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 Abstract 

        In this article, unless otherwise established, all rings are commutative with identity and all 

modules are unitary left R-module. We offer this concept of WN-prime as new generalization of 

weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. 

Many characterizations, examples of this concept are stablished. 
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1.Introduction 

        The concept of weakly prime submodule   was first Introduced  and studied by Behoodi and 

Koohi in [1] as a generalization of weakly prime submodule , where a proper submodule 𝐻 of an 

R-module   𝑈  is weakly prime submodule, if whenever 0 ≠ 𝑟𝑢 ∈ 𝐻, for 𝑟 ∈ 𝑅, 𝑢 ∈  𝑈, implies 

that  either 𝑢 ∈ 𝐻 or 𝑟 𝑈 ⊆ 𝐻. Recently, weakly prime submodules have been studied by many 

authors such as [2-5]. Many generalizations of weakly prime submodule are introduced such as 

weakly primary submodules, weakly quasi- prime submodules and weakly semi- prime 

submodules see [6- 8]. In 2018 the concepts WE-prime submodules and WE-semi- prime 

submodules as a strange from of weakly prime submodules are given; see [9]. In this article, we 

introduce a new generalization of weakly prime submodule called WN-prime submodule , where 

a proper submodule 𝐻 of an 𝑅-module  𝑈 is called WN-prime of  𝑈 if whenever  0 ≠ 𝑟𝑢 ∈ 𝐻, for  

𝑟 ∈ 𝑅, 𝑢 ∈  𝑈, implies that either 𝑢 ∈ 𝐻 + 𝙹( 𝑈) or 𝑟 𝑈 ⊆ 𝐻 + 𝙹( 𝑈), where 𝙹( 𝑈) is the 

Jacobson radical of  𝑈. An R-module   𝑈 is multiplication if each submodule 𝐻 of  𝑈 from  

𝐻 = 𝐼 𝑈 for some ideal 𝐼  of 𝑅 , that is  𝐻 = [𝐻:𝑅  𝑈] 𝑈 [10]. Several characterizations, examples 

and basic properties of WN-prime submodules were given in this research. 
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2.  Basic Properties of Weakly Nearly Prime Submodules  

       In this stage, we offer the definition of weakly nearly prime submodule and establish some of 

its basic properties and characterizations.  

 

Definition (2.1) 

     A proper submodule 𝐻 of 𝑅-module  𝑈 is said to be weakly nearly  prime submodule of  𝑈 

(for short WN-prime  submodule), if whenever 0 ≠ 𝑎𝑢 ∈ 𝐻, where 𝑎 ∈ 𝑅, 𝑢 ∈  𝑈, implies that 

either 𝑢 ∈ 𝐻 + 𝙹( 𝑈) or 𝑟 𝑈 ⊆ 𝐻 + 𝙹( 𝑈).An ideal 𝐴 of ring 𝑅 is WN-prime ideal of 𝑅 if and 

only if  𝐴 is a WN-prime submodule of an 𝑅-module 𝚁. 

 For example : consider the Z-module  𝑍24  and the submodule 𝐻 = 〈8̅〉 of 𝑍24 which is a WN-

prime submodule of 𝑍24 since 𝙹(𝑍24) = 〈2̅〉 ∩ 〈3̅〉 = 〈6̅〉. Thus if 0 ≠ 𝑟𝑚 ∈ 𝐻 with 𝑟 ∈ 𝑍, 

𝑚 ∈ 𝑍24 , implies that either 𝑚 ∈ 𝐻 + 𝙹(𝑍24) = 〈8̅〉 + 〈6̅〉 = 〈2̅〉  or 𝑟 ∈ [𝐻 + 𝙹(𝑍24): 𝑍24] =

[〈2̅〉: 𝑍24] = 2𝑍 . 

 

Remark (2.2) 

 1. It is clear that every weakly  prime submodule of an R-module  𝘜 is WN-prime , but not 

conversely.  

 For example the submodule 𝑁 = 𝑍 of the Z-module 𝑄 is not weakly prime,  but 𝑁 is WN-prime 

since 𝙹(𝑄) = 𝑄 and for each  𝑎 ∈ 𝑍, 𝑢 ∈ 𝑄 with 0 ≠ 𝑎𝑢 ∈ 𝑁 , implies that either 𝑢 ∈ 𝑁 + 𝙹(𝑄) 

or 𝑎𝑄 ⊆ 𝑍 + 𝙹(𝑄) = 𝑄 . 

 

2. It is clear that every  prime submodule of an R-module   𝑈 is WN-prime, but not conversely .  

For example : consider that the Z-module  𝑍12 , and the submodule 𝐻 = 〈4̅〉 of 𝑍12 is not  prime , 

but 𝐻 = 〈4̅〉 is WN-prime submodule of 𝑍12 since 𝙹(𝑍12) = 〈2̅〉 ∩ 〈3̅〉 = 〈6̅〉. Thus if 0 ≠ 𝑟𝑢 ∈ 𝐻 

with 𝑟 ∈ 𝑍, 𝑢 ∈ 𝑍12 , implies that either 𝑢 ∈ 𝐻 + 𝙹(𝑍12) = 〈4̅〉 + 〈6̅〉 = 〈2̅〉  or 𝑟 ∈ [𝐻 +

𝙹(𝑍12): 𝑍12] = [〈2̅〉: 𝑍12] = 2𝑍 . 

 

3. If 𝐻 is proper submodule of an R-module   𝑈 with 𝙹( 𝑈) ⊆ 𝐻.  Then 𝐻  is a WN-prime if and 

only if 𝐻 is weakly prime submodule . 

 

4.If  𝑈 is a semi-simple R-module  and 𝐻 is a proper submodule of  𝑈,then 𝐻 is a weakly  prime if 

and only if  𝐻  is WN-prime submodule of  𝑈. 

