

140

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

Exact Solutions for Minimizing cost Function with Five Criteria and
Release Dates on Single Machine

 Hanan Ali Chachan Hussein Abdullah Jaafar

Mustansireah University, Iraq.-Department of Mathematics, College of sciences, Al

alhassen237@gmail.com altaai@yahoo.com-Hanan

Abstract:

 In this paper, we present a Branch and Bound (B&B) algorithm of scheduling (n) jobs on a
single machine to minimize the sum total completion time, total tardiness, total earliness,
number of tardy jobs and total late work with unequal release dates. We proposed six heuristic
methods for account upper bound. Also, to obtain lower bound (LB) to this problem we
modified a (LB) select from literature, with (Moore algorithm and Lawler's algorithm). And
some dominance rules were suggested. Also, two special cases were derived. Computational
experience showed the proposed (B&B) algorithm was effective in solving problems with up to
(16) jobs, also the upper bounds and the lower bound were effective in restricting the search.

Key words: Branch and Bound method (B&B), Upper bound (UB), Lower bound (LB),
Multi-Objective problems.

1. Introduction
 A scheduling problem is defined as a problem of assigning a set of tasks or jobs to
a set of resources or machines in a specific time. Common performance measures
criteria are usually in the form ∑fj and fmax =max{fj}
Most of the studies that were introduced in the early years of the discovery of the theory
of scheduling focused on a single performance measuring criterion. However, in
practice, a manager may need to find an acceptable schedule which can simultaneously
meet the requirements for several criteria [1].
 In this paper, we examine the problem of scheduling with five criteria (referred to
above) for measuring performance with the release times, and to the best of our
knowledge, this problem was not studied before.
 Here, we found it necessary to present some research from the literature which
included machine scheduling problems with one or more of the performance criteria
contained in our problem.

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Doi: 10.30526/33.3.2479

Article history: Received 28 September 2019, Accepted 4 December 2019, Published
in July 2020.

141

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

The Completion Time: This criterion has been extensively studied in the literature. For
1/rj/∑Cj is NP- hard in the strong sense by Lenstra, Rinnooy Kan and Bruker [2]. This
problem with equal release date solved by "shortest- processing- time (SPT)-rule" of
smith [3]. Also, the problem 1/rj ,pmtn /∑Cj is possible to solve by the "shortest-
remaining- processing- time (SRPT)-rule" of Schrage [4]. Several branch and bound
algorithms for the problem 1/rj/∑Cj, depend extensively on the "dominance rules (DR)"
derived by Chandra [5]. Dessouky and Deogun [6]. And others. For this problem,
Ahmadi and Bghchi [7]. Display that the lower bound which is symbolized by (SRPT-
LB) obtained by using the (SRPT)- rule to solve the problem 1/rj, pumt/∑Cj best (LB) in
comparison other know bounds. Also, Chu [8]. Uses this (SRPT-LB) in (B&B)
algorithm that is effective in solving problems, when n ≤ 100 jobs.

The Tardiness Time: Minimizing the total tardiness is the other one of the most
important criteria in practice. For 1/rj/∑Tj is known to be NP- hard in the strong sense by
Rinnooy [9]. Chu [10]. Proposes a (BAB) algorithm and proves some dominance
properties. Also suggested, (LB) depends on constructing a schedule in which the jobs
are scheduled according to (SRPT)-rule (Schrage [4].) by restful the problem under the
presumption that the jobs are preemptive. The proposed algorithm contributed to solve
problems, when n ≤ 260 jobs. Philippe et al [11]. Presented a (B&B) algorithm with
new lower bounds (NLB) depending on improve (LB) of Chu [10]. And generalization
some well–known dominance properties to solve this 1/rj/∑Tj problem. The cases
handled by this procedure are as 500 jobs.

The Earliness Time: In general, earliness criterion is one of the scheduling objectives
studied by few number of researchers, because for many years, researchers focused on
one-criterion regular performance measures (i.e. no decreasing in Cj for all j) [12]. And
most research that considers earliness as an optimality criterion also includes a tardiness
component. The first study on earliness and tardiness (E/T) penalties was by Sidney
[13]. Who developed a polynomial-algorithm to minimize maximum of (E/T) for a
single machine problem. One Of the studies presented in recent years was by Mehdi and
Ghasem [14]. Who studied this problem 1/rj / Emax +Tmax. A (B&B) algorithm is
proposed, the algorithm extensively uses efficient dominance rules. In the (B&B)
algorithm, a (LB), is obtained by relaxing the assumption of the non-preemption, and
divided the problem into two sub-problems of (1/rj , pmtn/Tmax) and (1/rj , pmtn/Emax).
The two problems are then resolved by applying some procedures derived from the two
rules, (EDD) and (MST). Computational experiments showed the efficiency of the
proposed procedure of solving problems with up to 1000 jobs.

The late work: Is the quantity of processing performed after its due date, and is denoted
by (Vj). At first, this problem was known as information loss by Blazewicz [15]. Potts
and Van [16, 17]. Suggested the term (Total late work). For the problem 1/pmtn/∑Vj,
they showed that the minimum (1//∑Vj) ≤ [(Tmax) for the (EDD)-rule sequence]. While
the problem 1//∑Vj is NP-hard by Potts and Van [17]. Bryan and Bahram [18]. In this
research, considering 1//∑ Wj Vj the total weighted late work, with the condition that all
jobs arrived at the same time (i.e. the release date rj= 0 for all jobs). This function is a
more general form than the formula Potts and Van [16, 17]. Abdul Razaq et al [19].

142

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

studied this 1/rj/∑WjVj problem, using unequal release dates, to solve this problem some
special cases were proofed and using a branch and bound algorithm with up to 30 jobs.
Also five local search methods to solve this problem were applied and performance is
evaluated to it with up to 60000 jobs, and who showed this problem its NP-hard.

