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Abstract

In this paper, several types of space-time fractional partial differential equations has been
solved by using most of special double linear integral transform” double Sumudu ”. Also, we
are going to argue the truth of these solutions by another analytically method “invariant
subspace method”. All results are illustrative numerically and graphically.
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1. Introduction

As known, linear integral transformation is used to solve differential equations, by
convert the Linear partial differential equation into algebraic equation which can be solved
easily. So, the integral transforms such as Mellin, Laplace, Fourier and Sumudu were vastly
applied to obtain the solution of differential equations, which are used in astronomy, physics
and also in engineering.
Partial differential equations are considered one of the most significant topics in mathematics
and others. Motivated by no general methods for solve these equations, integral transform
method is one of the most familiar method in order to get the solution of such equations [1-3].
Double Laplace transform method and double Sumudu transform method (DSTM) were used
to solve wave and Poisson equations [4, 5].
Moreover, the relation between these linear integral transformations and their applications to
differential equations have been determined and studied by [6]. In this study we focus on
double Sumudu integral transform in addition to using analyses method [7]. Invariant
subspace method (ISM)” to solve some of important time-space and mixed fractional partial
differential equations, and we are going to argue the results solution in these two methods
graphically and numerically.
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2. Some Basic Concepts

1. Important Facts of the Fractional Calculus [8, 9].

In this section, we give some important definitions and notation which are needed in our
work.

Definition 1: [8]. The Riemann-Liouville fractional integral of order a for a function f is
defined as:

a _ 1 t a—1 d
J f(t)—mof(t—x) FOOdx @t>0

The R-L fractional integral operator has the following properties:
1. J* is linear
2. J°=1

3. limje=]°

a—0

Definition 2: [8]. The Caputo fractional derivative of positive order a for a function f is

defined as:
1t M
d EN
DEF(E) = J*=2DPf(£) = |Tn=) o G=es? n#an
™) n=a
Some properties of fractional Caputo derivative and fractional R-L integral are:
a B — F(1+B) a+ﬁ _
1. Jét —I‘(1+ﬁ+at a>0, f>-1,t>0
ra+p)  p-o B _
7 tB—F(1+Goc n—1<a<n Bf>n—-1 PER
dee 0 n—-1<a<n B<n-—1, BEN

. @09 =1
4, I“(@f(t)>—f(t) S L0 0)

dx+h . i .
> ot* <6tﬁf( )> ath (6ta f(t )) otath f@® provided that f(l) =0,i=
01,..,n—1TLa+pB<n neN

Definition 3: [8,9]. A two parameters Mittag-Leffler function is defined as:

0 xk
Ea,ﬁ(x) = ;m a,ﬂ € C, R((l), R(,B) >0

Lemma 1: [8,9]. A Mittag-Leffler function has an interesting properties:

1. Eg1(x) = E,(x) 3. Ey1(x*) = cosh(x) 5. E;1(x?) = cos(x)
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2. Ej1(x) =e* 4, xE,1(x?) = sinh(x) 6. xE 1 (x%) = sin(x)

Lemma 2: [9]. The Caputo derivatives of Mittag-Leffler are given as:

(k+n)!xk

(n) _ Vo
L. Ea’ﬁ (x) - 2k=0 k!T'(ak+an+p) neN
2. :—;(Ea(at“)) =aE,(at*) a>0, a€R
av _ —y—
3. W( th 1Ea_ﬁ(at“)) =tF Y B p ,(at®) y>0

1. On the Single and Double Sumudu Transform

The Sumudu transform introduced firstly by the Watugala [1,2]. Which can be used to solve
the ordinary and partial differential equations with ordinary and fractional order.

The following definitions and properties of single and double Sumudu transform are
necessary for our work. For all, we consider Sumudu transform of a function and its inverse is
exist, i. e., the considered function is of exponent order.

Definition 4: [10]. A function f(x) is said to be of exponent order @ > 0 if there exist non-
negative constants M, ¢ and T such that |[f(x)| < Me** x>T.

For example, all polynomials e** where a is a constant, sine and cosine functions and
products of these functions are of exponential order.

An example of a function not of exponential order is e*”. This function grows too rapidly.