Proof  

      It is well-known if  𝑈 is a semi-simple, then 𝙹( 𝑈) = (0) . [14, Theo. (9.2.1) (a)]. So the proof 

follows direct. 

 

The following propositions give characterizations of WN-prime submodules.  

Proposition (2.3)  

       Let  𝑈 be an 𝑅-module, 𝐻 be a submodule of   𝑈, then 𝐻 is a WN-prime submodule of  𝑈 if 

and only if for every submodule 𝐿 of  𝑈 and 𝑟 ∈ 𝑅 with  0 ≠ 〈𝑟〉𝐿 ⊆ 𝐻, implies that either 

𝐿 ⊆ 𝐻 + 𝙹( 𝑈) or 〈𝑟〉 𝑈 ⊆ 𝐻 + 𝙹( 𝑈) . 
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Proof 

     (
        
⇒ ) Suppose that 0 ≠ 〈𝑟〉𝐿 ⊆ 𝐻, for 𝑟 ∈ 𝑅 , and 𝐿 is a submodule of  𝑈, with 𝐿 ⊈ 𝐻 + 𝙹( 𝑈), 

then 𝑙 ∉ 𝐻 + 𝙹( 𝑈)  for some non-zero element 𝑙 ∈ 𝐿. Now 0 ≠ 𝑟𝑙 ∈ 𝐻, then since 𝐻 is WN-

prime submodule of  𝑈, and 𝑙 ∉ 𝐻 + 𝙹( 𝑈), then we have  𝑟 ∈ [𝐻 + 𝙹( 𝑈): 𝑈] ,  it follows that   

〈𝑟〉 ⊆ [𝐻 + 𝙹( 𝑈): 𝑈]. That is 〈𝑟〉 𝑈 ⊆ 𝐻 + 𝙹( 𝑈) 

 

    (
         
⇐  ) Let  0 ≠ 𝑟𝑢 ∈ 𝐻, for 𝑟 ∈ 𝑅, 𝑢 ∈  𝑈, it follows that   0 ≠ 〈𝑟〉〈𝑢〉 ⊆ 𝐻, so by hypothesis 

either 〈𝑢〉 ⊆ 𝐻 + 𝙹( 𝑈) or 〈𝑟〉 𝑈 ⊆ 𝐻 + 𝙹( 𝑈). That is either 𝑢 ∈ 𝐻 + 𝙹( 𝑈) or 𝑟 𝑈 ⊆ 𝐻 +

𝙹( 𝑈). Hence 𝐻  is a WN-prime submodule of  𝑈. 

 

 As direct result of Proposition (2.3) we get the following corollary. 

 

Corollary (2.4) 

     A proper submodule 𝐻 of an R-module   Ų is WN-prime if and only if  for every submodule 𝐾 

of  𝑈 and every  𝑟 ∈ 𝑅 such that   0 ≠ 𝑟𝐾 ⊆ 𝐻, implies that either 𝐾 ⊆ 𝐻 + 𝙹( 𝑈) or 𝑟 ∈ [𝐻 +

𝙹( 𝑈) ∶  𝑈] . 

 

Proposition (2.5) 

       Let 𝐻 be proper submodule of R-module  𝑈, then 𝐻 is WN-prime submodule of  𝑈 if and, 

only if [𝐻:𝑅 𝑥] ⊆ [𝐻 + 𝙹( 𝑈):𝑅  𝑈] ∪ [0:𝑅 𝑥] for all 𝑥 ∈  𝑈 and 𝑥 ∉ 𝐻 + 𝙹( 𝑈). 

Proof 

     (
        
⇒ ) Let 𝑟 ∈ [𝐻:𝑅 𝑥]  and 𝑥 ∉ 𝐻 + 𝙹( 𝑈), then 𝑟𝑥 ∈ 𝐻 .If 𝑟𝑥 ≠ 0, and 𝐻 is a WN-prime 

submodule of  𝑈  and  𝑥 ∉ 𝐻 + 𝙹( 𝑈) , hence 𝑟 ∈ [𝐻 + 𝙹( 𝑈):𝑅  𝑈]. If 𝑟𝑥 = 0, then 𝑟 ∈

[0:𝑅 𝑥].Thus 𝑟 ∈ [𝐻 + 𝙹( 𝑈):𝑅  𝑈] ∪ [0:𝑅 𝑥].Hence [𝐻:𝑅 𝑥] ⊆ [𝐻 + 𝙹( 𝑈):𝑅  𝑈] ∪ [0:𝑅 𝑥]. 

      (
         
⇐  ) Let 0 ≠ 𝑟𝑥 ∈ 𝐻 for 𝑟 ∈ 𝑅 , 𝑢 ∈  𝑈, with 𝑥 ∉ 𝐻 + 𝙹( 𝑈), then 𝑟 ∈ [𝐻:𝑅 𝑥], by hypothesis 

𝑟 ∈ [𝐻 + 𝙹( 𝑈):𝑅  𝑈] ∪ [0:𝑅 𝑥], but 𝑟𝑥 ≠ 0. Thus, 𝑟 ∈ [𝐻 + 𝙹( 𝑈):𝑅  𝑈] and hence 𝐻 is a WN-

prime submodule of  𝑈 . 

 

Proposition (2.6) 

        Let H be a proper submodule of  an R-module   𝑈  with [𝐻 + 𝙹( 𝑈):𝑅  𝑈] is a maximal ideal 

of  𝑅, then 𝐻 is a WN-prime submodule of  𝑈. 

