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Abstract

In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear
elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove
the existence and uniqueness theorem of the solution of the state vector for fixed control
vector. The existence theorem for the triple continuous classical optimal control vector
(TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique
solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we
derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the
theorems of necessity conditions and the sufficient condition for optimality of the constraints
problem are proved.

Keywords: Triple nonlinear elliptic value problem, continuous classical optimal control
vector, Mint-Browder theorem, triple adjoint equations, Fréchet derivative necessity and
sufficient theorems.

1. Introduction

The OCP is one of the most important subject not only in mathematics, but in all branches
of science, for instance, in engineering such as robotics [1]. And aeronautics [2]. In the
medicine and mathematical biology, such as modeling and optimal controlling the infectious
diseases [3]. In the life sciences, such as sustainable forest management [4].
In the past few decades, there were many studies and papers published in OCPs for systems
that related to nonlinear ordinary differential equations [5]. or systems related to nonlinear
partial differential equation (NLPDEqs) either of: a hyperbolic type [6]. Or of a parabolic type
[7]. Or of an elliptic type [8].
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or OCP are related to couple of NLPDEGgs of: a hyperbolic [9]. Or of hyperbolic but include a
boundary control [10]. Or of a parabolic type [11].0r of a parabolic type but includes a
boundary control [12]. Or of an elliptic type [13]. Of an elliptic type that includes a Numann
boundary control [14]. While other papers deals with the optimal control problems that are
related to triple linear partial differential equation of : an elliptic type [15]. Or of an parabolic
type [16].

In this work, the Minty-Browder theorem is used to prove the existence theorem for a unique
solution (continuous state vector) for the TNLEBVP for fixed TCCOCYV, and to state and
prove the theorem for the existence TCCOCYV related to the TNLEBVP, so as the theorem of
the existence of a unique solution of the TAEqs related to the TNLEBVP. The FD of the cost
function is derived. At the end the theorem of necessity conditions is stated and proved so as
is the sufficient condition theorem for optimality of the constrained problem.

2. The Problem Description
Let A be an open (bounded) connected subset in R X R with Lipschitz boundary OA.
Consider the TCCOC of the TNLEBVP

—B1 &+ & — & — 83+ a1(x,81,v,) = az(x,vy), ind (1)
=By &+ &1+ &+ 83+ p1(x, 85, v2) = p2(x, 1), inA (2)
—B3 &3+ 81— &+ &3+ ki(x,83,v3) = ka(x,v3), in4 (3)
with the Dirchlet boundary condition

$1=8,=8§ =0, in 04 (4)
Where B.E. = Ziz,ja%i<bij Z—Z), r =123, b; = b;j(x) € L?(A), Vi,j = 1,2, x = (X4,X;)

= (5.(x), 6 (x), & (X)) € (HS(A))3 is the classical solution of the system (1)-(4), Vv =

(Vl(x),vz(x),v3(x)) € (LZ(A))3 is the CCV, the functions a;(X,&;,v1), p1(X &2, vy) and
k,(x,&5,v5) are defined on AXR XV, AXRXV,and A X R XV; respectively, and
the functions a,(X,v;), p2(X,v,) and k,(x,v3) are defined on A X V;, AXV, and A X V;
respectively with V;,V, ,V; € R.
The control constraint is (vy,v,,v3) € U; X U, X Uz = U, Uc (LZ(A))3,whereﬁis
the control set has the form

U =i € (I2(N)’ |1 = (uy,upus) €V X Vy X V3 =V a.e.in A}
With V c R3 that is convex and compact set.
The cost function is

Yo(@) = fA Yo (x, &1, v1)dx + fA Yoz (X, &2, v2)dx + fA Yoz (x, &3, v3)dx (5)
The state —control constraints are

v, () = fA y11 (%, §1, v1)dx + fA Y12 (x, &5, v2)dx + fA Y13 (%, §3,v3)dx =0 (6)
Y, (V) = [, y21 (681, v dx + [, y22 (%, &2, vo)dx + [, y23 (%, 83, v3)dx < 0 (7)

The set of the admissible controls i (_jA = {f} € (_j|y1(f}) =0,Y,(¥) < 0}
The TCCOC problem is to minimize the cost function (5) subject to the state constraints of
(6) and (7), i.e. to find V such that ¥ € U, and Y, (V) = min Y, (T).