The unit Penalty: For the 1//∑Uj , Moore [20]. Study was among the earliest to
consider scheduling to minimize this problem by an algorithm known as Moor algorithm
“sometimes known as Hudgson's Algorithm" that solved the problem optimally. With
release dates, the problem 1/rj/∑Uj is strongly NP- hard by Lenstra et al [2]. Dauzere-
peres [21]. Studied this1/rj/∑Uj problem, and determined a lower bound depending on
the relaxation of a "Mixed-Integer- Linear- Programming" formulation, presented a
heuristic method to solve the problem. A large sample of problems has been tested with
up to 50 jobs. The calculations showed the efficiency of the proposed approach by
comparison with the lower bound. Philippe et al [22]. To solved this 1/rj/∑Uj problem,
who suggesting (B&B) algorithm, with lower bounds based on a "Lagrangian
relaxation". Also, they used dominance rules to reduce the search space, suggested
techniques are showed solve to optimality cases with up to 200 jobs. Cyril and Samia
[23]. In this study showed how good – quality lower and upper bounds that can be
calculated for the problem1/rj/∑Uj, using an original mathematical integer programming
formulation. Numerical experiences showed the assessing of the proposed approach it
up to 160 jobs. Al Zuwaini and mohanned [24, 25]. Studied the problem 1/rj/∑(Fj + Uj),
and presented a (B&B) algorithm, and application of some dominance rules to solve
this problem, finding lower bound by using (SPT)-rule and Moor's algorithm.
Computational experience with instances having up to 40 jobs showed that the lower
bound was effective in restricting the search.
 Scheduling problems of multiple performance measures (three or more) with release
date, to the moments of writing this paper. We did not find any study submitted to
discuss this subject.
 From the above, we can say that scheduling problem often increases complexity by
increasing the number of performance measures with release date. Also, we can say that
our problem (P) is the first study to address scheduling problem with five criteria and
with release date.
 In this paper, we describe the problem of scheduling of (n) jobs on one- machine
with multiple performance measures and release date, with a view to minimizing the
sum total completion time, total tardiness, total earliness, number of tardy jobs and total

late work, this problem is denoted by 1/𝑟௝/ ∑ ൫ 𝐶௝ ൅ 𝑇௝ ൅ 𝐸௝ ൅ 𝑈௝ ൅ 𝑉௝ ൯ ௡
௝ୀଵ …(P), from

used form 3- field α ∕ β ∕ 𝛾 by Graham et al [26].
 This paper is organized as follows: In next section begins with some notation and
basic concepts of one-machine scheduling. Formulation of the problem and
decomposition into three sub-problem are given in section 3. Some algorithms are given
in section 4. Also, three special cases were presented in section 5. in section 6, the
(B&B) algorithm was discussed, an account the upper bound and the derivation of a
lower bound, and some dominance rules in section 7. Computational results are
presented in section 8.

143

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

2. Notation
The following notations are used in this paper:
j : Job index.
N̅ : The set of all n jobs .
n : Number of jobs .
pj : Processing time for job j .
dj : Due date for job j .
rj : Release date for job j .
Cj : Completion time of job j .
∑Cj : The total completion times .
Tj : The tardiness of job j.
∑Tj : The total tardiness.
Ej : The earliness of job j .
∑Ej : The total earliness .
Vj : The late work of job j .
∑Vj : The total late work .
Uj : the unit penalty of job j .
∑Uj : The number of tardy jobs .
(B&B) : Branch and Bound.
UP : Upper bound.
LB : Lower bound.
(SC) : Special cases.

 (DR) : Dominance rules.

3. The Mathematical Formulation
 The problem (P) considered in this paper is to schedule a set N̅ of n jobs ,
N̅={1,…,n} on an one- machine. Each job j , j ϵ N̅ has integer processed time pj , a
release date rj , and due date dj. Given a schedule σ =(1,…,n) , then for each job j we
calculate the completion time by C1=r1 + p1 , Cj= max {rj , Cj} + pj for j=2,…,n.
The tardiness of job j is defined by Tj =max{Cj – dj, 0}, and earliness by Ej =max{dj –Cj ,
0}. The unit penalty of job j is defined by Uj = 1 , if Cj> dj; o.w, Uj=0.The late work of
job j given by Vj =min{Tj ,pj}. Let 𝛿 be a set of all feasible solutions , and σ is a
schedule in 𝛿 . The mathematical form of our problem (P) can be written as :
 M=Min F(σ)=Min஢஫ஔ { ∑ ሺ 𝐶ఙሺ௝ሻ ൅ 𝑇ఙሺ௝ሻ ൅ 𝐸ఙሺ௝ሻ ൅ 𝑈ఙሺ௝ሻ ൅ 𝑉ఙሺ௝ሻ ሻ ௡

௝ୀଵ ሽ

Subject to :

Cσ(1)=rσ(1) + pσ(1)

Cσ(j) = Max {rj , Cj-1} + pj j = 2,…, n ….(P)

Tσ(j) =Max{Cσ(j) – dσ(j), 0} j= 1,…,n

Eσ(j) =Max{dσ(j) – Cσ(j), 0} j= 1,…, n

Uσ(j) = ൜
 1 if C஢ሺ୨ሻ ൐ d஢ሺ୨ሻ j ൌ 1, … , n
0 o. w

144

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

Vσ(j) = min { Tσ(j) , pσ(j) } j = 1,…, n

The objective is to find a processing order σ =(σ(1),…,σ(n)) for the problem (P) to
minimize the sum of the total completion times, the total tardiness, the total earliness, the
number of tardy, and the total late work.

3.1 Decomposition of Problem (P)
In order to have a less complex structure of the problem (P), can be decomposed into
three sub problems (p1), (p2) and (p3), as following:
 m1= Min஢஫ஔ { ∑ ሺ 𝐶ఙሺ௝ሻ ൅ 𝑇ఙሺ௝ሻ ൅ 𝐸ఙሺ௝ሻ ሻ ௡

௝ୀଵ ሽ

 Subject to :

 Cσ(1)=rσ(1) + pσ(1)

 Cσ(j) =max {rσ(j) , Cσ(j-1)} + pσ(j) j = 2,…,n …..(p1)

 Tσ(j) =max{Cσ(j) – dσ(j), 0} j= 1,…,n

 Eσ(j) =max{dσ(j) – Cσ(j), 0} j= 1,…, n

 m2 =Min஢஫ஔ ሺ∑ 𝑈ఙሺೕሻ
௡
௝ୀଵ)

Subject to :

𝑈ఙሺ௝ሻ = ൜
1 if C஢ሺ୨ሻ ൐ d஢ሺ୨ሻ j ൌ 1, … , n

 0 o. w
 ….(p2)

 Cσ(1)= rσ(1) + pσ(1)

Cσ(j) =max {rσ(j) , Cσ(j-1)} + pσ(j) j = 2,…,n

 m3 =min஢஫ஔ (∑ 𝑉ఙሺೕሻ
௡
௝ୀଵ)

 Subject to :

Vσ(j) = min { Tσ(j) , pσ(j) } j = 1,…,n ….. (p3)

Tσ(j) ≥ 0 j = 1,…,n

pσ(j) ≥ 0 j = 1,…,n

Theorem 1 [26].
m1+ m2+ m3 ≤ M where m1, m2, m3 and M are the min-objective function values of (p1),
(p2),(p3) and (P) respectively .