Proof 

       Suppose that 0 ≠ 𝑟𝑢 ∈ 𝐻 , with 𝑟 ∈ 𝑅 , 𝑢 ∈  𝑈 and 𝑟 𝑈 ⊈ 𝐻 + 𝙹( 𝑈). That is, 𝑟 ∉

 [𝐻 + 𝙹( 𝑈): 𝑈],but   [𝐻 + 𝙹( 𝑈): 𝑈] is maximal, then by [11,Th. 5.1] 𝑅 = 〈𝑟〉 + [𝐻 +

𝙹( 𝑈):𝑅  𝑈]. It follows that 1 = 𝑎𝑟 + 𝑏, for some 𝑎 ∈ 𝑅 , 𝑏 ∈ [𝐻 + 𝙹( 𝑈):𝑅  𝑈]. Hence, 𝑢 =

𝑎𝑟𝑢 + 𝑏𝑢 ∈ 𝐻 + 𝙹( 𝑈). Hence, 𝐻 is a WN-prime submodule of  𝑈. 

 

Proposition (2.7) 

        Let 𝐻 be a proper submodule of an R-module  𝘜 with  [𝐿:𝑅 𝘜] ⊈  [𝐻 + 𝙹(𝘜):𝑅 𝘜] and 

𝐻 + 𝙹(𝘜) is a proper submodule of 𝐿 for each submodule 𝐿 of 𝘜 .If  [𝐻 + 𝙹(𝘜):𝑅 𝘜] is a  prime 

ideal of 𝑅,  then 𝐻 is a WN-prime submodule of 𝘜. 
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Proof  

       Assume that 0 ≠ 𝑟𝑢 ∈ 𝐻 , for 𝑟 ∈ 𝑅 , 𝑢 ∈ 𝘜 and 𝑢 ∉ 𝐻 + 𝙹(𝘜).We have 𝐻 + 𝙹(𝘜) ⊈ 𝐻 +

𝙹(𝘜) + 〈𝑢〉 , put 𝐿 = 𝐻 + 𝙹(𝘜) + 〈𝑢〉 = 𝐿, then [𝐿:𝑅 𝘜] ⊈ [𝐻 + 𝙹(𝘜):𝑅  𝑈]. That is there exist 

𝑎 ∈ [𝐿:𝑅 𝘜] and 𝑎 ∉ [𝐻 + 𝙹(𝘜):𝑅 𝘜]. It follows that 𝑎𝘜 ⊆ 𝐿 but 𝑎𝘜 ⊈ 𝐻 + 𝙹𝘜. 𝑎𝘜 ⊆ 𝐿, implies 

that 𝑟𝑎𝘜 ⊆ 𝑟𝐿 = 𝑟(𝐻 + 𝙹(𝘜) + 〈𝑢〉) ⊆ 𝐻 + 𝙹(𝘜), that is 𝑟𝑎 ∈ [𝐻 + 𝙹(𝘜): 𝘜]. But  [𝐻 +

𝙹(𝘜):𝑅 𝘜] is a  prime ideal of 𝑅 and 𝑎 ∉ [𝐻 + 𝙹(𝘜):𝑅 𝘜] then 𝑟 ∈ [𝐻 + 𝙹(𝘜) ∶ 𝘜]. Thus 𝐻 is a 

WN-prime submodule of 𝘜. 

 

        It is well-known that if  𝑈 is a multiplication R-module  and 𝐻 is a proper submodule of  𝑈, 

then [𝐿:𝑅  𝑈] ⊈  [𝐻 :𝑅  𝑈] for each submodule 𝐿 of  𝑈 with 𝐻 ⊈ 𝐿 [12, Rem. (2.15)]. 

Corollary (2.8) 

        Let 𝐻 be a proper submodule of a multiplication R-module   𝑈,then 𝐻 is a WN-prime 

submodule of  𝑈, if  [𝐻 + 𝙹( 𝑈):𝑅  𝑈] is a  prime ideal of 𝑅 and 𝐻 + 𝙹( 𝑈) is a proper submodule 

of 𝐿 for each submodule 𝐿 of  𝑈. 

 

If 𝐻 is a submodule of an 𝑅-module  𝑈,  then 𝐻(𝑆) = {𝑢 ∈  𝑈: ∃𝑡 ∈ 𝑆 such that 𝑡𝑢 ∈ 𝐻} [13]. 

 

Proposition (2.9)  

         Let 𝐻 be a proper submodule of an R-module   𝘜, with [𝐻 + 𝙹( 𝘜):𝑅  𝘜] is a prime ideal of 

𝑅, then 𝐻 is  WN-prime if and only if 𝐻(𝑆) ⊆ 𝐻 + 𝙹( 𝘜) for each  multiplicatively closed subset 

𝑆  of 𝑅 with 𝑆 ∩ [𝐻 + 𝙹( 𝘜):𝑅  𝘜] = 𝜑. 

Proof  

     (
        
⇒ ) Suppose that 𝐻 is a  WN-prime submodule of  𝘜 with  𝑆 ∩ [𝐻 + 𝙹( 𝘜):𝑅  𝘜] = 𝜑. Let 

𝑢 ∈ 𝐻(𝑆), then ∃𝑟 ∈ 𝑆 such that 𝑟𝑢 ∈ 𝐻, implies that 𝑟 ∈ [𝐻:𝑅 𝑢] ⊆ [𝐻 + 𝙹( 𝘜):𝑅  𝘜] ∪ [0:𝑅 𝑢] 

by Proposition (2.5) .It follows that 0 ≠ 𝑟𝑢 ∈ 𝐻 (since 𝐻 is a WN-prime ), implies that either 

𝑢 ∈ 𝐻 + 𝙹( 𝑈) or 𝑟 ∈ [𝐻 + 𝙹( 𝑈):𝑅  𝘜]. If 𝑟 ∈ [𝐻 + 𝙹( 𝘜):𝑅  𝘜], implies that 𝑟 ∈  𝑆 ∩

[𝐻 + 𝐽( 𝘜):𝑅 𝘜] = 𝜑 which is a contradiction. Thus 𝑢 ∈ 𝐻 + 𝙹( 𝘜) and hence 𝐻(𝑆) ⊆ 𝐻 + 𝙹( 𝘜). 

