H* as in *G* .

Definition 8: [9]. A path is a graph *G* that contains a list $v_1, v_2, ..., v_n$ of vertices of *G* s.t. for $1 \leq$ $i \leq p-1$, there is an edge (v_i, v_{i+1}) in *G* and these are the only edges in *G*.

Definition 9: [9]. let v_1 and v_2 be two vertices, *d* (v_1 , v_2) is called a distance from v_1 to v_2 if it is the shortest path from v_1 to v_2 .

Definition 10: [9]. A close path is called cylce, the degree of each vertex of a cycle graph is two , a cycle with *n* vertices denoted by C_n .

Definition 11: [10]. Let $G(V, E)$ be a graph and $C \subset G$, is called clique if the induced sub graph of *G* induced by *C* is a complete graph .

The clique is called maximal if there is no clique with more vertices .

Definition 12: [11]. A *h*-coloring of the vertex set of a graph *G* is a function γ : $V(G) \rightarrow$ $\{1,2,\ldots,h\}$ such that $\gamma(v_1) \neq \gamma(v_2)$ whenever v_1 is adjacent to v_2 , if a *h*- coloring of *G* exists, then *G* is called *h*- colorable.

Definition 13: [11]. The chromatic number of *G* is defined as

 $\mathcal{X}(G) = \min \{ h : G \text{ is } h \text{- colorable } \}$

Where $\mathcal{X}(G) = h$, G is called *h*- chromatic.

Theorem 14 [10].

for circular graph C_n one has $\mathcal{X}(C_n)=\{$ 2 when n is even 3 when n is odd

In other words $\mathcal{X}(C_{2i+1}) = 3$, $\mathcal{X}(C_{2i}) = 2$ for $i \in \{1, 2, 3, ...\}$.

Theorem 15: [3]. Let *R* be a ring, $B(R) = \{(a, b) : aRb = 0 \text{ or } bRa = 0, a, b \in R, a \neq b, a \neq 0, b \neq 0\}$. Then χ *PG*(*R*)= χ *G*(*B*(*R*)) +1, when *G*(*B*(*R*)) is the induced sub graph of *PG*(*R*) whose edges are elements of *B*(*R*).

3. Main Result

Definition 3.1: let *R* be a commutative ring. A graph *G* (*V* , *E*) is said to be (pseudo-von neumann regular graph) of *R* if $V(G) = R$ and $E(G) = \{\overline{ab}/a = a^2b \text{ or } b = b^2a \text{ and } a \neq b \}$ denoted by *P-VG(R)* , shortly *p*-von Neumann regular graph .

Figure $4: P\text{-}VG(Z_5)$

Note 3.3

 $C[R] = \{(a, b) : a \neq b, a \neq 0 \text{ and } b \neq 0, a = a^2b \text{ or } b = b^2a\} \subset R \times R$.

Corollary 3.4

i- The number of element in $C[R]$ is less than or equal to number of cycle C_3 in $P-VG(R)$. ii- If $C[R] \neq \emptyset$, then the longest trail has length ≥ 3 . iii- $C[R] \neq R \times R$. Proof

i- Let $(a,b) \in C[R]$, then { 0, a, b } form a cycle C_3 in *P*-VG(R),

if (a,b) , $(s,t) \in C[R]$ such that $(a,b) \neq (s,t)$ then $a \neq s$ or $b \neq t$ and so the cycle $C_3 \{ 0, a, b \}$ and { $0, s, t$ } in *P-VG(R)* are distinct, this show the number of elements in $C[R]$ is less than or equal the number of cycle C_3 in $P\text{-}VG(R)$.

if $a=s$ or $b=t$ then the cycles $\{0, a, b\}$, $\{0, s, t\}$ are adjust.

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (2) 2020

ii- Let $(a,b) \in C[R]$, then $0a$, ab , $0b$ is cycle C_3 , this trail is of length equal to 3 hence, the longest trail has length \geq 3.

iii-Since (0,*a*) ∈ R × R and (0,*a*) ∉ C [R], then we have

 $C[R] \subset R \times R$ and $C[R] \neq R \times R$.