145

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

4. Two Important Algorithms
4.1. Lawler Algorithm (LA) [27].
Step (1): let N̅={1,…,n}, Ω=(∅) and M be "the set of all jobs with no successors".

Step (2): let [j*] such that [fj* (ΣjϵN̅ Pj)= minjϵM{ fj (ΣjϵN̅ Pj)}], j∈ M

Set N = N̅-{ j*} and sequence the job[j*] in the last position of Ω.

Modify M to represent the new set of the schedule jobs.

Step (3): If N̅ = ∅ stop, o.w go to step (2).

This algorithm, which solves the [1/prec/fmax p or 1//fmax] problems, where fmax ϵ {Cmax,
Lmax, Tmax, Vmax}.

4.2 Moore Algorithm (MA) [21].
Step 1: Order the jobs in (EDD)-rule, let E=L=Ø , and let t= k=0 .
Step 2: k=k+1 , if k ˃ n then go to step (4).

Step 3: set t=t +Pk , E=E∪ ሼ𝑘ሽ 𝑖𝑓 𝑡 ൑ 𝑑௞.

Then go to step (2).

Otherwise if (t ˃ dk) then find a job j ∈ 𝐸,

with pj is as large as possible and set E=E- ሺ𝑗ሻ, L=L∪ ሺ𝑗ሻ,

and t= t- pj , go to step (2).

Step 4: E is the step of early jobs , L is the step of late jobs.

This algorithm to solve the (1//Uj) problem.

5. Special Cases (SC)
A special cases (SC) for scheduling problem means getting an optimal schedule (optimal
solution) directly without utilize (B&B) method or (DP) technique [28].
In this section we present Two (SC) of our problem (P), which are as follows:
Case 1. If Cj= dj ∀ j in a schedule S and the preemptive is allowed then S given

an optimal schedule for the problem 1/ rj, pmtn / ∑ ሺ 𝑪𝒋 ൅ 𝑻𝒋 ൅ 𝑬𝒋 ൅𝒏
𝒋ୀ𝟏

𝑼𝒋 ൅ 𝑽𝒋 ሻ .

Proof: From Cj = dj ∀ j in S, then Tj = Ej = Uj = Vj = 0 ∀ j, therefore problem (P) with
preemptive reduced to 1/rj, pmtn/∑Cj, but this problem solved in "shortest remaining
processing time (SRPT)-rule" [6]. Then S given an optimal schedule for the problem

1/ rj, pmtn / ∑ ሺ 𝐶௝ ൅ 𝑇௝ ൅ 𝐸௝ ൅ 𝑈௝ ൅ 𝑉௝ ሻ
௡
௝ୀଵ .

146

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

Case 2. If in SPT schedule rj=r ∀ j and satisfy, "(Just In Time) (JIT)" then (SPT)-
rule given an optimal schedule for the problem (P).

Proof : From (JIT) we get Cj = dj, then Tj = Ej = Uj = Vj = 0 ∀ j , therefore problem (P)
reduced to 1/rj/ ∑ 𝐶௝

௡
௝ୀଵ , but this problem was solved by (SPT)-rule. Then (SPT)-rule

given an optimal schedule for the problem (P).

6. Branch and Bound (B&B) Algorithm
 In this section, we apply (B&B) to get an exact solution for our problem (P). The
(B&B) method is strategy to explore the solution space based on the implicit
enumeration of the solution. This method is based on the idea of calculate all feasible
solutions by a special technique, which among them research tree technique, where
helps to present the procedures of this method more clearly. Here, at the root node of the
search tree, we suggest six heuristic methods to provide an upper bound (UB) on the
cost of the optimal schedule. Also, we derive a especially formula to ensure an lower
bound (LB), as following:

6.1. Six-Upper Bound (6-UB)
 In this section, six heuristic techniques are used for arranging the jobs and valuation
the cost problem (P).
1. The first upper bound (UB-1) is obtained by "short release time (SRT)-rule" i.e. (r1

≤…≤ rn), then find; UB-1
2. The second upper bound (UB-2) is obtained by, set j1= min{rj + pj}, then order all

jobs by (SRT) rule, where j=2,…,n. Then find; UB-2
3. The third upper bound (UB-3) is obtained by order the jobs in non-decreasing of the

(rj + pj) i.e. (r1+ p1≤…≤ rn+ pn). Then find; UB-3
4. The fourth upper bound (UB-4) is obtained by, set j1=min{rj + pj}, then order all jobs

by (SPT) rule, i.e. (p2≤…≤pn). Then find; UB-4
5. The fifth upper bound (UB-5) is obtained by (SPT)-rule. Then find; UB-5
6. The sixth upper bound (UB-6) is obtained by (EDD)-rule. Then find; UB-6
 Among these six- heuristics, we select the lowest value to be the an upper bound, (i.e.

UB= min {UB-1,..., UB-6}). This UB is then used in a root node of the search tree in
(BAB) method.

6.2. Lower Bound (LB)
 Finding a lower bound (LB) for our problem (P) is based on decomposing problem
(P) into three sub-problems (p1), (p2) and (p3). Then calculate m1 to be (LB-1) for (p1),
m2 to be (LB-2) for (p2), and m3 to be (LB-3) for (p3). Then applying the theorem (1):
 To get a lower bound (LB) for problem (p1) (LB-1). We modified the lower bound
of Tariq and Hussam [29]. They proved that (Max{ ∑ 𝑑ఙሺೕሻ

 ௡
௝ୀଵ , ∑ 𝑀𝑎𝑥௡

௝ୀଵ {2Cσ(j) –

dσ(j), Cσ(j) }) is (LB) for the 1//∑ ሺ𝐶ఙሺೕሻ
 ൅ 𝑇ఙሺೕሻ

 ൅ 𝐸ఙሺೕሻ
 ሻ௡

௝ୀଵ problem, since this problem

is a special case of our problem (p1), then (Max{ ∑ 𝑑ఙሺೕሻ
 ௡

௝ୀଵ , ∑ 𝑀𝑎𝑥௡
௝ୀଵ {2Cσ(j) - dσ(j),

Cσ(j) }) is also (LB) of our problem (p1). But this (LB) is a weak. To improvement this
(LB), we suggest the following :

147

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

(LB-1)= nr٭+𝜶 – R; where:
n = number of jobs.
r٭= min rj j=1,…,n.
𝛼 = (Max{ ∑ 𝑑ఙሺೕሻ

 ௡
௝ୀଵ , ∑ 𝑀𝑎𝑥௡

௝ୀଵ {2Cσ(j) - dσ(j), Cσ(j) })

R = ∑ 𝑟௡
௝ୀଵ j j=1,…,n. Then for problem (p1), the following algorithm obtained this

(LB-1).