     (
         
⇐  )  Suppose that 0 ≠ 𝑟𝑢 ∈ 𝐻 where 𝑟 ∈ 𝑅 , 𝑢 ∈  𝘜 such that 𝑢 ∉ 𝐻 + 𝙹( 𝘜) and 𝑟 ∉

[𝐻 + 𝙹( 𝘜):𝑅  𝘜]. Since 𝑟 ∈ 𝑆, then 𝑆 = {1, 𝑟, 𝑟2, 𝑟3, … } is multiplicatively closed subset of 𝑅 and 

𝑆 ∩ [𝐻 + 𝙹( 𝘜):𝑅  𝘜] = 𝜑 (since[𝐻 + 𝙹( 𝘜):𝑅  𝘜] is  prime ideal of 𝑅 ). But  𝑢 ∉ 𝐻 + 𝙹( 𝘜) 

implies that 𝑢 ∉ 𝐻(𝑆) and then 0 ≠ 𝑟𝑢 ∉ 𝐻 which is a contradiction. Thus 𝑢 ∈ 𝐻 + 𝙹( 𝘜) or 

𝑟 ∈ [𝐻 + 𝙹( 𝘜):𝑅  𝘜]. That is, 𝐻 is a  WN-prime submodule of  𝘜. 

 

The following corollary a direct consequence of Proposition (2.9). 

Corollary (2.10) 

       Let  𝑈 be an 𝑅-module, 𝐻 be a proper submodule of  𝑈, with [𝐻 + 𝙹( 𝑈):𝑅  𝑈] is  prime ideal 

in 𝑅, then 𝐻 is WN-prime if and only  if 𝐻(𝑅 − ([𝐻 + 𝙹( 𝑈):𝑅  𝑈]) ⊆ 𝐻 + 𝙹( 𝑈). 

 

Proposition (2.11)  

       Let  𝑈 be an 𝑅-module, and 𝐴 be a maximal ideal of  𝑅, with 𝐴 𝑈 + 𝙹( 𝑈) ≠  𝑈. Then 𝐴 𝑈 is 

a WN-prime submodule of   𝑈. 

Proof: 
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       Since 𝐴 𝑈 ⊆  𝐴 𝑈 + 𝙹( 𝑈), then 𝐴 ⊆[A U+J( U) :𝑅U] .That is, there exists 𝑟 ∈ [𝐴 𝑈 +

𝙹( 𝑈): 𝑈] and 𝑟 ∉ 𝐴. But 𝐴 is a maximal ideal of  𝑅, then 𝑅 = 𝐴 + 〈𝑟〉, then  1 = 𝑎 + 𝑠𝑟 for some 

𝑠 ∈ 𝑅, it follows that 𝑢 = 𝑎𝑢 + 𝑠𝑟𝑢 for each 𝑢 ∈  𝑈. Thus 𝑢 ∈ 𝐴 𝑈 + 𝙹( 𝑈) for each 𝑢 ∈  𝑈, so 

𝐴 𝑈 + 𝙹( 𝑈) =  𝑈 which is a contradiction. Hence, 𝑟 ∈ 𝐴 and it follows that [𝐴 𝑈 + 𝙹( 𝑈): 𝑈] ⊆

𝐴.Thus [𝐴 𝑈 + 𝙹( 𝑈): 𝑈] = 𝐴. That is, [𝐴 𝑈 + 𝙹( 𝑈): 𝑈] is a maximal ideal of  𝑅, hence by 

Proposition( 2.6 ), 𝐴 𝑈 is  a WN-prime submodule of   𝑈. 

 

Proposition (2.12) 

       Let 𝐻 be a proper submodule of an R-module   𝑈 with  [𝐻 + 𝙹( 𝑈):𝑅  𝑈] = [𝐻 + 𝙹( 𝑈):𝑅 𝐾] 

for each submodule 𝐾 of  𝑈 such that  𝐻 + 𝙹( 𝑈) is a proper submodule of 𝐿, then 𝐻 is a WN-

prime submodule of  𝑈. 

Proof 

      Suppose that 0 ≠ 𝑟𝑢 ∈ 𝐻 for each 𝑟 ∈ 𝑅 , u ∈ U with 𝑢 ∉ 𝐻 + 𝙹( 𝑈). Assume that 𝐾 = 𝐻 +

𝙹( 𝑈) + 〈𝑢〉, it is clear that 𝐻 + 𝙹( 𝑈) ⊆ 𝐾, then  𝑢 ∈ 𝐾 and so 𝑟 ∈ [𝐻:𝑅 𝐾]. Since 𝐻 ⊆ 𝐻 +

𝙹( 𝑈), then [𝐻:𝑅 𝐾] = [𝐻 + 𝙹( 𝑈):𝑅 𝐾] = [𝐻 + 𝙹( 𝑈):𝑅  𝑈] by hypothesis. Thus 𝑟 ∈

[𝐻 + 𝙹( 𝑈):𝑅  𝑈], it follow that  𝐻 is  a WN-prime submodule of  𝑈. 

 

Recall that submodule 𝐻 of an R-module   𝑈 is to said to be  small, if  for any submodule 𝐾 of  𝑈 

with  𝑈 = 𝐻 + 𝐾 then 𝐾 =  𝑈 [14]. 

Proposition (2.13) 

        Let 𝐻 be a small proper submodule of an R-module  𝘜 and 𝙹(𝘜) is a weakly  prime 

submodule of 𝘜, then 𝐻 is a WN-prime submodule of 𝘜. 