Definition 5: [3]. The Sumudu transform for the exponent order function f (x) is given by

S{f()} = T(w) = = [ €T () dx x>0
0
And the inverse Sumudu transform of T(u) is defined by:

a+ico

— 1
S I{T(U)} = f(X) = o | equ(%)dTu=zResidues[exu¥] Re(w)<a
a-ico

The Sumudu transform of the important function "Mittag-Leffler function ” is given by
ub-t

1—2Au*

Sumudu transform for some famous functions are included in the following table.

S{tPF1E,g(AD)} =

Table 1. Sumudu transform for some special functions.

f(x) Sfx)} =T f(x) S{f(} =T
1 1 x* i+ a)u”
x 1 . au
e 1—au sin ax m
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1 inh au
cosax — sinh ax —
1+ a?u? 1-a*u?
xaeax .ua h 1
_— —_ coshax —
r1+a (1 - au)tte 1 - a?u?

Definition 6: [3]. The double Sumudu transform for the function f (t, x) is given by:
o0 o0 x t
S} =Twv) = o [ [ e )f(x t)de dx
00

We state here some of the important properties of double Sumudu transform which are needed

L. S2{f (ax)g(b t)} = T (au)G (bv)
2. SAIEf(x, )} = u*T(u,v)

Theorem 1: [11]. If the double Sumudu transform of the function f (x; t) given by
S{f (x,t) = T(u,v), then:

k
1. Sy{x™f(x, )} = u" YR_, al uk %T(u, v)

ak+l
2. SEMMf( D)} = uhv™ N af bltukv!

at =nln, af =ap-i+m+k)a}™t, similarly for b]"

T(u,v) where afl =1, a}} =1,

The double Sumudu transform of the partial Caputo fractional derivatives are given in the
following theorem:

Theorem 2: [4]. Let the exponent order function f (x,t) has a continuous partial derivative
onRt*XxRtand n—1<a <n m-1<pf < m, then:
3. S{DIf(e )} =u¢[T(u,v) - X5 u' T;(0,v)]

4. SZ{fo(x, t)} = v F[T(w,v) — X755 v/ T;(u, 0)]
5. S{DPDgfex 0} = uev P T(u,v) - B U T(0,v) — TG VI Ty(u, 0) +
_ _ .. ai+]'
2{1201 jn;01 u'v) pYp f(0,0)]

Where T;(0,v) = S, {% £(0, t)} and T;(u,0) = S, {;—t]] flx, 0)}

1. On Invariant Subspace Method

In 2018, authors, [ 7, 9]. Developed the invariant subspace method for finding exact solutions
to some nonlinear partial differential equations with fractional-order mixed partial derivatives
(including both fractional space derivatives and time derivatives). These equations are in the
form:

n aa+j aB aﬂ+1 aB+m 9« aﬁ
Zlim u(x,t) = N(x,u,axﬁ u,ax[ng1 u, ""axﬁ+m” )+uﬁ<mu> @Y
j=0

a<a<a+1l b<pB<b+1 abm,n €N ,u €R
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Theorem 3: [9]. Suppose I,41 = L{gy(x), p1(x),..,¢dn(x) } is a finite- dimensional

B
linear space, and it is invariant with respect to the operators N[u] and %u, then FPDE (1)
has an exact solution as follows:
n
w0 = ) k(i) @
i=0

Where {k;(t)} satisfies the following system of FDEs :

da¢n+1+i

FITE i=01...n (3)

aa+j
Aimrzwr ki) = Yilko (0, ke (0, ko (), o, kn () + 1
j=0

Where {Yo, Y1, -, ¥n b {W¥ns1, Wnaor - Wansq} are the expansion coefficients of N[u] and

B
;—B u respectively with respect to {¢(x), p1(x),.., Pn(x) }

6. Numerical Examples

In this section, we consider that the inverse double Sumudu transform is exist.
We apply this transform and technique of invariant subspace method to solve some of the
fractional diffusion heat and wave equations in one dimension with initial and boundary
conditions and fractional parabolic-hyperbolic differential equations.