HEUA
Let W = Wy, x Wy X Wy = HE(A) X HE(A) x HE(A), y ||w|l,and ||w]|,are denoted by the
norm in H(A) and ((Hl(A))3respectively, y Iwllo (IWl|,) are denoted the norm in L?(A)
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and in (L?(A))? respectively and the inner product in W is denoted by (w, w), with ||W|| =
Wil + 1wl + [l , W is dual of W.

3. Weak Formulation of the TNLEBVP

The weak form (WF) of (1)-(4) is obtained through multiplying both sides of Equations (1)-
(3) byw; € W;, w, € W, and w3 € Wj; respectively, then integrating the obtained equations.
Finally, using the generalize Green's theorem for the 1st term in left hand side (L.H.S) of the
three obtained equations, once get Vw;, w,, w; € W,

b1(§1,wq) + (€1, wq) — (§2,wy) — (&5, wy) + (a1(&1,v1), we) = (az(vy), wy) ®)
by (&2, w3) + (&1, w2) + (§2,we) + (3, w2) + (01(E2, v2), W) = (P2(v2), wy) )
b3(&3,w3) + (&1, w3) — (&2, w3) + (&3, w3) + (ky(&3,v3), w3) = (ka(v3), ws) (10)

where by (5, wp) = [, Xfj=1 by Z—Z.?:j’" dx, (&, wp) = Jo & wpdx, (6,w;) = [, @ wdx,
with® = aq,orp,ork,, r,p =12,3,1=1,2.

By blending to gather equations (8), (9) and (10), once get

B(g,W) + (@1 (&1, v1), wy) + (p1(82, v2), W) + (K1 (83, v3), w3) = (az(vy),wy) +
(p2(v2), w3) + (kz(v3), w3) (11)
where B(&,W) = by (§1,w1) + (61, w1) = (§2,w1) — (§3,w1) + bo(§2,w2) + (§1,w2) +

(&2,wz) + (&3, wy) + b3(&3,w3) + (&1, w3) — (&2, w3) + (&5, w3)
Hypotheses A:
5(3%)

§
[,
b)|BEW)| < & |[E]l, IIWll,. & >0
¢) the functions a;(x,&;,v1),p1(x&,,v,) and Ky (x,&5,v5) are of Carathéodory type on
AXR xV;, AxR xV, and A X R X V; respectively and satisfy the following sublinearity
conditions with respect to (w.r.t.)(§;,v;), (§2, v3) and (3, v3) respectively.

lay (%81, vIS91 (%) + 1 [§1] + S1lval 5 [P1(X 82, v2)IS02(%) + ¢ [8; ] + S |val ,
[ky (%, 83, v3)[<93(x) + ¢3183] + c3]v3]
V(x,§,vi) EAXR X U; withd; € L2(A), ¢,=0,i=1.23.
d) a;(x,&1,v1), p1(x&,,v,) and kK (%, &3, v3) are monotone w.r.t. §;,&,, &3

respectively for eachx €A ,v; €V, v, EV,,v; € V3.
e)a;(x,0,v;) =0, VYx€EA Vv, €EVy, p1(X%0,v,) =0, VXEA Vv, EV,,

k,(x,0,v3) =0, VX E A, v; EV;.

f) the functions a,(x,v;), p,(x,v,) and k, (%, v3) are of Carathéodory type on

a)B(E,W) is coercive, i.e. > e||§||1 >0,EeW

aats

AxV;, AxV, and A X V5 respectively and satisfy the following conditions
laz(x%, v )[<94(x) + calval,  [P2(X%v2)[SO5(X) + csva|, k(% v3)[<06(X) + c4lvs]
V(x,v;) EAXU;, i =1,2,3 with 9, € L2(A), ¢, = 0,1 = 4,5,6.
Theorem 3.1 (The Minty-Browder theorem)[17]. let W be a reflexive Banach

space and D: W — W™ be a nonlinear continuous map such that
(bww) _

(Dw; — Dwy,wy —wy) >0, Vwy,w, E W, wy #w, and
[lw||=c0 W]l

Then the equation DE = a has a unique (solution) § € W for every a € W*.
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Proposition 3.1 [18]. Leta: A x R® — R™ is of Carathéodory type, and the functional A
is defined by A(¢) = | Lalx, ¢ (x)) dx, where A is a measurable subset of R™, and suppose
that

laCe, I < 9x) +n)IIEN*V(x,§) € AXR™, ¢ € L (A X R™)

where 9 € LY(AX R),n € LP%(A xR),anda € [0,P],if P € [1,0),andn = 0, if P = oo,
Then A is continuous on LP (A X R™).