Proof 

      Suppose that 0 ≠ 𝑟𝑢 ∈ 𝐻, where 𝑟 ∈ 𝑅 , 𝑢 ∈ 𝘜. Since 𝐻 is a small submodule of 𝘜, then 

0 ≠ 𝑟𝑢 ∈ 𝐻 ⊆ 𝙹(𝘜). It follows that  0 ≠ 𝑟𝑢 ∈ 𝙹(𝘜), but 𝙹(𝘜) is a weakly  prime submodule of 

 𝑈, implies that  either 𝑢 ∈ 𝙹(𝘜) ⊆ 𝐻 + 𝙹(𝘜) or 𝑟𝘜 ⊆ 𝙹(𝘜) ⊆ 𝐻 + 𝙹(𝘜). Hence 𝐻 is a WN-

prime submodule of 𝘜. 

  

Remark (2.14) 

        If 𝐻 and 𝐿 are two  submodules  of R-module   𝑈 with 𝐻 is  contained in 𝐿, 𝐿 is a WN-prime 

submodule of   𝑈. Then 𝐻 not necessary  to be WN-prime submodule of  𝑈. The following 

example explains that. Consider the Z-module 𝑍24 and the submodule 𝐻 = {0̅ , 12̅̅̅̅  }, 𝐿 =

{0̅, 2̅ , 4̅, 6̅, 8̅, 10̅̅̅̅ , 12̅̅̅̅ , 14̅̅̅̅ , 16̅̅̅̅ , 18̅̅̅̅ , 20̅̅̅̅ , 22̅̅̅̅ } we have 𝐿 is a WN-prime (since 𝐿 is a weakly  prime ) 

submodule of the Z-module  𝑍24, but 𝐻 is not WN-prime because if 3 ∈ 𝑍, 4̅ ∈ 𝑍24 such that 

0̅ ≠ 3 4̅ ∈ 𝐻, but 4̅ ∉ 𝐻 + 𝙹(𝑍24) = {0̅, 6̅, 12̅̅̅̅ , 18̅̅̅̅ } and 3 ∉ [ 𝐻 + 𝙹(𝑍24) ∶  𝑍24] = 6𝑍. 

 

Proposition (2.15) 

        Let  𝑈 be an R-module , and 𝐻, 𝐿 are submodules of  𝑈 with 𝐻 contained in  𝐿, and 𝙹( 𝑈) ⊆

𝙹(𝐿). If 𝐻 is WN-prime submodule of  𝑈, then 𝐻 is WN-prime submodule of 𝐿. 

 

Proof 

      Assume that 0 ≠ 𝑟𝑥 ∈ 𝐻 with 𝑟 ∈ 𝑅, 𝑥 ∈ 𝐿. Since  𝐿 is a WN-prime submodule of  𝑈, 

then 𝑥 ∈ 𝐻 + 𝙹( 𝑈) or 𝑟 ∈ [𝐻 + 𝙹( 𝑈):𝑅  𝑈]. But 𝙹( 𝑈) ⊆ 𝙹(𝐿) so   𝑥 ∈ 𝐻 + 𝙹(𝐿) or 𝑟 ∈

[𝐻 + 𝙹(𝐿):𝑅  𝑈] ⊆ [𝐻 + 𝙹(𝐿):𝑅 𝐿]. Hence 𝐻 is a WN-prime submodule of 𝐿. 
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Remark (2.16) 

         The resudule of WN-prime submodule of an R-module   𝑈 need not to be WN-prime ideal of 

𝑅. The following example shows that: 

Let  𝑈 =  𝑍12 , 𝑅 = 𝑍  and 𝐻 = {0̅, 4̅, 8̅}, 𝐻 is a WN-prime submodule of 𝑍12 by Remark(2.2)(2). 

But [𝐻:𝑍 𝑍12] = 4𝑍 is not WN-prime ideal of 𝑅 because 0 ≠ 2 2 ∈ 4𝑍, 2 ∈ 𝑍 but 2 ∉ 4𝑍 +

𝙹(𝑍) = 4𝑍 and 2 ∉ [4𝑍 + 𝙹(𝑍):𝑍 𝑍] = 4𝑍. 

 

        The following propositions show that the resudule of a WN-prime submodule is a WN-prime 

ideal in the class of multiplication R-module over a good ring, Artinian ring respectively. 

 

Remember  that A ring 𝑅 is called good if 𝙹(𝘜) = 𝙹(𝑅). 𝘜 where 𝘜 is an R-module  [14]. 

 

Proposition (2.17) 

         Let 𝘜 be a multiplication module  over a good ring 𝑅 , and  𝐻 is a WN-prime submodule of 

𝘜 then [𝐻:𝑅 𝘜] is  a WN-prime ideal of 𝑅. 

 

Proof 

      suppose that 0 ≠ 𝑟𝑠 ∈ [𝐻:𝑅 𝘜] where 𝑟, 𝑠 ∈ 𝑅, implies that  0 ≠ 𝑟(𝑠𝘜) ⊆ 𝐻. But 𝐻 is a WN-

prime submodule of 𝘜, then by Corollary (2.4) either 𝑠𝘜 ⊆ 𝐻 + 𝙹(𝘜) or 𝑟𝘜 ⊆ 𝐻 + 𝙹(𝘜). For 𝘜  

a multiplication module  over good ring, then 𝙹(𝘜) = 𝙹(𝑅). 𝘜 and 𝐻 = [𝐻:𝑅 𝘜]. 𝘜. Thus either 

𝑠𝘜 ⊆ [𝐻:𝑅 𝘜]. 𝘜 + 𝙹(𝑅). 𝘜 or 𝑟𝘜 ⊆ [𝐻:𝑅 𝘜] 𝑈 + 𝙹(𝑅)𝘜. Hence either 𝑠 ∈ [𝐻:𝑅 𝘜] + 𝙹(𝑅) or 

𝑟 ∈ [𝐻:𝑅 𝘜] + 𝙹(𝑅) = [[𝐻:𝑅 𝘜] + 𝙹(𝑅):𝑅 𝘜]. Therefore [𝐻:𝑅 𝘜] is a  WN-prime ideal of 𝑅. 