6.2.1. Algorithm (LB-1)
Step(1): Order the jobs by using (SPT)- rule.
Step (2): For each job j compute the completion time Cj, 2Cσ(j) and ∑ d஢ሺౠሻ

 ୬
୨ୀଵ j=1,…,n.

Step (3): Set n = number of jobs and r٭= min rj j=1,…,n.
Step (4): Set α = (Max{ ∑ d஢ሺౠሻ

 ୬
୨ୀଵ , ∑ Max୬

୨ୀଵ {2Cσ(j) - dσ(j), Cσ(j) }) and R= ∑ r୬
୨ୀଵ j

j=1,…,n.
Step (5): Find (LB-1)= nr٭+𝛂 – R.
Step (6): Stop.
 For (p2) we get a (LB-2) for p2 by applying (Moore algorithm).

 For (p3) we get a (LB-3) for p3, firstly we calculate a minimum maximum cost of
the late work Vmax by applying (Lawler algorithm), since Vmax ≤ ∑ 𝑉ఙሺೕሻ

௡
௝ୀଵ , then

Vmax is (LB) of the problem (p3) i.e.(LB-3). Then we find (LB) of problem (P),
where:

(LB) = (LB-1) + (LB-2) + (LB-3) ……………… From Theorem (1).

 Both of the (UB), (ILB) represent two values a root node in a search tree.

The (B.A.B) method include of essential procedures the following [24]:

 Branching is the procedure of dividing mother (original) problem into two or more
sub-problems. In the search tree, the sub problems are expressed by nodes. The
branching rule specified by use forward branching means the jobs are sequenced one
by one from the beginning. Or backward branching i.e. (the jobs are sequenced one
by one from the end).

 Bounding is procedure the of computing a lower bound on the optimal solution of a
sub problems (nodes).

 Search strategy is a procedure reflect the method of choosing a node in the search
tree to branching from it, usually the branch be from a node with the smallest (LB)
in the search tree , with commitment to the following [30].
o If (LB) ≥ (UB), then this sub problem cannot yield a better solution for problem.

Thus, we need not continue to branch from the corresponding node in the
branching tree.

o If (LB) < (UB), then (UB) is reset to take (LB) value, (i.e. replace (UB) by (LB)
). This procedure is repeated until all nodes (sub-sets) have been test.

 The at first noteworthy feature of (B&B) is the use of "Dominance- rules" (DR) that try
to exclude nodes prior to calculating (LB) to it [2]. These (DR) are computationally

148

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

useful as they reduce storage requirements on the computer as well as reducing
computation time .

7. Dominance- Rules (DR)
 Dominance rules (DR) usually specify whether a node can be discarded in search tree
before its lower bound (LB) is calculated, so it helps reduce search space. Clearly (DR)
are particularly useful when a node can be eliminated which has (LB) that is less than
the optimal solution.
To introduce the (DR) for our problem (P) consider schedules S = (σ, i, j, σ') and S' =
(σ, j, i, σ') where σ, σ' are two a partial schedule of the remaining n-2 jobs. Let
t=∑ 𝑝௞௞∈ఙ, be the completion time of σ, with rj = r, di≤ dj, and pi≤ pj.

Define (Ci(t) + Ti(t) + Ei(t) + Ui(t) + Vi(t) an the sum of total completion time,
tardiness, earliness, number of tardy jobs and late work of job i) if scheduled at time t
and let Fij= (Cij(t) + Tij(t) + Eij(t) + Uij(t) + Vij(t)) be the sum of total completion time,
tardiness, earliness, number of tardy jobs and late work of job i and j, if i precedes j
and their processing starts at time t.
 The following interchange function Δij(t) is used to specify the new dominance
properties which gives the cost of interchanging adjacent jobs i and j whose processing
start at time t.
 Δij(t) = Fij(t) –Fji(t).
Note that this cost Δij(t) does not depend on how the jobs are arranged in σ and σ' but
depends on start time t of the pair, and :

 If Δij(t) < 0 then i precede j at time t.

 If Δij(t) > 0 then j precede i at time t.

 If Δij(t) = 0 then it is indifferent to schedule i or j first.
 First: If r ≤ t , we divide the situation into the following cases:
Case 1. If di ≤ t +pi, dj ≤ t +pj (i.e. both the jobs i, j are always tardy).
Proof. To show that S dominates S', it suffices to show that (Δij= Fij (S)- Fji (S') ≤ 0)
and vice versa. Since the jobs i and j are both tardy, then Ei=Ej=0, Vi=pi, Vj=pj, and
Ui=Uj=1. Now, let

 Fij(S)= [(t +pi) + (t +pi – di) +0 + 1 +pi +(t +pi +pj) + (t +pi +pj –dj) +0 +1 +pj]=4t
+5pi +3pj – di –dj +2 ….. (a)

 F'ji= [(t +pj) + (t +pj –dj) +0 +1 +pj + (t +pj +pi) + (t +pj +pi -di) +0 +1 +pi]=4t +3pi
+5pj –dj –di +2 ….. (b).
Δij= (a) - (b)= 2pi -2pj ≤0 , then job i precede j

Case 2. If di ≤ t +pi, t +pj ≤ dj ≤ t +pi +pj (i.e. the job i, is always tardy and the
job j, is tardy if not scheduled first).

Proof. Since the job i, is always tardy then Ei=0, Ui=1, and if job j scheduled first then
Tj=0, and Vj={0, Cj –dj} (i.e. j , is early or partial early).

 Fij= [(t +pi) + (t +pi – di) +0 + 1 +pi +(t +pi +pj) + (t +pi +pj -dj) +0 +1 +pj]=4t +5pi
+3pj – di –dj +2 ….. (a).

 F'ji= [(t +pj) +0 + (dj –t –pj) +0 +0 +(t +pj +pi) + (t +pj +pi -di) +0 +1 +pi]= 2t +3pi
+2pj +dj – di +1 …. (b). (when Vj=0).

 F'ji= [(t +pj) +0 + (dj – t –pj) +0 +(t +pj -dj) +(t +pj +pi) + (t +pj +pi -di) +0 +1 +pi]=
3t +3pi +3pj – di +1 …. (c). (when Vj=Cj -dj).

149

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

1. Δij=(a) – (b)= 2t +2pi + pj –2dj +1 > 0 , then job j precede i.
2. Δij=(a) – (c)= t +2pi –dj +1 > 0 , then job j precede i.

Case 3. If di ≤ t +pi, t +pi +pj ≤ dj (i.e. the job i, is always tardy and the job j, is
always early).