Theorem 3.2: In addition to the hypo.(A-a&d), If at least one of the functions a;, p; or k;

in hypo.(A-d) is strictly monotone. Then for any fixed controlv € ﬁA , the WF (11) has a
unique solutiong eW.
Proof: let D:W - W*, then the WF (11) is rewriting as
(D(§), W) = (az(ve), wy) + (p2(v2), W) + (kz(v3), w3) (12)
where(D(£), W) = B(§,W) + (a1 (G1,v1) ,w1) + (p1(&2,v2), w2) + (ka(§s,v3), ws) (13)
Then D satisfies the following:
i) D is coercive from hypo. (A-a&e&d)

ii) from hypotheses (A-a&c) and using proposition3.1 the mapingg — (5(2),W) is
continuous w.r.t. E
iii) from hypotheses (A-a&b) and (i) D is strictly monotone w.r.t. E

Hence by Theorem3.1, there exists a unique weak solution i € Wof (11).
4. Existence of the TCCOC
Lemma 4.1: If the functions(a;& a,), (p1& p,) and (k;&k,) are Lipschitz w.r.t. v4,v,

and v3 respectively, moreover the hypothesis (A). Then the transformation V +— EV from U to
(LZ(Q))3is Lipschitz continuous.

Proof: let % = (V1,V,,V3) € Ubea given control of WF(8)-(10) with its corresponding state
solution(él, Ez' 23), then by subtracting (8)-(10) from the equations which are obtained from
substituting 8¢, = §; —§;, 8v; =V, —v; (i = 1,2,3) in (8)-(10) respectively, setting w; =
6%, , w, = 6%, and w3 = 8&; and blending together the obtained equation, to give
by (881, 681) + (681, 881) + b2(682, 882) + (881, 882) + b3 (683, 683) + (681, 683)
+(ay (& + 681, v; + 6vy) — a1 (&g, v1 + 6v1,687)
+(1(§2 + 685, v; + 6v;) — p1(&, vz + 61,),68,)
+(ky (&3 + 683, v5 + 6v3) — k1($3,v5 + 6v3),683)
= —(a1(§1, vy + 6v1) — a1(§1,v1),681) — (01 (82, vz + 6v3) — p1(§2,v2), 682)
—(k1 (&3, v3 + 6v3) — k1 (&5, v3), 683) + (ax(vy + 6vy),881) — (az(v1),6§1)
+(p2 (v + 6v2),882) — (p2(v2), 6&2) + (k2 (v3 + 6v3), 683) — (k2 (v3), 683) (14)
By hypotheses (A-a&d), one has:
ell 5_5 I < |fA(a1(X: $1,v1 +6v1) —ay(x, 51:171))551 dx| +|fA(P1(x; $2,Va +61;) —
p1(x, 'fz:”z))S‘fzdxl + UA(kl(x: 3,03 + 0v3) — ky (%, {"3,173))6{"3dx| + UA(az(x: v+
6v1) — ay(x, 771)) 5§1dx| + UA(Pz(x: vy + 6v;) — pa(x, Uz))(sfzdx' + |f/1(k2(xr U3 +
6v3) — ko (x, v3))5f3dx|
By using Lipchitz condition on (a;& a,), (p1& p,) and (k,&k,) w.r.t. v4, v, ,v5 respectively
and Cauch-Schwarz Inequality (C-S-I) of the obtained inequality, to get:
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— 2
”55”1 < Lall6vyllol1681Mlo + Lsll6v2lloll 882110 + LellSvsllIolI6&51l0 =

[ f”o < E”S;”O, with L, = max (%,%),LS = max(

Hypotheses B:

Suppose that y,; (V£ =0,1,2 & i = 1,2,3) is of Carathéodory type on A X R X V;, satisfies
the following condition w.r.t.(§;, v;), i.e.