By the same way of (theorem 2.15) we can prove below theorem.

Theorem 3.5

Let R be a ring and let $C[R] = \{(a, b) : a \neq b, a \neq 0 \text{ and } b \neq 0, a = a^2b \text{ or } b = b^2a\}$ then \mathcal{X} ($P-VG(R)$)= \mathcal{X} ($G(C[R]) + 1$, where $G(C[R])$ is sub graph of $P-VG(R)$.

Proof

Let *R* be a ring, let $C[R] = \{(a, b) : a \neq b, a \neq 0 \text{ and } b \neq 0, a = a^2b \text{ or } b = b^2a\}$ If *C* $[R] = \emptyset$, then *P-VG(R)* graph is a star graph and $\mathcal{X}(P-VG(R)) = 2$

Suppose $C[R] \neq \emptyset$, let $|C[R]| = n$

Case i: let $G(C[R]) = P_n$ then $X (G(C[R])$ is equal to 2, since 0 is adjacent to all vertices in *P*-*VG(R)*, so we have a third color to a vertex 0, Now the vertices do not belong to P_n will be associated only with vertex 0, this vertices can colored by any color we used it in P_n .

hence \mathcal{X} ($P-VG(R)$) = 3 = \mathcal{X} ($G(C[R])$ +1

Case ii: Now if $G(C[R]) = C_n$ then $X(G(C[R]))$ must equal to 2 when *n* is even and equal to 3 when *n* is odd, and the vertex 0 adjacent to all vertices, implies that $\mathcal{X}(P-VG(R))$ equal to 3 if *n* is even and equal to 4 if *n* is odd, hence $\mathcal{X}(P-VG(R)) = \mathcal{X}(G(C[R]) + 1$.

Case iii : Let *G*(*C* [*R*] is an *i*-partite graph where $G(C [R]) = K_{m_1, m_2, \dots, m_i}$, then

 $\mathcal{X}(G(C | R)) = i$, then we have $\mathcal{X}(P\text{-}VG(R)) = i+1 = \mathcal{X}(G(C | R)) +1$

Case iv: If $G(C[R]) = K_h$ then the chromatic number of $G(C[R])$) equal to h and therefore X ($P\text{-}VG(R)$)= $h+1 = X$ ($G(C [R]) +1$

Case v: Now if $G(C[R])$ is a connected graph and it includes a maximal clique K_i , $i > 2$ then the chromatic number of K_i equal to i, and the rest of the vertices of $G(C[R])$ can be colored by any colors of the vertices of K_i because they are not associated with it . then $\mathcal{X}(G(C[R])) = i$ and \mathcal{X} ($P-VG(R)$)= $i+1 = \mathcal{X}$ ($G(C[R]) +1$

Case vi : Let $G_1, G_2, ..., G_k$ be a disjoint components of $G(C [R])$ then $\mathcal X (G(C [R])) = max$ $\{ X G_1, X G_2, ..., X G_k \}$, suppose X (G(C [R]))= *s* Now if we have a vertices of *P-VG(R)* with degree 1 this can be colored by any color of these *s* colors used to color *G*(*C* [*R*]) , and the vertex 0 has another color since it adjacent to all vertices, this implies that $\mathcal{X}(P-VG(R))$ $s+1=\mathcal{X}$ ($G(C [R]) +1$.

From all above cases then $\mathcal{X}(P-VG(R)) = \mathcal{X}(G(C[R]) + 1)$

Lemma 3.6

Let R= Z_p be a ring, where $p \ge 3$ is prime number then $\mathcal{X}(P\text{-}VG(R))=3$.

Proof

Let $\overline{ab} \in VG(R)$ then $a = a^2b$ or $= b^2a$, $a \neq b$ and $a \neq 0 \neq b$,

since *p* is prime then *R* is afield implies that $b = a^{-1}$ or $a = b^{-1}$ is unique number satisfy the equation, since $\overline{a0}$, $\overline{b0} \in E(P\text{-}VG(R))$

then P-VG(R) graph has cycle C_3 , then by(throrem 2.14) \mathcal{X} (*P-VG(R)*)=3

Example 3.7

The chromatic number of P –Von Neumann regular graph of Z_{10} , Z_{14} and Z_{15} are 4

Figure 6: P - $VG(Z_{14})$

Theorem 3.8

The ring Z_{p^2} , \mathcal{X} ($P-VG(Z_{p^2})=3$ where $p \ge 3$ is prime number.