Proof. Since the job i, is always tardy then Ei=0, Ui=1, and if job j is always early, then
Tj=0, and Vj={0, Cj –dj} (i.e. j , is early or partial early).
 (when Vj=0).

 Fij= [(t +pi) + (t +pi – di) +0 + 1 +pi +(t +pi +pj) +0 + (dj –t –pi –pj) +0 +0]= 2t +3pi
–di +dj +1 ….. (a).

 F'ji= [(t +pj) +0 + (dj –t –pj) +0 +0 +(t +pj +pi) + (t +pj +pi –di) +0 +1 +pi]= 2t +3pi
+2pj +dj – di +1 …. (b).

Δij=(a) – (b)= –2pj <0, then job i precede j
 When (when Vj= Cj –dj).

 Fij= [(t +pi) + (t +pi – di) +0 + 1 +pi +(t +pi +pj) +0 + (dj –t –pi –pj) +0 +t + pi +pj –
dj]= 3t +4pi + pj – di +1 ….(c).

 F'ji= [(t +pj) +0 + (dj –t –pj) +0 +(t + pj –dj) +(t +pj +pi) + (t +pj +pi –di) +0 +1 +pi] =
3t + 3pi +3pj –di +1….. (e).

Δij=(c) – (e)= pi –2pj ≤0, then job i precede j

Case 4. If t +pi ≤ di ≤ dj ≤ t +pj (i.e. the job j, is always tardy and the job i, is

tardy if not scheduled first).
Proof. Since the job j, is always tardy then Ej=0, Uj=1, and if job i, scheduled first then
Ti=0, and Vi={0, Ci –di} (i.e. i , is early or partial early).

 (when Vi=0). Fij= [(t +pi) +0 + (di –t –pi) +0 +0 +(t +pi +pj) + (t +pi +pj –dj) +0 +1 +pj
]= 2t +2pi +3pj –dj +di +1 ….. (a).

 F'ji= [(t +pj) + (t +pj –dj) +0 +1 +pj + (t +pj +pi) + (t +pj +pi –di) +0 +1 +pi]=4t +3pi
+5pj –dj –di +2 ….. (b).

Δij=(a) – (b)= –2t –pi –2pj +2di –1 ≤ 0, then job i precede j

 (when Vi= Ci –di). Fij= [(t +pi) +0 + (di –t –pi) +0 +(t +pi –di) +(t +pi +pj) + (t +pi +pj

–dj) +0 +1 +pj] = 3t +3pi +3pj –dj +1…. (c).

 F'ji= [(t +pj) + (t +pj –dj) +0 +1 +pj + (t +pj +pi) + (t +pj +pi –di) +0 +1 +pi]=4t +3pi
+5pj –dj –di +2 ….. (e).

Δij=(c) – (e)= –t –2pj +di –1 ≤ 0, then job i precede j

Case 5. If t +pi ≤ di, t +pj ≤ dj ≤ t +pi +pj (i.e. each of the two jobs i and j are
tardy if not scheduled first).

Proof:

 (when Vi=0). Fij= [(t +pi) +0 + (di –t –pi) +0 +0 +(t +pi +pj) + (t +pi +pj –dj) +0 +1 +pj
]= 2t +2pi +3pj –dj +di +1 ….. (a).

 (when Vj=0). F'ji= [(t +pj) +0 + (dj –t –pj) +0 +0 +(t +pj +pi) + (t +pj +pi –di) +0 +1
+pi]= 2t +3pi +2pj +dj – di +1 …. (b).

 Δij=(a) – (b)= –pi +pj +2di –2dj >0, then job j precede i.

 (when Vi= Ci –di). Fij= [(t +pi) +0 + (di –t –pi) +0 +(t +pi –di) +(t +pi +pj) + (t +pi +pj

–dj) +0 +1 +pj] = 3t +3pi +3pj –dj +1…. (c).

150

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

 (when Vj= Cj –dj). F'ji= [(t +pj) +0 + (dj –t –pj) +0 +(t + pj –dj) +(t +pj +pi) + (t +pj
+pi –di) +o +1 +pi] = 3t + 3pi +3pj –di +1….. (e).

Δij=(c) – (e)= –dj + di ≤ 0, then job i precede j.

 (when Vi=0). Fij= [(t +pi) +0 + (di –t –pi) +0 +0 +(t +pi +pj) + (t +pi +pj –dj) +0 +1 +pj
]= 2t +2pi +3pj –dj +di +1 ….. (a').

 (when Vj= Cj –dj). F'ji= [(t +pj) +0 + (dj –t –pj) +0 +(t + pj –dj) +(t +pj +pi) + (t +pj
+pi –di) +0 +1 +pi] = 3t + 3pi +3pj –di +1….. (e').

Δij=(a') – (e')= –t –pi +2di –dj >0, then job j precede i.

 (when Vi= Ci –di). Fij= [(t +pi) +0 + (di –t –pi) +0 +(t +pi –di) +(t +pi +pj) + (t +pi +pj

–dj) +0 +1 +pj] = 3t +3pi +3pj –dj +1…. (c').

 (when Vj=0). F'ji= [(t +pj) +0 + (dj –t –pj) +0 +0 +(t +pj +pi) + (t +pj +pi –di) +0 +1
+pi]= 2t +3pi +2pj +dj – di +1 …. (b).

Δij=(c') – (b')= t +pj +di –2dj ≤ 0, then job i precede j.

Case 6. If t +pi ≤ di ≤ t +pi +pj ≤ dj (i.e. the job i, is tardy if not scheduled first,

and j, is always early).
Proof.

 (when Vi, Vj=0). Fij= [(t +pi) +0 + (di –t –pi) +0 +0 +(t +pi +pj) +0 + (dj –t –pi –pj) +0
+0]= di + dj …..(a).

 (when Vj=0). F'ji= [(t +pj) +0 + (dj –t –pj) +0 +0 +(t +pj +pi) + (t +pj +pi –di) +0 +1
+pi]= 2t +3pi +2pj +dj – di +1 …. (b).

Δij=(a) – (b)= –2t –3pi –2pj +2di –1 ≤ 0, then job i precede j.

 (when Vi= Ci –di, and Vj = Cj –dj). Fij= [(t +pi) +0 + (di –t –pi) +0 +(t +pi –di) +(t
+pi +pj) +0 + (dj –t –pi –pj) +0 +t + pi +pj –dj] = 2t +2pi +pj…..(c).

 (when Vj = Cj –dj). F'ji= [(t +pj) +0 + (dj –t –pj) +0 +(t + pj –dj) +(t +pj +pi) + (t +pj
+pi –di) +0 +1 +pi] = 3t + 3pi +3pj –di +1….. (e).