[Vei (x, &6, )| < 0pi(x) + ¢pi§f + Evf, where(§;, v;) € R X v,9, € L'(A) and ¢y, ¢ 2 0.
Lemma 4.2: With hypotheses (B), the functional ¥ — Y,(¥),(V£ = 0,1,2,) defines on
(LZ(A))3is continuous.

Proof: hypotheses (B) and proposition 3.1, gives that fA Veoi(x,&,v)dx(V€ =0,1,2,&i =

Ly L3

Ly L,
—), Lg =max(e "

)
€ €

) (15)

1,2,3), is continuous on L%(A). Hence Y,(¥) is continuous on(Lz(A))g.

Lemma 4.3[18]. Lety : A X R? — R is of Carathéodory type on A X R?, with

ly(x, & v)| <n(x) + Cy? + C'u?, where n € L1(A,R),C,C' > 0.

Then [, y(x,§, v)dx is continuous on L*(A, R*) , with v € V, V © R is compact.
Theorem 4.1: In addition to hypotheses (A & B), we suppose that the set of controls U,

with V is convex and compact, U 4 # ¢, where aq, p; and k, are independent of v;, v, and v
respectively, and a,, p, and k, are linear w.r.t. v;, v, and v respectively, i.e.

a1 (x,&,v1) = a1 (%, &), p1(x, &2 v2) = 01(x,&2) , ki(x,&3,v3) = ky(x,&3)
a,(x,v1) = ay(x)vy , P2, v2) = p (), , ka(x,v3) = ky(x)vs, such that
lay (x, &) < 91(x) + & 1611, Ip1(x, &)1 < (%) + E1&2], e (x,§3)] < 93(x) + &415]
where 9;,9,,93 € L*(A) and ¢;,8,,8 = 0,|a,(X)| < nyg, [p(0)| <1y, |k (x)| < ng
¥1; 1s independent ofv; and y,;(forl = 0,2 and i = 1,2,3) is convex w.r.t. v; for fixed ¢;,
then there exists TCCOCV.

Proof: Since V is convex and compact, then U is weakly compact.
Since U ', # O then there exists U € U ', and a minimum sequence{v,} = {(V1n, Van, V3n)} €
Uy, such thatV &, € Uy,vn : lim Yy(8,) = _inf Y, (1).
n-oo i€l

Since U is weakly compact, then there exists a subsequence of {#,}, (let it be again {#,})
which converges weakly to some ¥ € U, i.e. %, — ¥ weakly in(L? (A))sand 1D,]l0 < €, Vn.
Now, by using (12), hypotheses and C-S-1, give

&l < D(E),8) = (@05 Vi), E1n) + P2, v20), E20) + (ko (5, V52), E3n)

< (a2 () V10, E1)| + [P2(0) V2, Eanl + [ (k2 (X)) V30, €30
<G lléinlle + n2clléanllo + n3c3lléznllo

< (N +nyey + 7’L3c3)||§n||1 = a)||§n||1, where @ = max(n,c¢;,n,cy, n3cz3) >0
Then ||§n||1 < u, foreachn with u = % > 0 (ie. .,;n is bounded V¥n)

By Alaoglu theorem(ALTh.) [19]. there exists a subsequence of {g;n} , (let it be again
{gn} Ysuch that &, — & weakly in W, which mean that &, — & weakly in (L2(A))3, then by
compactness theorem(Rellich-Kondrachov [20].)¢;,, — &; strongly in( L?(A))3.Since for each

0, & = (§1n, $2n §30) satisfies (11),1.e.
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B(gru W) + (a1 (1), wi) + (01(20), w2) + (k1 (&30), w3) = (a(X)vg, wy) +
(P2(X)V2n, Wo) + (k2 (X)V3n, W3) (16)
Let (wy,wy,wy) € (C(/_\))3, to show that (16) converges to (17),such that

B(&,W) + (ay (&1, v1), wy) + (01 (&2, v2), W) + (ky (&3, v3), ws) = (ap(vy), wy) +