 

     It is well known if  𝑈 is a module  over Artinian ring 𝑅 then 𝙹(𝘜) = 𝙹(𝑅)𝘜. [14, Co. 

9.3.10(c)]. 

 

Proposition (2.18)  

       Let 𝘜 is a multiplication module  over Artinian ring 𝑅, and  𝐻 is  a WN-prime submodule of 

 𝑈 then  [𝐻:𝑅  𝑈] is  a WN-prime ideal of 𝑅. 

Proof  

       Let 0 ≠ 𝑟𝐼 ∈ [𝐻:𝑅 𝘜] where 𝑟 ∈ 𝑅 and 𝐼 is an ideal of 𝑅,  then  0 ≠ 𝑟𝐼 ⊆ 𝐻. Since 𝐻 is a 

WN-prime submodule of  𝑈, then by Corollary (2.4) either 𝐼𝘜 ⊆ 𝐻 + 𝙹(𝘜) or 𝑟𝘜 ⊆ 𝐻 +

𝙹(𝘜).But  𝑈 is   a multiplication module  over good ring 𝑅, then 𝙹(𝘜) = 𝙹(𝑅)𝘜 and 𝐻 =

[𝐻:𝑅 𝘜]𝘜. It follows that either 𝐼𝘜 ⊆ [𝐻:𝑅 𝘜]𝘜 + 𝙹(𝑅)𝘜 or 𝑟𝘜 ⊆ [𝐻:𝑅 𝘜]𝘜 + 𝙹(𝑅). 𝘜. Hence 

either 𝐼 ⊆ [𝐻:𝑅 𝘜] + 𝙹(𝑅) or 𝑟 ∈ [𝐻:𝑅 𝘜] + 𝙹(𝑅) = [[𝐻:𝑅 𝘜] + 𝙹(𝑅):𝑅 𝘜].Therefore [𝐻:𝑅  𝑈] is 

a  WN-prime ideal of 𝑅. 

 

       It is well known that if 𝘜 is a projective R-module  then 𝙹(𝘜) = 𝙹(𝑅). 𝘜 [14, Th. 9.2.1(g)]. 

Proposition (2.19) 

           Let 𝘜 be  a projective multiplication  R-module , and  𝐻 is a WN-prime submodule of 𝘜 

then  [𝐻:𝑅 𝘜] is a  WN-prime ideal of 𝑅. 

Proof  
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      Follows in the same way of Proposition (2.17) and Proposition (2.18). 

 

      It is well known if  𝑈 is a multiplication finitely generated R-module , and 𝐴, 𝐵 are ideals of 𝑅, 

then 𝐴 𝑈 ⊆ 𝐵 𝑈 if and only if 𝐴 ⊆ 𝐵 + 𝑎𝑛𝑛( 𝑈) [15, Cor. of th. 9]. 

 

Proposition (20) 

        Let  𝑈 be a multiplication finitely generated faithful module  over good ring 𝑅  , 𝘈 is a WN-

prime ideal of 𝑅.Then 𝘈 𝑈 is a WN-prime submodule of  𝑈. 

Proof 

      Suppose that 0 ≠ 𝑎𝐻 ⊆ 𝘈 𝑈 where 𝑎 ∈ 𝑅,𝐻 is a submodule of  𝑈,implies that 0 ≠ 𝑎𝐼 𝑈 ⊆

𝐴 𝑈 for  𝑈 is a multiplication, it follows that 0 ≠ 𝑎𝐼 ⊆ 𝘈 + 𝑎𝑛𝑛( 𝑈).But  𝑈 is faithful, then 

𝑎𝑛𝑛( 𝑈) = (0). Thus 0 ≠ 𝑎𝐼 ⊆ 𝘈. But 𝘈 is a WN-prime ideal of 𝑅, then either 𝐼 ⊆ 𝘈 + 𝙹(𝑅) or 

𝑟 ∈ [𝘈 + 𝙹(𝑅): 𝑅] = 𝘈 + 𝙹(𝑅). Hence 𝐼 𝑈 ⊆ 𝘈 𝑈 + 𝙹(𝑅) 𝑈 or 𝑟 𝑈 ⊆ 𝘈 𝑈 + 𝙹(𝑅) 𝑈. That is 

either 𝐼 𝑈 ⊆ 𝘈 𝑈 + 𝙹( 𝑈) or 𝑟 𝑈 ⊆ 𝘈 𝑈 + 𝙹( 𝑈). Thus either 𝐻 ⊆ 𝘈 𝑈 + 𝙹( 𝑈) or 𝑟 ∈

[𝘈 𝑈 + 𝙹( 𝑈):𝑅  𝑈]. Therefore 𝘈 𝑈 is a WN-prime submodule of  𝑈. 

 

Proposition (2.21) 

        Let  𝑈 be a finitely generated multiplication faithful module  over Artinian ring 𝑅,  and 𝐴 be  

a WN-prime ideal of 𝑅, then 𝐴 𝑈 is a WN-prime submodule of  𝑈. 

Proof 

      Similar as in Proposition (2.20). 

 

Proposition (2.22) 

         Let 𝘜 be a finitely generated projective multiplication  R-module , and 𝐴 is  a  WN-prime 

ideal  of 𝑅 with 𝑎𝑛𝑛(𝘜)⊆ 𝐴 then 𝐴𝘜 is  a WN-prime submodule of 𝘜. 