Δij=(c) – (e)= –t –pi –2pj +di –1 ≤ 0, then job i precede j.
Case 7. If t +pi +pj ≤ di ≤ dj (i.e. both the jobs i, j are always early).
Proof.
 When Vi, Vj =0.

 Fij = [(t +pi) +0 + (di –t –pi) +0 +0 +(t +pi +pj) +0 + (dj –t –pi –pj) +0 +0]= di + dj
…..(a).

 F'ji = [(t +pj) +0 + (dj –t –pj) +0 +0 +(t +pj +pi) +0 + (di –t –pj –pi)+0 +0] = dj +
di….(b).

Δij=(a) – (b)=0, then it is indifferent to schedule i or j first.
 When Vi= Ci –di , Vj = Cj –dj.

 Fij = [(t +pi) +0 + (di –t –pi) +0 +(t +pi –di) +(t +pi +pj) +0 + (dj –t –pi –pj) +0 +(t + pi
+pj –dj)]=2t +2pi +pj…..(c).

 F'ji= [(t +pj) +0 + (dj –t –pj) +0 +(t +pj –dj) +(t +pj +pi) +0 + (di –t –pj –pi) +0 +(t +pj
+pi –di)]= 2t +pi +2pj ….(e).

Δij=(c) – (e)= pi –pj ≤ 0, then job i precede j.
 When Vi= Ci –di , Vj = 0.

151

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

 Fij = [(t +pi) +0 + (di –t –pi) +0 +(t +pi –di) +(t +pi +pj) +0 + (dj –t –pi –pj) +0 +0]= t +
pi +dj ….(n).

 F'ji= [(t +pj) +0 + (dj –t –pj) +0 +0 +[(t +pj +pi) +0 + (di –t –pj –pi) +0 +(t +pj +pi –di)
= t +pj +pi + dj …..(m).

Δij=(n) – (m)= –pj ≤ 0, then job i precede j.

Second: if r > t , then in the same way above we show that the theorem is true
(integral).
Theorem 2
For the problem (P), if ri = r , di = d, for every (i ϵN), and if pi ≤pj and dj =d , where
jobs (i), and (j) are adjacent jobs, then job (i) must precede job (j) in at least one optimal
sequence.
Proof. Using the same Previous methodology the we can prove the validity of this
theorem with the following cases:
First: r ≤ t:
Case 1: If d ≤ t +pi ≤ t +pj (i.e. both the jobs i, j are always tardy).
Proof. To show that S dominates S', it suffices to show that (Δij= Fij (S)- Fji (S') ≤ 0).
Since the jobs i and j are both tardy, then Ei=Ej=0, Vi=pi, Vj=pj, and Ui=Uj=1. Now, let

 Fij(S)= [(t +pi) + (t +pi – d) +0 + 1 +pi +(t +pi +pj) + (t +pi +pj –d) +0 +1 +pj]=4t
+5pi +3pj – 2d +2 ….. (a)

 F'ji= [(t +pj) + (t +pj –d) +0 +1 +pj + (t +pj +pi) + (t +pj +pi –d) +0 +1 +pi]=4t +3pi
+5pj –2d +2 ….. (b).

Δij= (a) - (b)= 2pi -2pj ≤0 , then job i precede j.
Case 2. If d ≤ t +pi, t +pi +pj ≤ d (i.e. the job i, is always tardy and the job j, is

always early).
Proof. Since the job i, is always tardy then Ei=0, Ui=1, and if job j is always early, then
Tj=0, and Vj={0, Cj –dj} (i.e. j , is early or partial early).
 (when Vj=0).

 Fij= [(t +pi) + (t +pi – d) +0 + 1 +pi +(t +pi +pj) +0 + (d –t –pi –pj) +0 +0]= 2t +3pi
+1… (a)

 F'ji= [(t +pj) +0 + (d –t –pj) +0 +0 +(t +pj +pi) + (t +pj +pi –d) +0 +1 +pi]
= 2t +3pi +2pj +1…(b)

Δij=(a) – (b)= – 2pj <0. then job i precede j.
 When (when Vj= Cj –d).

 Fij= [(t +pi) + (t +pi – d) +0 + 1 +pi +(t +pi +pj) +0 + (d –t –pi –pj) +0 +t + pi +pj –d]= 3t
+4pi + pj – d+1 ….(c).

 F'ji= [(t +pj) +0 + (d –t –pj) +0 +(t + pj –d) +(t +pj +pi) + (t +pj +pi –d) +0 +1 +pi] = 3t +
3pi +3pj –d +1….. (e).
Δij=(c) – (e)= pi –2pj ≤0, then job i precede j.
Case 4. If t +pi +pj ≤ d (i.e. both the jobs i, j are always early).
Proof.
 When Vi, Vj =0.

 Fij = [(t +pi) +0 + (d –t –pi) +0 +0 +(t +pi +pj) +0 + (d –t –pi –pj) +0 +0]= 2d …..(a).

 F'ji = [(t +pj) +0 + (d –t –pj) +0 +0 +(t +pj +pi) +0 + (d –t –pj –pi)+0 +0] = 2d….(b).
Δij=(a) – (b)=0, then it is indifferent to schedule i or j first.

152

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

 When Vi= Ci –d , Vj = Cj –d.

 Fij = [(t +pi) +0 + (d –t –pi) +0 +(t +pi –d) +(t +pi +pj) +0 + (d –t –pi –pj) +0 +(t + pi
+pj –d)]=2t +2pi +pj…..(c).

 F'ji= [(t +pj) +0 + (d –t –pj) +0 +(t +pj –d) +(t +pj +pi) +0 + (d –t –pj –pi) +0 +(t +pj
+pi –d)]= 2t +pi +2pj ….(e).

Δij=(c) – (e)= pi –pj ≤ 0, then job i precede j.
Second: if r > t , then in the same way above we show that the theorem is true
(integral).
8. Computational Experience
 An intensive work of numerical experimentations has been performed subsection
(8.1) shows how instances (test problems) can be randomly generated.

8.1. Test problems: We created (10) problems randomly, for each problem, nϵ {5, …,
16} jobs, and for each job j has the following data:

 The processing time pj is generated from the discrete uniform distribution [1,10].

 Integer due date dj is generated from the uniform distribution [1, (1-Tf+Rrdd/2)Sp],
where Sp= ∑ 𝑝௝

௡
௝ୀଵ , (Tf) is the "tardiness factor", and (Rrdd) is the "relative range of

the due dates". For the two parameters (Tf) and (Rrdd), the values (0.2, 0.4, 0.6, 0.8,
1.0) are considered.

 Integer release date rj is generated for each j from the uniform distribution [1, 5].