(p2(v2), wy) + (k2(v3), ws) (17)
Vi=1,2,3
i. Since &, — & weakly in W, =—=5 §,, —> &weakly in I2(A) and
afin a_fl : 2
T; — o weakly in L*(A)

ii. from the hypotheses on a,(x, &1,,), p2(x, &,,) and k,(x, &3,,) and by using the result of
lemmad.2, give that [ a;(x, §1n) widx, [, p1(x,&n)w, dx and [, ki (x, &5,)wsdx are

continuous w.r.t. &;,,, &, and &;,respectively since &, — &; strongly in (L?(A))3,
then the L.H.S of (16) —L.H.S of (17).
Also the convergence for the R.H.S of (16) to the R.H.S of (17) is obtained through (v;,
- v;) weakly in L?(A), (i = 1,2,3).
But (C(A))3 is dense in W, which gives g;n — 5 = 5,7 is a solution of the state equations in
w.
From lemma4.2, Y, (17) is continuous on (L2 (A))3, for each £ = 0,1,2.
From the hypotheses on y,;(for £ = 0,1,2 and i = 1,2,3), and &;,, — §&; strongly in L?(A),
then Y; (¥) = Al_l)lgo Y, (%), hence Y; (¥) = 0.
Now, to prove Y,(¥), (£ = 0,2) is W.L.Sc. w.r.t. (§;,v;), (i = 1,2,3).
From hypotheses B, (V15, Vo, V3n) € V almost everywhere (a.e.) in A and V is compact,
hence Y, (V) is satisfied the hypotheses of lemma4.3, and gets that
Ja ¥ei (6, §in, vin)dx — [, v (x, &5, vin)dx

Sincey,; (x, &;, v;) is convex w.r.t. v;, thean Vei(x, &, v)dx is W.L.S. w.r.t.y;, i.e.

Sy yei(x, €, v)dx <lim [, yi(x, &3, vin) dx

n-oo

=lim [, (Vi (X, §iny Vin) — Yei (%, §in, Vin))dx +1im [, v (x, &, vin)dx

=lim [, Vei (%, §in vin)dx
Hence Y(¥) <lim Y, (¥%,) = lim Y,(¥,) = inf Y;(&) = ¥ is an optimal control
n—oo n-o uely

5. The N ecessary and the Sufficient Conditions for Optimality Hypotheses C:
a) The functions ay¢,, 14, P1¢,) P1v,, K1£,, K1y, are of the Carathéodory type on

AxR X Rand satisfy for x € Aand d;,j; =20, (i =1,2,3):
|a1§1(x, 51,171)| <d,, |P1§2(X, 52'172)| < d,, |k1§3(7€, 53;173)| <ds,
|a1v1(x, ‘51;”1)' <Ji |P1v2(x: ‘fz;vz)l <J2, |k1v3 (x, 5;3;173)' <J3
b) The functions ay,, , P2y,, k2v, are of the Carathéodory type on AXR,with
|a2u1(x' 171)| < q1, |P2v2(x' 172)| < g2, |k2v3(x, V3)| = Q3
where x € Aand q; = 0, (i = 1,2,3).
¢) The functions yy¢; , Yein, (V€ = 0,1,2 & i = 1,2,3) are of the Carathé¢odory
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type on /A X R X R and satisfy the following conditions for 1,;, %, € L*(A):
[Veie,| < Moi + Yeil&il + Yoilvil And [ypi,| < fipi + Yiil&il + Yoilvil, with Y, Yoy =
0,

Theorem 5.1: With hypotheses A, B and C, the Hamiltonian is:

H(X, <, 5. 77) = (1(‘12(75, v1) —a;(x, &y, V1)) + Vo1 (%, §1, 1) + (Z(Pz(x» vy) —p1(%, &, 772))
+Y02(%, &2, 12) + G3(ky (2, v3) — kq (%, &3, 13)) + Yo3(x, &3, v3)

The adjoint vector (1, {2, $3) = (G1v,» (2, G3v, ) "equations "of (3.1- 3.4) are:

—Bi(1+ G+ G+ 0+ (1‘1151(95' $1,v1) = 3’0151(95' $1,v1) ,inA (18)
—By0, = § + $o — {3+ $op1g, (%, 82, V2) = Yoze, (X, 62, v2) ,in A (19)
—B3{3 -+ + 0+ (3k153(x, §3,03) = 3’0353(95' $3,v3) ,inA (20)
(1=0=0=0 on dA (21)
Then the FD of Y}, is given by:
) Hvl(x' s;, 5. 5) ﬁ(%v1 - a1v1) + Vv,
Yo (%) 5v = fAHET .8v dx, Hy = | Hy,(x, £, v) | = 82 (P2v, = P1v,) + Von,