Example 1: Consider the homogeneous fractional wave equation:
DEF(x, ) =DPf(x,t) 1<a, p<2 (4)
With the initial and boundary conditions
f(x,0) = xEgo(=xF),  fi(x,0)=2,f(0,6) =2t, f(0,6) = E(—t%)
Solution by Double Sumudu Transform Method.
Operating double Sumudu transform of Equation (4), and using Theorem 2, we get:
v YT(u,v) — Ty(u,0) — vT;(u,0)] = u=B[T(u,v) — Ty(0,v) — uT;(0,v)] (5)

By applying the single Sumudu transform for conditions, and using properties of Mittag-
Leffler function, we get:

u
To(u,0) = T4 uf T,(v,0) =2, Ty(0,v)=2v, Ty(0,v) =

\%
14 ve (6)

By substitute (6) in (5), we obtain

v [T(u, v) — (2v + T uB)] =uh [T(u,v) —Q@v+y n v“)]
(uB - Va)T(u, V) = ub (ZV + 1 :ug) —ve(2v+ 1 :Va)
u(u[3 — V“)

= 2v(uP —v*) +

1+ uP)(1 + v
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u 1

T(uv) =2v+ 1+ubf 14vo

(7)

The inverse double Sumudu transformation of (7) yields the exact solution of (4) as:
f(x,t) = 2t + xEg »(—xP)Eq (—t%)

When @ = f = 2, the exact solution for standard wave equation f;; = f,, is:

f(x,t) = 2t + sin(x)cos(t).

Solution by Invariant Subspace Method:

B
Let I, = {1, xh } is invariant subspace under the operator N[f] = aax_l? f as:

B
For f € I, then N[f] = [ko + kyx?] = — (ko + kyx#) = T(1 + B)ky €1,
Then by [4]. We conclude the following FDE:s:

L ko(t) = T(1 + ks (£) ()

Lok =0= k() =a+bt 9)

Substitute (9) in (8), we obtain

ko (£) = LB g | DTALE)

a+1 .
Tt Tz t + c +dt for any arbitrary constants, b, ¢, d

So, the exact solution for equation (4) is:

£ 0) = ko(t) + ey (0)f = AR o PTA+E)

— a+1 B
T+ F(2+a)t +c+dt+ (a+bt)x

If we change the invariant subspace, we get anew exact solution of the same equation (4) as if
we consider the new subspace such as [, = {1, xEp, (—xﬁ)},

Also, this subspace is an invariant under the operator N, since
N[f] = Df[ko + kl XEB,Z(_XB)] = _klxl_BEB'z_B(_xﬁ) = _klxﬂEB'z(_X'B) E 12

and we have the following new FDEs :
a

d
Wk()(t) =a+bt

a

d
W]ﬁ(t) = —k1(t) = k1 (t) = Eo(—t%)

Hence, the exact solution in this case is:
flx,t) =ky+ ky xEﬁ‘Z(—xﬁ) =a+ bt + Ea(—t“)xEﬁyz(—xﬁ)
From our conditions, we get
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f(x,00=0=a=0, f(0,t)=2t=b=2
So, the exact solution is
f(x,t) = 2t + Eo(—t*)xEp ,(—xF)

Which agree with that by double Sumudu transform.
Table 2. Showing the absolutely error of some of 10-order approximate solutions of Equation
(4), for various values of , .

Also, 3-D plotting of these solutions are illustrated in Figure 1.

Table 2. Absolutely error of 10-order approach solutions of Equation (4).

[x,r) S Uinapp Errar
x=fF=12
(0.3,0.1) 04940438366 04540438366 0
(0.6,0.2) 0.9533872166 0.9533872166 0
(0.4,0.8) 1.8713103718 1.ET13103718 0
(0.9,0.9) 2. IRa0238154 2 2Ea0238154 0
=13 =17
(0.3,0.1) 0478523188 D.4TE523188 0
(0.6,0.2) 0.BR&TIR04TE 0.BB6TIRNITE 0
(0.4,0.8) 1 TR&59 1 B0 1. 7885918099 T RA9350999 — 14
(0.9,0.9) 21139517311 21139517311 B ZTR6S9999e — 13
Exact. a= (=2 a= (=2 a=1.7 and §=1.9

0 0

t

a=1.6 and g=1.2 a=1.3, p=1.1

Figure 1. Exact solution and 10-order approximate solutions of Equation (4) for various values of a, 5.