8.2. Computational Experience with the (UB) and (LB) of (B&B) Algorithm
 The (B&B) algorithm was tested by coding in (Mat lab 2018) and running on a
personal computer Dell Core i7 with Ram 8 GB. Tables 1, 2. Shows the results to
problem (P) obtained by (B&B) algorithm, when n ϵ{5,6,…,10} and nϵ{11,12,…,16}
respectively. The first column (n) indicate to the number of jobs, the second column
(EX) indicate to the number of examples for each instance n, the third column (CEM)
complete enumeration method only in Tables 1. The fourth column (optimal) indicate to
the optimal solution obtained by(B&B) method, the fifth and sixth columns indicate to
upper bound (UB) and initial lower bound(ILB) respectively, and the other columns
(NON) are indicate to number of nodes, time (CEM), and time(B&B) , finally, column
(status) indicate to the problem solved (0) or not (1). The symbols (*) indicate to the
(UB) given an optimal value and (**) indicate to the (ILB) given an optimal value. The
(B&B) algorithm was stopped when the sum of (status column ≥3). A condition for
stopping the (B&B) algorithm was determined and considering that the problem is
unsolved (state is 1). Here, the (B&B) algorithm is stopped, after (1800) second. From
Tables 1, 2. We are noticed that the six heuristic of upper bound given good results, it
gives the value for objective function equal to optimal or near optimal value.
 We also have two other Tables 3, 4. Are the summary of the two previous Tables 1, 2.
That show the average computational time of (CEM) and (B&B), the average of nodes,
and the unsolved problems.

153

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

Table 1. The performance of CEM, optimal of (B&B), (UB), (ILB), number of node and (CPU) in seconds
of (CEM) and (B&B), for n = (5,7,10).

n EX CEM B&B UB LB NON T.(CEM) T.(B&B) Status

 1 163 163 166 123 41 0.0217488 0.110176 0

 2 160 160 160* 102 51 0.0040399 0.025487 0

 3 207 207 219 177 57 0.0043776 0.016705 0

5 4 93 93 93* 44 69 0.003325 0.009982 0

 5 87 87 87* 55 24 0.0113214 0.016442 0

 6 95 95 95* 71 25 0.002008 0.00461 0

 7 166 166 166* 129 94 0.002042 0.007144 0

 8 135 135 136 98 57 0.0020626 0.004578 0

 9 168 168 171 115 51 0.0019062 0.003848 0

 10 145 145 145* 113 38 0.0018841 0.003119 0

 1 244 244 286 183 235 0.1016655 0.1174261 0

7

2 152 152 159 113 362 0.0814766 0.0421561 0
3 188 188 188* 131 211 0.0738479 0.0200314 0
4 158 158 181 122 256 0.073096 0.0223296 0
5 311 311 317 270 226 0.0808035 0.0301934 0
6 146 146 149 109 226 0.0697635 0.0211181 0
7 254 254 254* 192 583 0.0714399 0.0397211 0
8 230 230 260 175 291 0.0715506 0.014869 0
9 306 306 308 245 731 0.0696867 0.0437375 0
10 199 199 209 162 271 0.0700934 0.0178577 0

10

1 540 540 595 478 6799 62.948728 0.5378211 0
2 377 377 377* 314 8800 57.021325 0.5824576 0
3 525 525 540 423 11431 57.77288 0.7884419 0
4 325 325 363 261 23298 60.377976 1.3742526 0
5 402 402 411 324 7183 57.3601 0.4897919 0
6 322 322 369 239 13592 61.739524 0.5339548 0
7 370 370 394 307 3135 56.726814 0.2065081 0
8 377 377 383 304 7338 59.551903 0.4800463 0
9 372 372 393 288 4955 60.867124 0.293253 0
10 526 526 556 442 29039 59.035872 1.846271 0

154

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

Table 2. The performance of optimal of (B&B), (UB), (ILB), number of node and (CPU) in seconds of
(B&B) for n=(11, 13, 16).

n EX B&B UB LB NON T.(B&B) Status

11

1 504 559 404 28164 1.798678 0

2 597 597* 494 16666 1.1426506 0

3 412 412* 339 37043 2.4015924 0

4 315 384 230 14400 0.6151017 0

5 626 665 541 66156 4.2628177 0

6 599 599* 518 12403 0.8402274 0

7 416 416* 332 88787 5.5034052 0

8 550 578 438 33125 1.968353 0

9 446 446* 364 52656 3.3493212 0

10 563 580 469 77098 4.981989 0

13

1 758 786 678 966958 68.04239 0

2 782 797 664 384969 26.9411 0

3 869 871 773 1799803 122.9181 0

4 551 568 426 764902 55.11314 0

5 726 735 616 803127 54.33091 0

6 855 866 726 461218 34.64196 0

7 544 588 431 70847 5.386437 0

8 767 824 658 1013911 100.976 0

9 725 795 578 583650 28.91363 0

10 845 889 687 2107275 120.6244 0

16

1 1150 1157 1022 12015015 976.3893616 0

2 1193 1280 1101 15004109 1141.920575 0

3 914 990 793 14240404 767.3393739 0

4 1226 1242 1107 24168411 1800.001399 1

5 789 864 677 6028307 513.3604747 0

6 940 989 828 22692450 1800.000598 1

7 950 1092 836 8260306 504.8303402 0

8 1182 1183 1061 23951871 1800.000418 1

9 1067 1086 951 21206817 1800.000022 1

10 1004 1059 879 20173233 1676.25391 0

155

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

 In the Tables 1, 2. We have:

 n : Number of jobs.
 EX : Example number.
 CEM: The optimal solution obtained by (CEM).
 B&B: The optimal solution obtained by (B&B) method.
 UB: The upper bound obtained from (section 6.1).
 LB: The lower bound obtained from (section 6.2).
 NON: Number of nodes.
 T.CEM: The time (in seconds) which is required for (CEM), only in Table 1.
 T.BAB: The time (in seconds) which is required for (B&B).

 Status=ቄ 𝟎 𝒊𝒇 𝒕𝒉𝒆 𝒑𝒓𝒐𝒃𝒍𝒆𝒎 𝒊𝒔 𝒔𝒐𝒍𝒗𝒆𝒅
 𝟏 𝒐. 𝒘.

 *= The upper bound givens the optimal value.
**= The (ILB) given an optimal value.
 The following tables summarize Tables 1, 2.

Table 3. Summary of the Table 1.

Table 4. Summary of the Table 2.