H,, (x, 5, (_), 17) (3(k2v3 - k1v3) + Yav,

Proof: Rewriting the TAEqs (18)-(20) by their WF and then blending them together:

5(5, w) + ((1a1§1(f1;771):W1) + ((219152 (Serz)'Wz) + ((3"153 (53:773)’W3)

= (%151 (’Sl!vl)lwl) + ()’0252 ('fz:vz)rwz)+)’03§’3 (§3,v3), w3) (22)
where §(Z: V_‘;) = by (G, W) + (G, wq) + (§2,wq) + (G35, w1) + b (G W) — ({1, wy) +

(G2, w2) — ({3, w2) + b3 ({3, w3) — (1, w3) + ($2,w3) + ({5, ws3)
The WF of the TAEqgs (22) has a unique solution; this can be proved using the same way
which is used to prove the WF of the state equation (11).

Now by substituting w = S_Z) in (22), once has:
5(5, 5—5) + ((1‘1151 (&1, v1), 5(1) + (€2p152 (§2,v2), 5(2) + ((3"153 (&3, v3), 5(3)

(23)= (}’0151(51:171); 5(1) + (}’0252 (&2, 12), 5(2) + ()’03{3 (&3, v3), 5(3)
Setting the solution 5 + 5_3‘) in (8)-(10) then subtracting (8)-(10) from those equations which

are obtained by setting(g + 5_5)), then setting w; = {;, w, = {,, w3 = {3 and then blending
them together, to get:

3(5_5' O+ (ay (& + 8&, vy + 6v1) — a1 (&1, v1),§0) + (p1(& + 85, v, + 8v,) —
P1(§2,12), o) + (ky (&5 + 683, v3 + 6v3) — ky(&3,v3),03) = (az(vy + 6v1) — ay(v1),{y) +
(p2(v3 + 6v2) — P2 (12), (2) + (ko (v + 6v3) — kp(v3),(3) (24)

Now, from hypo. on a4, py, k1, a,, p, and k,, using proposition 3.1 and the Mean value
theorem, the FD of ay, p1, k1, a,, p, and k, are exist, once get that:

B(‘S—é' 5) + (a1§1551 + a1v15771r(1) + (P1§’25§2 + P1v25772'{2) + (k1§35'§”3 + k1v35173:(3)

= (a2v16v1r(1) + (P2v25'72: (2) + (k2u35v3» (3) + 5(5_E))| 5_5: 0 (25a)
where 5(5‘_5)) 5% 0= é(@?‘:%) 8_{ ,
ov

From the Minkowiski inequality and lemma 4.1, once obtain that:
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£(5%) = £(58, %) = &,(5%), |52, = | 6;2
é((ﬁ)”(ﬁ”o = 51(E)”ﬁ”0 , where él(g) —0,and ||§||0 —0 as 6v —0

Hence

B(S—SE' Z) + (a1§15€1 + a1v15v1,51) + (p152552 + P1v25vz'(2) + (k1f35€3 + k1v35v3,f3) =

(a2v15v1:(1) + (P2v25172'(2) + (k2v35173’(3) + 51(5_”))”E”0 (25b)

Now, from definition of the FD, hypotheses on y,;(¥ = 0,2 ,i = 1,2,3) and by using the
result of lemma 4.1, once obtain that:

Yo(ﬁ + ﬁ) -Y,@) = fA(}’o1§1 (§1,v1)6&1 + Yo1v, (§1, v1)6v1)dx + fA()’ozzz (§2,v2)68; +
Yo2v, (52'172)5172)613‘ + fA()’o3E3 ($3,v3)883 + Yozu, (63,v3)5v3)dx + £~(5_17))”57)”0 (26)

where é(@) - 0, and ||EJ)”0 —0 as 6v —0

<clf] —

By subtracting (23) from (25b), and substituting the rustle in (26), once get
Yo(ﬁ + 5) - Y@ = fA(Q (‘121;1 - a1v1) + }’011;2)5771 dx + fA((z(PZvZ - P1v2) +
J’02u2)5vz + fA((3(k2v3 - k1v3) + }’031;3)5773 dx + 5(5)”5”0 (27)

Then from FD, we have that )_)’,'0 () Sv = fA H;" .8V dx.