Proof 

      Suppose that 0 ≠ 𝑎𝑢 ∈ 𝐴𝘜 for 𝑎 ∈ 𝑅, 𝑢 ∈ 𝘜 so, 0 ≠ 𝑎(𝑢) ⊆ 𝐴𝘜. Since 𝘜 is a multiplication, 

then (𝑢) = 𝙹𝘜 for some ideal 𝙹 of 𝑅, hence 0 ≠ 𝑎𝙹𝘜 ⊆ 𝐴𝘜, since 𝘜 is finitely generated 

multiplication, then  0 ≠ 𝑎𝙹 ⊆ 𝐴 + 𝑎𝑛𝑛(𝘜). But 𝑎𝑛𝑛(𝘜) ⊆ 𝐴, then 0 ≠ 𝑎𝙹 ⊆ 𝐴, since  𝐴 is  a 

WN-prime ideal of 𝑅 then by Corollary (2.4) either  𝙹 ⊆ 𝐴 + 𝙹(𝑅) or 𝑎 ∈ [𝐴 + 𝙹(𝑅):𝑅 𝑅] = 𝐴 +

𝙹(𝑅). That is either  𝙹𝘜 ⊆ 𝐴𝘜 + 𝙹(𝑅)𝘜 or 𝑎𝘜 ⊆ 𝐴𝘜 + 𝙹(𝑅)𝘜. But 𝘜 is a projective, then 

𝙹(𝑅) 𝑈 = 𝙹( 𝑈). Thus either  (𝑢) ⊆ 𝐴 𝑈 + 𝙹( 𝑈) or 𝑎 ∈ [𝐴 𝑈 + 𝙹( 𝑈):𝑅  𝑈]. That is either  

𝑢 ∈ 𝐴 𝑈 + 𝙹(𝘜) or 𝑎 ∈ [𝐴𝘜 + 𝙹(𝘜):𝑅 𝘜]. Thus 𝐴𝘜 is  a WN-prime submodule of 𝘜. 

 

Proposition (2.23) 

         Let  𝐻 be a WN-prime submodule of an R-module    𝑈,  then 𝑆−1𝐻 is a WN-prime 

submodule of 𝑆−1𝑅-module 𝑆−1 𝑈, where 𝑆 is a multiplicatively closed subset of 𝑅. 

 

Proof 

       Suppose that (0) ≠
𝑟1

𝑠1

𝑢

𝑠2
∈ 𝑆−1𝐻 for 

𝑟1

𝑠1
∈ 𝑆−1𝑅 and 

𝑢

𝑠2
∈ 𝑆−1 𝑈 and 𝑟1 ∈ 𝑅, 𝑠1,𝑠2 ∈ 𝑆, 𝑢 ∈  𝑈. 

Then 
𝑟1𝑢

𝑡
∈ 𝑆−1𝐻, where 𝑡 = 𝑠1𝑠2 ∈ 𝑆, that is there exists non-zero element 𝑡1 ∈ 𝑆 such that 

0 ≠ 𝑡1𝑟1𝑢 ∈ 𝐻. But 𝐻 is a WN-prime submodule of   𝑈, then either 𝑡1𝑢 ∈ 𝐻 + 𝙹( 𝑈) or 𝑟1 ∈

[𝐻 + 𝙹( 𝑈):𝑅  𝑈], it follows that either 
𝑡1𝑢

𝑡1𝑠2
∈ 𝑆−1(𝐻 + 𝙹( 𝑈)) ⊆ 𝑆−1𝐻 + 𝙹(𝑆−1 𝑈)or 

𝑟1

𝑠1
∈
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𝑆−1[𝐻 + 𝙹( 𝑈):𝑅  𝑈] ⊆ [𝑆−1𝐻 + 𝙹(𝑆−1 𝑈):𝑅 𝑆
−1 𝑈]. Hence either 

𝑢

𝑠2
∈ 𝑆−1𝐻 + 𝙹(𝑆−1 𝑈) or 

 
𝑟1

𝑠1
∈ [𝑆−1𝐻 + 𝙹(𝑆−1 𝑈):𝑅 𝑆

−1 𝑈]. Thus 𝑆−1𝐻 is a WN-prime submodule of 𝑆−1𝑅-module 𝑆−1 𝑈. 

        It is well known that if 𝜑 ∶  𝑈 ⟶ 𝑌 is an R-epimorphism and 𝐾𝑒𝑟𝜑 small submodule of R-

module   𝑈, then 𝜑( 𝙹( 𝑈)) = 𝙹(𝑌), 𝜑−1( 𝙹(𝑌)) = 𝙹( 𝑈) [14, Cor. 9.1.5(a)]. 

 

Proposition (2.24) 

        Let  𝜑 ∶  𝑈 ⟶  𝑈′ be an 𝑅-epimorphism with 𝐾𝑒𝑟𝜑 is small submodule of 𝚄, and 𝐾 be a 

WN-prime submodule of  𝑈′,  then 𝜑−1(𝐾) is a WN-prime submodule of   𝑈. 

 

Proof  

       Let  0 ≠ 𝑟𝑥 ∈  𝜑−1(𝐾) where 𝑟 ∈ 𝑅, 𝑥 ∈  𝑈 with 𝑥 ∉ 𝜑−1(𝐾) + 𝙹( 𝑈), it follows that 

𝜑(𝑥) ∉  𝐾 + 𝜑( 𝙹( 𝑈)) = 𝐾 + 𝙹( 𝑈′). Since 0 ≠ 𝑟𝑥 ∈ 𝜑−1(𝐾), implies that 0 ≠ 𝑟 𝜑(𝑥) ∈ 𝐾. 

