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Abstract

In this paper, we introduce and study the notation of approximaitly quasi-primary
submodules of a unitary left R-module Q over a commutative ring R with identity. This
concept is a generalization of prime and primary submodules, where a proper submodule E of
an R-module Q is called an approximaitly quasi-primary (for short App-qp) submodule of Q,
if rq€E, for r €R, q € Q, implies that either q € rady(E) + soc(Q) or r"Q S E +
soc(Q), for some n € Z*. Many basic properties, examples and characterizations of this
concept are introduced.

Keywords: Prime submodules, Primary submodules, Socle of modules, Radical of
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1. Introduction

In this article all rings are commutative with identity, and all modules are left unitary R-
modules. Dauns, J. in 1978 introduced and studied the concept of prime submodule, where a
proper submodule E of an R- module Q was prime if rq € E, for r € R, q € Q, implying that
either g € E or rQ € E [1]. Recently many generalizations of prime submodule have been
introduced for example, see [2-5]. Primary submodules as a generalization of prime
submodules was first introduced in [6], where a proper submodule E of Q was called primary
submodule if whenever rq € E, for r € R, q € Q, implying that either q € E or r*Q < E, for
some n € Z*. The concept of quasi-primary ideal which was introduced and studied by
Fuchs, L. [7], where a proper ideal I of a ring R was called quasi-primary ideal if rs € I, for
r,s € R, implying that r € VI or s € I, where VI = {r € R:r™ € I for somen € Z*}. In
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particular I is quasi-primary ideal of R if and only if V7 is a prime ideal of R [7, p. 176]. In
2016 Hosein, F. et. Extended the notation of quasi-primary ideal to submodules, where a
proper submodule E of an R-module Q was called quasi-primary if rq € E, forr €R, q € Q,
implying that either q € rad,(E) or r € \/[E:g Q], “where rady(E) define the intersection
of all prime submodules of Q contining E [8]”. Those two concepts led us to introduce the
notation of approximaitly quasi-primary submodule as generalization of prime and primary
submodules, where a proper submodule E of an R-module Q is called an approximaitly quasi-
primary (for short App-qp) submodule of Q, if rq € E, for r € R, q € Q, implies that either
q € rady(E) + soc(Q) or vQ S E + soc(Q), for some n € Z*. The socle of a module Q
denoted by soc(Q) is the intersection of all essential submodules of Q [9]. Several results of
approximaitly quasi-primary are introduced.

2. Approximaitly Quasi-primary Submodules
In this part of the paper, we introduce the definition of approximaitly quasi-primary
submodule and give it some basic properties and characterizations.

Definition (1)

A proper submodule E of an R-module Q is called an approximaitly quasi-primary (for
short App-qp) submodule of Q, if rq € E, for r € R, q € Q, implies that either q €
rady(E) + soc(Q) or r*Q S E + soc(Q), for some n € Z*. And an ideal A of a ring R is
called App-qp ideal of R if A is an App-qp submodule of an R-module R.

Remarks and examples (2)
1) It is clear that every primary submodule is an App-qp, but not conversely. The following
example explains that:

Consider the Z-module Z,,, the submodule E = (0) is not primary submodule of Z-module
Z,,, since 4.3 € (0), for 4 € Z,3 € Z;, , but 3 & (0) and 4 & /[(0):, Z,,] = V12Z = 6Z.
But E = (0) is an App-qp submodule of the Z-module Z,, , since for all r € R, q € Z;, such
that rq € E, implies that either g € rady,((0)) +soc(Z;;) =(6)+(2) =(2) or re€
VIO + 50¢(Z13):7 Z15] = [(2):7 Z1,) =N2Z = 2Z. That is if 4.3 € E, for 4 € Z, 3 € Zy,
and 3 & rady , ((0)) + soc(Z12) = (2) but 4 € \/[(0) + soc(Z13):7 Z1,] = 2Z.