In Table 3, 4. We have:
n : Number the jobs.
Av.T. (CEM) :Average computational time of (CEM).
Av.T. (B&B):Average computational time of (B&B).
Uns. P: The unsolved problem

8. Conclusion and Future Work
 In this paper, we been developed exact solutions for the problem of scheduling (n)
jobs on one- machine to minimize the sum total completion time, total tardiness, total
earliness, number of tardy jobs and total late work with unequal release dates. A branch

n Av.T.(CEM) Av. T.(B&B) Av. NON N. Uns.
P

5 0.005472

0.0202091 50.7 0

7 0.076342

0.036944 339.2 0

10 59.34022

0.7132798 11557 0

n Av. T.(B&B) Av. NON Uns. P

11 2.6864136

42650 0

13 61.78880509

895666 0

16 1278.009647

17052164 4

156

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

and bound (B&B), is used to solve to our problem. Computational experience showed
the proposed (B&B) algorithm is effective in solving problems with up to (16) jobs.
The study of this problem opens up new horizons for future research and here we can
refer to the most important ideas that we want to work on in the future:
1. Develop the suggested lower bound (LB) for problem, as well as dominance rules

(DR), in order to reduce the search space.
2. Use local search methods to solve our problem.
3. from of the topics of interesting to us in the future are to examine the following two

problems:
a) 1 /rj/ F(∑Cj, ∑Tj, ∑Ej)
b) 1 /rj/ F(∑Cj, ∑Uj, Tmax)

References
1. Chen, W.Y.; Sheen, A. Pareto- optimal solution procedure for the single- machine

scheduling problem with release time and multiple performance measures. Journal
of the Chinese Institute of Industrial Engineers.2011, 28, 5, 346-359

2. Lenstra, J.K.; Kan, A.R.; Brucker, P. Complexity of machine scheduling problems.
Annals of discrete mathematics. Elsevier.1977, 1, 343-362.

3. Smith, W.E. various optimizers for single-stage production. Naval Research
Logistics Quarterly. 956, 3, 1-2, 59-66.

4. Schrage, L. Letter to the editor—a proof of the optimality of the shortest remaining
processing time discipline. Operations Research.1968, 16, 3, 687-690.

5. Chandra, R. On n/1/F dynamic deterministic problems. Naval Research Logistics
Quarterly.1979, 26, 3, 537-544.

6. Dessouky, M.I.; Jitender, S.D. Sequencing jobs with unequal ready times to
minimize mean flow time. SIAM Journal on Computing.1981, 10, 1, 192-202.

7. Ahmadi, R.H.; Uttarayan, B. Lower bounds for single-machine scheduling
problems. Naval Research Logistics (NRL).1990, 37, 6, 967-979.

8. Chu, C. A branch-and-bound algorithm to minimize total flow time with unequal
release dates. Naval Research Logistics (NRL).1992, 39, 6, 859-875.

9. Rinnooy Kan, A.H.G. Machine sequencing problem: Classification. Complexity
and Computation, 1976.

10. Chu, C. A branch-and-bound algorithm to minimize total tardiness with different
release dates. Naval Research Logistics (NRL).1992, 39, 2, 265-283.

11. Baptiste, P.; Jacques, C.; Antoine, J. A branch-and-bound procedure to minimize
total tardiness on one machine with arbitrary release dates. European Journal of
Operational Research.2004, 158, 3, 595-608.

12. Mohammed, H.A. Approximation algorithms for minimizing the total weighted
earliness on machines scheduling. Journal of Karbala university.2009, 7, 1, 23-33.

13. Sidney, J.B. Optimal single-machine scheduling with earliness and tardiness
penalties". Operations Research.1977, 25, 1, 62-69.

14. Mahnam, M.; Ghasem, M. A branch-and-bound algorithm for minimizing the sum
of maximum earliness and tardiness with unequal release times. Engineering
Optimization. 2009, 41, 6, 521-536.

157

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

15. Błażewicz, J. Scheduling preemptible tasks on parallel processors with information
loss. Recherche Technique et. Science Informatiques.1984, 3, 415–420.

16. Potts, C.N.; Van Wassenhove, L.N. Approximation algorithms for scheduling a
single machine to minimize total late work. Operations Research Letters.1992, 11,
5, 261-266.

17. Potts, C.N.; Van Wassenhove, L.N. Single machine scheduling to minimize total
late work. Operations Research.1991, 40, 3, 586-595.

18. Kethley, R.B.; Bahram, A. Single machine scheduling to minimize total weighted
late work: a comparison of scheduling rules and search algorithms. Computers &
Industrial Engineering.2002, 43, 3, 509-528.

19. Abdul Razaq, T.S.; Al Saidy, S.K.; Al Zuwaini, M.K. Single Machine Scheduling
to Minimize Total Weighted Late Work with Release Date. J. of Al-Qadisyah for
pure science.2008, 13, 4, 91-112.

20. Moore, J.M. one machine sequencing algorithm for minimizing the number of late
jobs. Management science.1968, 15, 1, 102-109.

21. Dauzère, P.S. Minimizing late jobs in the general one machine scheduling
problem. European Journal of Operational Research.1995, 81, 1, 134-142.

22. Baptiste, P.; Laurent, P.; Eric, P. A branch and bound to minimize the number of
late jobs on a single machine with release time constraints. European Journal of
Operational Research.2003, 144, 1, 1-11.

23. Briand, C.; Samia, O. Minimizing the number of tardy jobs for the single machine
scheduling problem: MIP-based lower and upper bounds. RAIRO-Operations
Research. 2013, 47, 1, 33-46.

24. Al-Zuwaini, M.K.; Mohanned, M.K. One Machine Scheduling Problem with
Release dates and Tow Criteria. Journal of Thi-Qar University.2011, 6, 2, 1-14.

25. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and
approximation in deterministic sequencing and scheduling. a survey. In Annals of
discrete mathematics. Elsevier.1979, 5, 287-326.

26. Mahmood, A. A. Solution procedures for scheduling job families with setups and due
dates. Diss. M. Sc. Thesis, University of AL-Mustansiriyah, College of Science,
Dept. of Mathematics, 2001.

27. Lawler, E.L. Optimal sequencing of a single machine subject to precedence
constraints. Management science.1973, 19, 5, 544-546.

28. Hanan, A.C. Exact Approximation Algorithms for Scheduling with and without
Setup times Problems. PH. D. Thesis. University of Mustansiriya, college of
Science, 2007.

29. Tariq, S.A.; Hussam, A.M. Simulation Annealing and Genetic Algorithms for the
Single Machine Scheduling Problem. AL- Mustansiriya J. Sci. 2010, 21, 7, 24-33.

30. Baúto, J.; Rui, N.; Nuno, H. Parallel Genetic Algorithms for Financial Pattern
Discovery Using GPUs. Springer International Publishing, 2018.