But 𝐾 be a WN-prime submodule of  𝑈′and 𝜑(𝑥) ∉ 𝐾 + 𝙹( 𝑈′), it follows that   𝑟 ∈

[𝐾 + 𝙹( 𝑈′):𝑅  𝑈
′], that is 𝑟 𝑈′ ⊆ 𝐾 + 𝙹( 𝑈′), hence 𝑟 𝜑( 𝑈) = 𝜑(𝑟 𝑈) ⊆ 𝐾 + 𝙹( 𝑈′). Implies 

that 𝑟 𝑈 ⊆ 𝜑−1(𝐾) + 𝙹( 𝑈). Therefore 𝜑−1(𝐾) is a WN-prime submodule of   𝑈. 

 

Proposition (2.25) 

        Let 𝑓 ∶ 𝘜 ⟶ 𝘜′ be an 𝑅-epimorphism with 𝐾𝑒𝑟𝑓 is small submodule of 𝘜, and 𝐻 be  a WN-

prime submodule of 𝘜 with 𝐾𝑒𝑟𝑓 ⊆ 𝐻. Then 𝑓(𝐻) is  a WN-prime submodule of 𝘜′. 

Proof 

       Since 𝐾𝑒𝑟𝑓 ⊆ 𝐻, that's clearly𝑓(𝐻) is a proper submodule of 𝘜′. Now, suppose that  0≠

𝑟𝑥′ ∈ 𝑓(𝐻), where 𝑟 ∈ 𝑅, 𝑥′ ∈ 𝘜′. Since 𝑓 is an epimorphism then 𝑓(𝑥) = 𝑥′ for some 𝑥 ∈ 𝘜, 

thus 0 ≠ 𝑟𝑥′ = 𝑟𝑓(𝑥) = 𝑓(𝑟𝑥) ∈ 𝑓(𝐻),it follows that there exists non-zero 𝑦 ∈ 𝐻  such that 

𝑓(𝑟𝑥) = 𝑓(𝑦), implies that  𝑓(𝑟𝑥 − 𝑦) = 0, hence  𝑟𝑥 − 𝑦 ∈ 𝐾𝑒𝑟 𝑓 ⊆ 𝐻 ⇒ 0 ≠ 𝑟𝑥 ∈ 𝐻. but 𝐻 is  

a WN-prime submodule of 𝘜, then either 𝑥 ∈ 𝐻 + 𝙹(𝘜) or 𝑟𝘜 ⊆ 𝐻 + 𝙹(𝘜), it follows that either 

𝑥′ = 𝑓(𝑥) ∈ 𝑓(𝐻) + 𝙹(𝘜′) or 𝑟 𝑈′ = 𝑟𝑓(𝘜) ⊆ 𝑓(𝐻) + 𝙹( 𝘜′). That is 𝑓(𝐻) is a WN-prime 

submodule of 𝘜′. 

 

3. Conclusion 

       In this article the concept WN-prime submodule was introduced and studied as generalization 

of a weakly prime submodule. The results that we set in this research are the following: 

1. Every weakly  prime submodule of R-module   𝑈 is WN-prime, but not conversely . 

2. A proper submodule  𝐻 of an R-module   𝑈 is a WN-prime if  and only if whenever  0 ≠

〈𝑟〉𝐿 ⊆ 𝐻 where 𝑟 ∈ 𝑅, 𝐿 is a submodule of  𝑈 implies that either 𝐿 ⊆ 𝐻 + 𝙹( 𝑈) or 

〈𝑟〉 𝑈 ⊆ 𝐻 + 𝙹( 𝑈) . 

3. A proper submodule  𝐻 of  an R-module   𝑈 is WN-prime if and only if [𝐻:𝑅 𝑥] ⊆

[𝐻 + 𝙹( 𝑈):𝑅  𝑈] ∪ [0:𝑅 𝑥] for all 𝑥 ∈  𝑈 and 𝑥 ∉ 𝐻 + 𝙹( 𝑈). 

4. Let 𝐻 be a proper submodule of an R-module   𝑈, with [𝐻 + 𝙹( 𝑈):𝑅  𝑈] is a  prime ideal of 

𝑅, then 𝐻 is  a WN-prime if and only if 𝐻(𝑆) ⊆ 𝐻 + 𝙹( 𝑈) for each  multiplicatively closed 

subset 𝑆  of 𝑅 with 𝑆 ∩ [𝐻 + 𝙹( 𝑈):𝑅  𝑈] = 𝜑. 

5. If a submodule 𝐻 of an R-module   𝑈 is small and 𝙹( 𝑈) is a weakly prime submodule of  𝑈, 

then 𝐻 is  WN-prime submodule of  𝑈. 
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6. Let  𝑈 be a multiplication module  over Artinian ring 𝑅, and  𝐻 is a WN-prime submodule of 

 𝑈 then [𝐻:𝑅  𝑈] is  a WN-prime ideal of 𝑅. 

7. If  𝑈 is a projective multiplication  R-module , and  𝐻 is a WN-prime submodule of  𝑈 then 

[𝐻:𝑅  𝑈] is a  WN-prime ideal of 𝑅. 

8. If   𝑈 is finitely generated faithful multiplication module  over good ring 𝑅,  and 𝐴 be  WN-

prime ideal of 𝑅, then 𝐴 𝑈 is WN-prime submodule of  𝑈. 

9. If   𝑈 is finitely generated projective multiplication  R-module  then 𝐴 𝑈 is a WN-prime 

submodule of  𝑈 for all WN-prime ideal 𝐴 of 𝑅 with 𝑎𝑛𝑛( 𝑈) ⊆ 𝐴. 

10. If 𝐻 is a WN-prime submodule  of an R-module   𝑈, then 𝑆−1𝐻 is  a WN-prime submodule 

of 𝑆−1𝑅-module 𝑆−1 𝑈, where 𝑆 is a multiplicatively closed subset of 𝑅. 
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