2) It is clear that every prime submodule is an App-qp submodule, but not conversely. The
following example shows that:

Consider the Z-module Z, , the submodule E = (0) is not prime submodule of the Z-module
Z,,since 2.2€E, for2€Z,2€Z,,but 2¢E and 2 & [(0):; Z,] = 4Z. While E is an
App-qp submodule of the Z-module Z, , since soc(Z,) = (2) and for all r € Z, q € Z, such
that rq € E, implies that either g € rady, ((0)) +soc(Z,) =(2)+(2)=(2) or 1€
VIO + s0c(Z4):,Z, ] =2Z = 2Z. That is if 2.2 € E, for 2 € Z, 2 € Z, implies that 2 €
radz, ((0)) + soc(Z,) = (2) and 2 € \/[(0) + s0c(Z4 )i Z4 ] = 2Z.
3) It is clear that every quasi-prime submodule is an App-qp submodule, but not conversely,
where a proper submodule E of Q is called quasi-prime if rsq € E. For r,s €R, q € Q,

implies that either rq € E or sq € E [10]. The following example explains that:
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Consider the Z-module Z, and the submodule 4Z is not quasi-prime submodule of Z, since
221=4€4Z, but 2.1 € 4Z. While 4Z is an App-qp submodule of the Z-module Z, since
for all r € Z, q € Z such that rq € 4Z, implies that either q € rad;(4Z) + soc(Z) = (2) +

(0)=(2)orre \/[4Z +soc(Z):;Z] =VA4Z = 2Z. That is, if 2.2 € 4Z, implies that 2 €
rad;z(4Z) + soc(Z) = (2)and 2 € \/[4Z +soc(Z2):,Z] = 2Z.

The following results are characterizations of App-qp submodules.
Proposition (3)

Let Q be an R-module, and E be a proper submodule of Q. Then E is an App-qp
submodule of Q if and only if IF € E, for I is an ideal of R and F is a submodule of Q,
implies that either F € rad, (E) + soc(Q) or I"Q S E + soc(Q) for somen € Z*.

Proof
(=) Suppose [F C E, for I is an ideal of R and F is a submodule of Q with F &

radgy(E) + soc(Q), then there exists k € F such that k & rad,(E) + soc(Q). Now we have
IF C E, then for any a € I, ak € E. Since E is an App-qp submodule of Q and k ¢
rady(E) + soc(Q), it follows that a™Q € E + soc(Q) for some n € Z*, that is I"Q S E +
soc(Q) for somen € Z*.

(&) Assume that rq € E, forr € R, q € Q, then rq = (r){(q), that is [F € E where | =
(r), F =(q), then by hypothesis, either F € rady(E) + soc(Q) or I"Q S E + soc(Q) for
some n € Z*. Hence eitherq € rad,(E) + soc(Q) or r"Q S E + soc(Q) for some n € Z*.
Thus E is an App-qp submodule of Q.

The following Corollary is a direct consequence Proposition (3).
Corollary (4)

Let Q be an R-module, and E be a proper submodule of Q.Then, E is an App-qp
submodule of @ if and only if for every submodule F of Q and every r € R with rF C E,
implies that either F € rad,(E) + soc(Q) or r"Q € E + soc(Q) for somen € Z*.

Proposition (5)
A zero submodule of a non-zero R-module @ is an App-qp submodule of Q if and only if
anng(F) € /[soc(Q):r Q] for all non-zero submodule F of Q, with F & rady(0) +

soc(Q).
Proof

(=) Let F be a non-zero submodule of @, such that F & rad,(0) + soc(Q), and let x €

anng (F), implies that xF = (0) but (0) is an App-qp submodule of Q and F & rad,(0) +
soc(Q), it follows by Corollary (4) that x™Q < (0) + soc(Q) for some n € Z*, that is x €

J[soc(Q):g Q). Hence anng(F) < {/[soc(Q):r Q].

(&) Suppose that xF < (0), for r € R and F is a non-zero submodule of Q, with F &
rady(0) + soc(Q). Since xF € (0) it follows that x € anng(F), by hypothesis x €

V[soc(Q):z Q], that is x € \/[(O) + soc(Q):z Q]. Hence x™Q < (0) + soc(Q) for some n €
Z*. Thus by Corollary (4) a zero submodule of an R-module Q is an app-primary submodule

of Q.
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Proposition (6)

Let Q@ be an R-module, and E be a proper submodule of Q. Then, E is an App-qp
submodule of @ if and only if for every q € Q, [E:rq] S \/[E + soc(Q):r Q] with q ¢
radgy(E) + soc(Q).

Proof

(=) Suppose that E is an App-qp submodule of Q, and r € [E:y q], implies that rq € E.