Note: In the proof of the theorem 5.1, we find the FD for the functional Y, so the same
technique is used to find the FD for ¥; and Y.
Theorem 5.2: Optimality Necessary Conditions

(a) With hypotheses A, B and C, assume U is convex, if U € l_])A is optimal, then there exist
2

multipliers 1, € R,( £ =0,1,2 with Ay, 4, =20, Y [1,/= 1), such that the following The
£=0

Kuhn- Tucker- Lagrange's Multipliers (K.T.L) are satisfied:
[ H" Svdx>0,vieU 6v=1-17 (28a)

2 2
where y; = Y Apyp and §; = Y. 4,044, (i = 1,2,3) in the definition of H, and also

£=0 £=0
A,Y, (V) = 0, (Transversality condition) (28b)

(b) If U is of the form
U=fie(l*(AR) |w(x) € Vyae.onA}, with V; c Ri = 1,2,3.
Then (28a) is equivalent to the minimum element wise (29), where:

H;". % =min Hz".u ae.onA (29)
uev

Proof : (a) From theorem 4.2, the functional Y,(¥) has a continuous FD at each ¥ € U , since

the control v € I7A is optimal, then by K.T.L theorem there exist multipliers 4, € R ,
2 5 5 5
£=0
$) >0, Vii € U and A,Y,(¥) = 0, substituting the FD of Y,(¥) (V£ = 0,1,2) in the above
inequality, to get

fA((Q (a2v1 - a1v1) + Y1v,) 6V, + ((2 (pZUZ - P1v2) + }’21:2)5172 + (5 (k2v3 - k1v3) +
Y3, )0v3)dx = 0
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2 2
where {; = EO/UZM, Viv, = {Z:()Afyi#ui ,fori =1,2,3,

= [\ Hy".6vdx>0,vieU v =17

(b) Let U = fue (LZ(A, [R))3 |ul~(x) €V,a.e.onA}, with V; c R, i =123 ,uis a
"Lebesgue" measure on A, {v,} be a sequence in U 7 and assume S C A be a measurable set
uU,(x),ifxes
v(x),ifx &S
fs Hy". (4, — ¥)dx = 0, for each such set S = Hy . (i, — ¥) = 0, a.e. on A

such that u(x) = { . Hence (28a), becomes

That is it satisfies in ¢ with ¢ = N¢,, where ¢, = A — A,, with u(A,,) = 0, but ¢ is

independent of n,with ,u(A/(p) = 0 and since{?,, } is dense in U 77> then
Hy".(4 —¥)=>0,ae.on A= H; .0 = rpéél Hy". % ae. on A.
u
Theorem 5.3: Optimality Sufficient Conditions:
In addition to the hypotheses A,B&C, with U is convex J(a1&y11), (P1&Y12), , (k1&y,3) are
affine w.r.t (&1, v1),(&,, v2), (&3,v3), resp a,, vy, k, are affine w.r.t vy, v,, v3 resp for each x
,and y,;, (¢ =0,2,i = 1,2,3) is convex w.r.t. (&, v;) for each x. Then the necessary
conditions in theorem5.2, with 4, > 0, are also sufficient.
Proof: suppose
a1(x,$1,v1) = a11(0)¢1 + a()vy +ag3(x),  ax(x,,v1) = a1 (X)vy + Az (%),
P1(%,$2,v2) = p11(0)&2 + P12 (V2 + P13(X) , P2, v2) = P21 (X)v; + paa (%),
ki(x,83,v3) = k11 (X)§3 + k12 ()3 + k3 (x) . ka(x,,v3) = kg (0)v3 + kyp (%)
And that? € U 4, U is satisfied the K.T.L. and the Transversality condition i.e.
[ H3(x, &, D) - dvdx > 0,viie U  and  A,y,(#) =0

2 Z — 2 5 —_
Let Y('l.—7)) = {;0 /1{7}/{7(1_])), thenY(5)6v = [2;0 Ang(l}))(gU

= Z%:o A fA[ ((1#(6121;1 - a1v1) + }’1€v1)5v1 + ((2#(192172 - P1v2) + }’2#v2)5v2
+@se(kav, = kiv,) + V3w, )0vs)dx = [, Hy(x,6,C,7) - Svdx > 0