Example 3.9

 $R = Z_{25}$ then \mathcal{X} ($P-VG(Z_{25}) = 3$.

Figure 7: $P\text{-}VG(Z_{25})$

Note 3.10

If $R = Z_p$ and $\overline{ab} \in E(P-VG(Z_p))$ then $a = a^2b$ and $b = b^2a$ and $ab \mod p = 1$.

Theorem 3.11

The ring Z_{n^n} , $\mathcal{X}(P-VG(Z_{n^n}))=3$, when $p\geq 3$ is a prime number and *n* a positive integer.

Proof

let *a*, $b \in Z_{p^n}$ and $a \neq b$, $a \neq 0 \neq b$ and $\overline{ab} \in E(P\text{-}VG(Z_{p^n}))$

Then $a = a^2b$ and $b = b^2a$ and $ab = 1$ and since *b* is unique (because *b* is the inverse of a, and it is only element satisfy the equation)

Then $P\text{-}VG(Z_{n^n})$ has only cycle C_3

by theorem (2.14) every cycle has odd vertices has chromatic number equal to 3

and in any $P\text{-}VG(Z_{p^n})$ graph has more than one C_3 , and all C_3 in a graph commend in one vertex (0) , so the vertex has one color

it is clear that the color of other vertices in the same cycle are two another colors , so we have only three colors in any $P\text{-}VG(Z_{p^n})$.

4. Conclusion

 In this work we gave a definition of pseudo-von Neumann regular graph *P-VG*(*R*) then proved the chromatic number $X \left(P-VG(R) \right) = X \left(G(C | R|) + 1 \right)$ when $a \neq b \neq 0$ and $\mathcal{X}(P\text{-}VG(Z_p))$, $p \geq 3$ is equal to 3, and $\mathcal{X}(P\text{-}VG(Z_p))$, $p \geq 3$ equal to 3.

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (2) 2020

References

- 1. Beck, I. Coloring of commutative rings, *J. Algebra*.**1988**, *116*, *1*, 208-226.
- 2. Gross, J.L.; Yellen, J*. Graph theory and its Applications*, second edition, Chapman & Francis Group, Boca Raton.**2006**, FL33487-2742.
- 3. Patra, K.; Kalita, S. Prime Graph of the Commutative Rings Z_n . *UTM center for Industrial and Applied Mathematics*.**2014**, *30*, *1*, 59-67.
- 4. Rahman, Md.S. *Basic Graph Theoey*, first edition, Springer, **2017**.
- 5. Ramos, R.E. colorings of zero-Divisor Graphs of commutative rings, M.Sc.Thesis, North Dakota state University, **2015**.
- 6. Lewis, R.M.R. *A Guide to Graph Colouring Algorthms and Applications*, first edition, Springer.**2016**, ISBN 978-3-319-25730-3.
- 7. Kalita, S. Some Aspects of Prime Graph of Some Rings, Ph.D. Thesis, University of Gauhati, India, **2014**.
- 8. Bhavanari, S.; Kuncham, S.; Dasari, N. Prime Graph of a Ring. *Journal of Combinatorics, Information and System Sciences*.**2010**, *35*, *1-2*, 27-42.\
- 9. Bhavanari, S.; Kuncham, S.P. *Discrete Mathematics and Graph Theory*, first edition, PHL Learning Private Limited, Delhi, **2014**.
- 10. AL-Hisso, Sh. Types of strongly Regular Rings, M.Sc. Thesis, Mosul University, **2004**.
- 11. Khanna, V.K.; Bhambri, S.K. *A Course in Abstract Algebra*, first edition, vikas publishing house PVT LTP, **2004**.