Since E is an App-qp submodule of Q. and g € rad,(E) + soc(Q), then r*Q S E + soc(Q)

for somen € Z7, that is, r € \/[E + soc(Q):g Q]. Thus [E:gq] S \/[E + soc(Q):z QJ.
(&) Let rq €E, for r €R, q € Q, and suppose that q & rady(E) + soc(Q). Since

rq € E it follows that r € [E:g q] by hypothesis r € \/[E + soc(Q):z Q]. Hence, rQ S E +
soc(Q) for somen € Z*. Thus E is an App-qp submodule of Q.

Proposition (7)

Let Q be an R-module, and E be a proper submodule of Q. Then, E is an App-qp
submodule of Q if and only if [E:o 1] € [E + soc(Q):qr"] forr €ER,n € Z*.
Proof

(=) Suppose that E is an App-qp submodule of @, and let q € [E 0 r], such that q &
radgy(E) + soc(Q). Since q € [E:o 7] it follows that rq € E. But E is an App-qp submodule
of Q. and q & rady(E) + soc(Q), then r™"Q S [E + soc(Q):z Q] for some n € Z*. That is
r"*q € E + soc(Q) for all g € Q, it follows that g € [E + soc(Q):o r™]. Thus [E:p 7] € [E +
soc(Q):o1"].

(&) Let rq €E, for r €R, q € Q, and suppose that q & rady(E) + soc(Q). Since
rq € E it follows that q € [E:q7] S [E + soc(Q):q r”], implies that q € [E + soc(Q):q r”],
that is r"q € E + soc(Q) for all g € Q, hence r"Q S E + soc(Q). Thus E is an App-qp
submodule of Q.

Before we give the next result we need to recall the following Lemma.
Lemma (8) [11, Coro. (9.9)]
Let E be a submodule of an R-module Q, then soc(E) = E N soc(Q).

Proposition (9)

Let E and F are proper submodules of an R-module Q with E € F and soc(Q) € F. If E
is an App-qp submodule of Q, then E is an App-qp submodule of F.
Proof

Letrq € E, withr € R, q € F € Q. Since E is an App-qp submodule of @, then either
q €rady(E) + soc(Q) or r"Q S E +soc(Q), for some n€Z*. That is either q €
(rady(E) +soc(Q))NF or rQ S (E + soc(Q)) N F. But since soc(Q) S F, then by
modular law we have either g € (rady(E) NF)+ (soc(Q)NF) or r"Q S (ENF)+
(soc(Q) N F). Now by Lemma (8) soc(Q) N F = soc(F), so either q € (rady(E) NF) +
soc(F) S rady(E) + soc(F) or r"Q S (ENF) +soc(F) € E + soc(F). Hence E is an
App-qp submodule of F.
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Remark (10)

If E is an App-qp submodule of an R-module @, then [E:z Q] need not to be an App-qp
ideal of R. The following example explains that:
Consider the Z-module Z;, , the submodule E = (0) is an App-qp submodule of the Z-
module Z;, [see Remarks and Examples (2) (1)]. But [E:; Z;,] = 12Z is not App-qp ideal of
Z because 4.3 € 127, for 4,3 € Z, but 3 & rad,(12Z) + soc(Z) = (6) + (0) = (6) and 4 ¢

JI12Z + soc(Z):,Z) =\12Z = 6Z.

Now before we offer under certain condition the residual of App-qp submodule is an
App-qp ideal we need to revise the following Lemma:
Recall that an R-module Q is called multiplication if every submodule E of Q is of the
form E = IQ for some ideal I of Q [12].
Lemma (11) [12, Coro. 14(i)]
Let Q be a faithful multiplication R-module, then soc(Q) = soc(R)Q.
Proposition (12)
Let Q be a faithful multiplication R-module and E be a proper submodule of Q. Then E is
an App-qp submodule of Q if and only if [E:g Q] is an App-qp ideal of R.
Proof
(=) Let rs € [E:g Q], for r,s ER, so rsQ € E. But E is an App-qp submodule of Q
then by Corollary (4) either (sQ) € rady(E) + soc(Q) or r"Q € E + soc(Q), for some n €

Z*. Since Q is multiplication then rad,(E) =./[E:xQ]Q , and since Q is faithful

multiplication then by Lemma (11) soc(R)Q = soc(Q), we get either (sQ) € ,/[E:x Q]Q +
soc(R)Q or r"Q S [E:g Q]Q + soc(R)Q, that is either s € m + soc(R) or ™ C
[E:r Q] + soc(R) S [[E:g Q] + soc(R):g R]. Hence [E:x Q] is an App-qp ideal of R.