Let (vq,vy,v3) and (74, V,,V3) are two given controls, then (El = &1y §2 = $op,y §3 =
531,3) and (§; = .,Elvl, &= 521,2, &= .,53,,3) are their corresponding solutions, substituting
the pair (7, g; ) in (1)-(4) and multiplying the obtained equation by k € [0,1] once and once
again the pair (7, Ej) in (1)-(4) multiplying the obtained equation by (1 — k), finally then
blending together the obtained equations from each corresponding equations once get:
—B1(Kf1 +(1- K)f_1) + (’051 +(1- K)Si) - (Kfz +(1- K)f_z) - (KS(3 +(1- K)Sg3)
+a11(x)(1cfl +(1- K)f_1) + a, () (kv + (1 — 1)) + a3(x) = az (x)(kvy +
1-K)v) + ‘fzz(x) (30a)
kK& +(1—-Kk)é =0 (30b)
—Bz(Kfz +(1- K)f_z) + (’051 +(1- K)f_l) + (Kfz + (- K)f_z) + (k& + (1 —K)&E) +
P11(x)(’ffz +(1- K)sgz) + p12(X) (kv, + (1 — K)V3) + p13(x) = P21 (X) (v, +
1-K)v,) + p_zz(x) (31a)
k& +(1—K)é =0 (31b)
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—B3(Kf3 +(1—x) '?3) + (Kf1 +(1- K)Si) - (Kfz +(1- K)f_z) + (Kf3 + (- K)Sg3) +
k11(x)(K'f3 +(1- K)f_3) + k12 () (kv3 + (1 — K)T3) + ky3(x) = kpq (x)(kv3 +

(1= K)73) + k() (322)
kés+(1—K)é3=0 (32b)

Now, if we have the control vector b= (04, Dy, D3), with v, = kvy + (1 — k)74,
v, = kv, + (1 — K)V,, U3 = kv3 + (1 — k)U3. Then from (30 a&b), (31 a&b), (32
a&b), once get that

$1 = 51171 = 51(;cv1+(1— K)y) — k& + (1 — K)Si ,

$y = 52172 = fz(:cv2+(1— K),) = k& + (1 - K)f_z >

& = $35, = S3(kva+(1—-10)ms) = K3+ (1 — K)&;

are their corresponding solutions, i.e. (?1,52, 53) is satisfied (1-4). So, the operator v; — &y,
is convex- linear w.r.t (§;, v;)(i = 1,2,3), for each x € A.

Now, since y;;(x, &;, v;) is affine w.r.t. (§;,v;), for each x € A and from the convex —linear
property of operators v; — &;;,,, once gets that Y; (V) is convex-linear w.r.t (g? , 13), Vx € A.

The convexity of Y,(¥) (for {= 0,2) W.I’.t.(g, v), for each x € A is obtained from the
hypotheses at each of y,; is convex w.rt. (§;,v,))Vx € A, (V£ =0,2,&i =1,2,3). Hence

Y (V) is convex w.r.t (g? , ) in the convex set U=U 7 and it has a continuous FD satisfied
Y@)ov = 0= Y (%) has a minimum at 3 = Y(#) < Y(%), Vi € U =

AoYo (D) + 1 Y1 (D) + 1Y (V) < AoV () + A, Y1 (1) + A,Y2 (1) (33)
Now, leti be an admissible control and since ¥ is also admissible and satisfies the
Transversality condition, then (33) becomesY,(#) < Y, (i), Vi € U ie. ¥ is an optimal
control for the problem.
6. Conclusion

The existence and uniqueness theorem for the solution (continuous state vector) of the
TNLEBVP is stated and proved successfully using the Mint-Browder theorem when the
TCCOCYV is given. Also, the existence theorem of a TCCOCV governing by the TNLEBVP
is proved. The existence and uniqueness solution of the TAEqs related with the TNLEBVP is
studied. The derivation of the FD of the Hamiltonian is obtained. Finally, the theorem of
necessary conditions so as the sufficient condition theorem for optimality of the constrained
problem are stated and proved.
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