133



Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020

Example 2: Consider the following inhomogeneous fractional wave equation:
DEf(x,t) —DPf(x,t) =6t+2x 1< ap <2 (10)
With conditions
f(x,00=0,  fi(x,0) =xEg,(—xF), £(0,t) =t3,  f(0,t) = t? + tE,,(—t%)

Solution by Double Sumudu Transform Method.
By analogous in previous examples, we get

v “(T(u,v)—l_l_uﬁ) =u B(T(u,v)—6v3 —u(2v2+1+va))+6v+2u
ul*h uv
(uf —v*))T(w,v) = TTuf v (6173 + 2uv? + o v“) + 2uPv®*(u + 3v)

B uv(uf —v%)
T A+ uP)(1 +v9)

+ 2v%(u + 3v)(uﬁ — v“)

u v
— 4+ 2v¢ 3 11
1+u51+v“+ v+ 3v) (1)

T(u,v) =

The inverse double Sumudu transform of Eq.(11) reads

2xt?® N 6tite
(l+a) T2+a)

f(x,t) = xEp(—xF)tE, ,(—t*) +

Note that, when= B = 2, we have f (x,t) = xt? + t3 + sin x sint which agree with the
exact solution of standard non-homogeneous wave equation f;; — fir = 2(x + 3t).

Solution by invariant subspace method
The inhomogeneous fractional partial differential equation (10), cannot be solved by
invariant subspace method directly, in this case we find the solution of homogeneous equation
directly by invariant subspace method and then we can be use any suitable numerical method
”Variation iteration method”, i. e, coupled invariant subspace method with variation iteration
method(ISVIM) to find an approximate solution of the original equation.
Table 3. Contains the absolutely error of some of 10-order approximate solutions of eq.(10)
for various values of a,p.
3-D plotting of these solutions are illustrated in Figure 2.
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Table 3. Absolutely error of 10-order approximate solutions of Equation 10.

(x,1) Mg Mioepp | Error |
a=§=2
(0.3,0.1) 0.0335027919 0.0335027919 0.006
(0.6,0.2) 0.1441771423 0.1841771423 0.048
(0.4,0.8) 0.91935161976 1.0473516198 0.128
(09,09) 2.0716010473 20716010473 0
a=148=18
(0.3,0.1) 0.0561281872 0.0561281872 0
(0.6,0.2) 0.2500829871 0.250082987 1 0
(0.4,0.8) 1 8895767906 1.8895767906 1.511e - 16
(0.9,09) 33194135764 33194135764 2.0361999999% — 15
Exact o= =2 a= (=2 a=1.6 and (§=1.3

0 o0

a=1.1and §=1.4 =1.3 and g=1.1

Figure 2. Exact solution and 10-order approximate solutions of Equation 10, for various values of , .

Example 3: Consider the following mixed partial fractional differential equation
DPDE f, ) + f(x,) =0, O<af<1 (12)
With conditions
f(0,t) = Ezﬁ(tzﬁ), f(x,0) = EZa(xza)
Solution by double Sumudu Transform Method:

By Theorem (2) one can obtain
u" v P[T(u,v) — T(u,0) = vT(u, 0)] + T(u,v) = 0

1t u-y-BYT 1 1 |- 1—u?p?h
(L w T @) = 7+ T~ L= g oo e
1 1 vh u®
Twv) = (1 - 1723) (1 - uZ“) \1-v28 (1 - uz"‘) (13)

Operating inverse double Sumudu transformation of (13) reads the exact solution of (12) as:
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flx,t) = Ezﬁ(tzﬁ)EZa(xza) - tBEzﬁ,1+ﬁ(tzﬁ) XEq 144 (t*%)
For « = f = 1, we obtain the standard differential equation fitx + f = 0, which has the
exact solution as

f(x,t) = cosh(x —t).