(<) Suppose that [E:x Q] is an App-qp ideal of R, and IF S E, for I is an ideal of R and
F is a submodule of Q. Since Q is multiplication then F = JQ for some ideal / of R, that is
IJQ S E, implies that I] € [E:z Q] . But [E:x Q] is an App-qp ideal of R then either ] S
VIE:g Q] + soc(R) or I € [[E:R Q] + soc(R):x R] = [E:xg Q] + soc(R) for some n € Z*. It
follows that either JQ S /[E:r Q]Q + soc(R)Q or I"Q S [E:x Q]Q + soc(R)Q. Since Q is
faithful multiplication then by Lemma (11) soc(R)Q = soc(Q), and since Q is multiplication

then [E:r Q]Q = E and rad,y(E) = ,/[E:gr Q]Q. Hence either JQ S rady(E) + soc(Q) or
I"Q S E + soc(Q), that is either F € rady(E) + soc(Q) or I"Q € E + soc(Q). Hence, by

Proposition (3) E is an App-qp submodule of Q.

Recall that an R-module Q is called non-singular if Z(Q) = Q, where Z(Q) = {q €
Q:qJ] = (0) for some essentail ideal J of R} [9].

We need to recall the following Lemma:

Lemma (13) [9, Coro. (1.26)]
If Q is a non-singular R-module, then soc(R)Q = soc(Q).
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Proposition (14)

Let E be a propoer submodule of a non-singular multiplication R-module T. Then, E is an
App-qp submodule of Q if and only if [E:; Q] is an App-qp ideal of R.
Proof

Follow as in Proposition (12) by using Lemma (13).

We need to recall the following Lemma:
Lemma (15) [13, Coro. of Theo. 9]

Let I and J are ideals of a ring R, and Q be a finitely generated multiplication R-module.
Then IQ € JQ if and only if I € | 4+ anngx(Q).

Proposition (16)

Let Q be a faithful finitely generated multiplication R-module and [ is an App-qp ideal of
R. Then IQ is an App-qp submodule of Q.
Proof

Let rF € IQ for r € R, and F is a submodule of Q with r"Q € IQ + soc(Q) for some
n € Z*. Since Q is faithful multiplication then by Lemma (11) soc(Q) = soc(R)Q, that is
r"Q € IQ + soc(R)Q for some n € Z™*, it follows that ™ & I + soc(R) = [I + soc(R):gx R]
implies that ™R € [ + soc(R), Now, since rF € IQ and Q is a multiplication then F = JQ
for some ideal J of R, thus r/Q S IQ. Hence by Lemma (15) ] € I + anngz(Q), but Q is a
faithful, then rJ € I + (0) = I. Since I is an App-qp ideal of R and r"R € I + soc(R) then
by Corollary (4) either € /T + soc(R), hence JQ S I1Q + soc(R)Q. It follows by Lemma
(11) JQ € rady(1Q) + soc(Q). Thatis F € rady(1Q) + soc(Q). Hence by Corollary (4) 1Q

is an App-qp submodule of Q.

Proposition (17)

Let Q be a finitely generated multiplication non-singular R-module and [ is an App-qp
ideal of R with anngz (Q) S I. Then IQ is an App-qp submodule of Q.
Proof

Follows similar as in Proposition (16) and using Lemma (13).

Proposition (18)
Let Q be a faithful finitely generated multiplication R-module and E be a proper
submodule of Q. Then the following statements are equivalent.
1) E is an App-qp submodule of Q.
2) [E:r Q] is an App-qp ideal of R.
3) E = IQ for some an App-qp ideal I of R.
Proof
(1) < (2) It follows by Proposition (12).
(2) = (3) It is clear.
(3) = (2) Suppose that E = [Q for some App-qp ideal I of R. Since @ is a multiplication,

then E = [E:; Q]Q = IQ. But Q is faithful finitely generated multiplication, then I = [E: Q],
it follows that [E:; Q] an App-qp ideal of R.
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Proposition (19)
Let Q be a finitely generated multiplication non-singular R-module and E be a proper
submodule of Q. Then the following statements are equivalent.
1) E is an App-qp submodule of Q.
2) [E:r Q] is an App-qp ideal of R.
3) E = JQ for some an App-qp ideal J of R with anng(Q) < J.
Proof
It follows similar as Proposition (18) by using Proposition (14) and Lemma (15).

We need the following Lemma.
Lemma (20) [14. Coro. (1.3)]
Let f: Q — Q' be an R-epimorphism and E is a submodule of Q" with ker (f) € E, then

f (rado(E)) = radg (£ (E)).

Proposition (21)

Let f:Q — Q' be an R-epimorphism and E’ is an App-qp submodule of Q'. Then
fY(E") is an App-qp submodule of Q.
Proof

It is clear that f~1(E") is a proper submodule of Q. Now, suppose that rq € f~1(E') ,
for r €R, q € Q, implies that rf(q) € E'. But E' is an App-qp submodule of Q’, it follows
that either f(q) € rad,/(E") + soc(Q") or r"Q" € E' + soc(Q") for some n € Z*. It follows

that by Lemma (20), cither q € = (radg/(E")) + f~*(s0c(Q")) € rady(f ~(E") +

soc(Q) or r* (@) € fFYE) + f1(soc(Q")) € f~1(E") + soc(Q).That is either
q € rady(f~*(E")) + soc(Q) or r"Q S f~*(E") + soc(Q). Hence f~*(E") be an App-qp
submodule of Q.

Proposition (22)

Let f: Q — Q' be an R-epimorphism and E is an App-qp submodule of Q with ker (f) S
E . Then f(E) is an App-qp submodule of Q.
Proof

f(E) is a proper submodule of Q'. If not, that is f(E) = Q'. Let q € Q, then f(q) € Q' =
f(E), so there exists x € E such that f(q) = f(x), implies that f(q —x) = 0, thatisq — x €
Fer f C E, it follows that q € E. Thus, E = Q contradiction. Now suppose that rq’ € f(E),
for r€R, q' € Q', f(q) =q' for some q € Q (since f is onto), that is rq' =rf(q) =
f(rq) € f(E), it follows that there exists e € E such that f(rq) = f(e), thatis f(e —rq) =
0,so e —rq € ker (f) € E, implies that rq € E. But E is an App-qp submodule of Q, then
either q € rady(E) + soc(Q) or r"Q € E + soc(Q) for some n € Z*. Hence, by using
Lemma (20) cither q' = f(q) € f (rady(E)) + f(s0c(Q)) € radg/(f(E)) + soc(Q") or
Q" =71"f(Q) € f(E) + f(s0c(Q)) € f(E) +soc(Q"). Thus f(E) is an App-gp
submodule of Q’.
Remark (23)

The intersection of two App-qp submodules of an R-module Q need not to be an App-qp
submodule of Q.The following example explains that:
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Consider the Z-module Z and the submodules 27, 3Z are App-qp submodules of Z-modules Z
(because they are prime) but 2Z N 3Z = 6Z is not App-qp submodule of Z-module Z, since

2.3€6Z, but 3¢rady(6Z)+soc(Z)=6Z+(0)=6Z and 2 ¢ \/[6Z +soc(2):,Z] =

J[6Z:,Z] =\6Z = 6Z.

We need the following Lemma:
Lemma (24) [15, Theo. 15(3)]

Let Q be a multiplication R-module and E,F be a submodules of Q. Then rad,(E N
F) =rady(E) Nnrady(F).

Proposition (25)

Let E and F be a proper submodules of multiplication R-module Q with soc(Q) € E or
soc(Q) € F.If E and F are App-qp submodules of Q, then E N F is an App-qp submodule of
Q.

Proof

Suppose rq E ENF for r,€ R, q € Q, then rq € E and rq € F. But both E and F are
App-qp submodules of @, then either q € rady(E) + soc(Q) or "Q S E + soc(Q) and
either q € rady(F) + soc(Q) orr™Q S F + soc(Q) for some n € Z*. Hence either q €
(rady(E) + soc(Q)) n (rady(F) + soc(Q)) or r™Q S (E + soc(Q)) N (F + soc(Q)). If
soc(Q) € F € rady(E), then F +soc(Q) = F and rady(F) + soc(Q) = rady(F). Thus
either q € (rady(E) + soc(T)) N rady(F) or 7*Q S (E + soc(Q)) N F. It follows that by

modular law either g € (radQ(E) n radQ(F)) + soc(Q) or rQ S (ENF)+soc(Q).