Solution by Invariant Subspace Method:

Using Theorem (3), Eq. (12) in the operators form is:
af (9%
N[f] +at_ﬁ(6x_‘7‘f) =0 where N[f] = f
By consider I, = {1, E,(x%),E,(—x%*) } is invariant subspace under the operators N[f]
a* .
and Py f since

Vf=a+ bE,(x%) + cE,(—x%*) € I, a, b, c are arbitrary constants

a
N[f]:fEIZ' axa

f =bE,(x%*) —cE,(—x%), € I,

According to the invariant subspace method and by considering f = Y74 C; (t)¢;(x) we
have the following FDEs

Co(t) =0
dB

Wcl(t) +Cy(t) = 0 = Cy(t) = AEg(—tF)
dB

Wcz(t) -G =0=C() = BEﬁ(tB)

So, the solution of Eq.(12) is:
fx,t) = Co(0)+C (D) EL(x) + C(0)Eq (—x*)
= AEg(—tP)E,(x®) + BEg(tF)E,(—x%)
From our conditions, we have

F,0) = Eagx2) = 3 [Ea(x®) + Eq(~x)] = AE,(x") + BE,(~x%)
Thus, A =B = % and f(x,t) = %[EB(—tB)Ea(x“) + Eﬁ(tﬁ)Ea(—x“)]

Fora=f=1
flx,t) = %(ex‘t + e'™) = cosh (x — t)

which agree with that in double Sumudu transform method.
Exact solution and 10-order approximate solutions of Equation 14, are shown in Figure 3. For
various values of , 5.
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Exact o= =1 a=.9and (=.95 a=0.1 and 3=0.3

«=0.2 and (3=0.5

Figure 3. Exact solution and 10-order approximate solutions of Equation 14, for various values of «, f5.

Example 4: Consider the following fractional mixed derivatives diffusion equation

Dt"‘f=fo+D§‘fo O0<ac<il, 1<p <2 (14)
With conditions
ra+p) u
= —— = = ﬁ
f£(0,¢t) 1+F(1+a)t' £:(0,t) =0, f(x,0)=1+x

Solution by Double Sumudu Transform Method:
Operating single Sumudu transform of conditions, we get

To(0,v) =1+T(1+ p)ve, T1(0,v) =0, To(u,0) =1+T(1+ p)ub
Using Theorem (2), we get
v T(w,v) — Ty(u,0)] = uP[T(u,v) — Ty(0,v) — uT;(0,v)] + v *uB[T(u,v) —
Ty(0,v) — uT,(0,v) — Ty(u,0) + 1]

(1+v*+uf)T(wv)
=v*(14+vT(L+p)) + (v*+uf)rA+ B +1—-uP (L +uPT(1 + B))
=(1+v*+uf)A+ (v* +uP)T(1 +B)
T(w,v) =1+ (v*+uf)F(1+p)

Taking inverse double Sumudu transform of the last equation, we can obtain the exact
solution of (14) as
ra+p)
) =1+xF + —t@
feet) x I'(1l+a)
which agree with that for [9].
3-D plotting of the exact solution and 10-order approximate solutions for Equation (14) for

various values of @, 8, are contained in Figure 4.
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B =2 and a=1 £=1.99 and o=.9 B8 =1.6 and a=.8
8 8
6 6
4 4
2 2
2 2

00 0 o
t X t
,3 =1.7 d a=.5 ﬂ =1.3 ad a=.1 ﬂ =1.2 and a=.9

Figure 4. Exact solution and some of approximate solution of Equation 16, for various values of a, £5.

7. Conclusion

In this paper, the comparison between the analytical subspace method and double Sumudu
transform method has been achieved. From this study, we insure that the double Sumudu
transform method is an efficient tool to obtain an exact solutions of many types of linear
fractional partial differential equations that have complicated using other numerical methods,
however, more of homogeneous type of constant coefficients fractional partial differential
equations can be solved analytically with the invariant subspace method than the Sumudu
transform.
In both methods, our example illustrated that the solutions which have been achieved in
terms of the infinite series Mittag-Leffler function and we have done this by truncated 10-
order approximate of this function. This is the reason for explaining the variance of the
absolute error for numerical solutions.
Of course, for nonlinear case, we must couple the Sumudu transform with any known
numerical method, which need not it with invariant subspace method.
Furthermore, the invariant subspace method is more suitable for solving some of fractional
differential equations with variable coefficients than the double Sumudu transform method.
Figures and tabulated results, show how the two methods are have high accuracy. All data
type achieved by help of Mathcad 15 and Matlab programs.
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