Hence by Lemma (24) eitherq € rady(E N F) + soc(Q) or r"Q S (ENF) + soc(Q) for
some n € Z*. Thus E N F is an App-qp submodule of Q. Similarly if soc(Q) € E, we got
E N F is an App-gp submodule of Q.

Proposition (26)

Let Q = Q; @ Q, be an R-module, where Q;, Q, are R-modules, and E = E; @ E, be a
submodule of Q, with E}, E, are submodules of Q;, Q, respectively with rad,(E) S soc(Q).
If E is an App-qp submodule of Q, then E; is an App-qp submodule of Q; and E, is an App-
gp submodule of Q,.

Proof

Letrq, € E;, forr € R, q; € Q4, then r(q4,0) € E. Since E is an App-qp submodule of
Q, then (q;,0) € rady(E) + soc(Q) or r"Q S E +soc(Q) for some n€Z*. But
radgy(E) € soc(Q), implies that rady(E) +soc(Q) = soc(Q), and E +soc(Q) =
soc(Q)[since E € rady(E) S soc(Q)]. It follows that either (g4,0) € soc(Q) = soc(Q) =
soc(Q1 @ Q2) or r(Q1 D Q) S s0c(Q) =so0c(Qy D Q2), that is ecither (g5,0) €

soc(Q1) @ soc(Q,) or r(Q1 D Q,) S soc(Qy) @D soc(Q,), hence either q; € soc(Q,) S
radgy, (E;) + soc(Qy) or r"Qq € soc(Q) € E; + soc(Qy). Thus E; is an App-qp submodule

of Q;.Similarly we can prove that E, is an App-qp submodule of Q,.
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Proposition (27)
Let Q = Q; © Q, be an R-module, where Q; and Q, are R-modules. Then, the following
are held:

1) E; is an App-qp submodule of Q; such that rad,, (E;) € soc(Q,) and soc(Q;) = Q; if
and only if E; @ Q, is an App-qp submodule of Q.

2) E; is an App-qp submodule of Q, such that rad,, (E;) € soc(2) and soc(Q,) = Q if and
only if Q; @ E, is an App-qp submodule of Q.

Proof

1) (=) Letr(q4,92) € E; @ Q,, forr € R, (q1,92) € Q, thenrq, € E;. But E; is an App-qp
submodule of Q; and rad,, (E7) € soc(Q,), then either q; € rady, (E1) + soc(Q,) =
soc(Qq) or r™Q, € E; + soc(Q,) = soc(Q,) for some n € Z*. Since soc(Q,) = Q,, then
either (41, 92) € soc(Qy) @ soc(Qz) = soc(Q; D Q) € rady(E; D Q) +
soc(Q1 @ Q2) or r™(Qy D Q) S soc(Qq) D soc(Qz) =soc(Qy D Q) SE; D Q, +
soc(Q, @ Q,). Thus E; @ Q, is an App-qp submodule of Q.

(&) Suppose rq, € E;, forr € R, q; € Q. Then for each q, € Q,, (q1,92) € E; @D Q,, but

E; @ Q, is an App-qp submodule of @, implies that either (q,,q;) € rady(E; @ Q) +

soc(Q) or r"Q S E; @ Q, + soc(Q) for some n € Z*.it follows that either (qq,q;) €

radg, (E;) @ rady,(Qz) + soc(Q; @ Qz) or ™™(Qy B Q) € E; ® Q, +soc(Q; D Q7),

that is either (q4,q,) € rady, (E1) @ radg,(Q2) + soc(Qq) D soc(Q;) orr™(Q; D Q3) &

E, @ Q, +soc(Q;) &P soc(Q,). Since soc(Q,) = Q, implies that either (qq,q2) €

radg, (Ey) + soc(Qq) © rady,(Q2) + @, or v(Q; D Q) S E; + soc(Q,) D Q, that is

either q; € radgy, (E;) + soc(Qq) or r™Q,; S E; + soc(Q,) for some n € Z*. Hence E; is an

App-qp submodule of Q;.

2) Its follows as in part (1).

3. Conclusion

In this paper, we introduce a new generalization of prime and primary submodules called
an approximaitly quasi-primary submodule. Many characterizations of this generalization are
introduced. Relationships of this generalization with other classes of modules are given.
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