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Abstract

In this article, unless otherwise established, all rings are commutative with identity and all
modules are unitary left R-module. We offer this concept of WN-prime as new generalization of
weakly prime submodules. Some basic properties of weakly nearly prime submodules are given.
Many characterizations, examples of this concept are stablished.
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1.Introduction

The concept of weakly prime submodule was first Introduced and studied by Behoodi and
Koohi in [1] as a generalization of weakly prime submodule , where a proper submodule H of an
R-module U is weakly prime submodule, if whenever 0 # ru € H, for r € R,u € U, implies
that either u € H or r U < H. Recently, weakly prime submodules have been studied by many
authors such as [2-5]. Many generalizations of weakly prime submodule are introduced such as
weakly primary submodules, weakly quasi- prime submodules and weakly semi- prime
submodules see [6- 8]. In 2018 the concepts WE-prime submodules and WE-semi- prime
submodules as a strange from of weakly prime submodules are given; see [9]. In this article, we
introduce a new generalization of weakly prime submodule called WN-prime submodule , where
a proper submodule H of an R-module U is called WN-prime of U if whenever 0 # ru € H, for
r €R, u€ U, implies that either ue H+J(U) or rU S H+J(U), where J(U) is the
Jacobson radical of U. An R-module U is multiplication if each submodule H of U from
H =1U for some ideal I of R, thatis H = [H:; U] U [10]. Several characterizations, examples
and basic properties of WN-prime submodules were given in this research.
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2. Basic Properties of Weakly Nearly Prime Submodules

In this stage, we offer the definition of weakly nearly prime submodule and establish some of
its basic properties and characterizations.

Definition (2.1)

A proper submodule H of R-module U is said to be weakly nearly prime submodule of U
(for short WN-prime submodule), if whenever 0 # au € H, where a € R, u € U, implies that
eitherue H+J(U) orrU € H+ J(U).An ideal A of ring R is WN-prime ideal of R if and
only if A isa WN-prime submodule of an R-module R.

For example : consider the Z-module Z,, and the submodule H = (8) of Z,, which is a WN-
prime submodule of Z,, since J(Z,,) =(2)N(3) =(6). Thus if 0 #rm € H with r € Z,
m € Z,, , implies that eitherm € H + J(Z,4) = (8) +(6) =(2) or r € [H+ J(Z34): Z34] =
[(z>1224] =2Z.

Remark (2.2)

1. It is clear that every weakly prime submodule of an R-module U is WN-prime , but not
conversely.

For example the submodule N = Z of the Z-module @ is not weakly prime, but N is WN-prime
since J(Q) = Q and for each a € Z, u € Q with 0 # au € N , implies that either u € N + J(Q)
oraQ€Z+J(Q)=0Q.

2. It is clear that every prime submodule of an R-module U is WN-prime, but not conversely .
For example : consider that the Z-module Z;, , and the submodule H = (4) of Z;, is not prime ,
but H = (4) is WN-prime submodule of Z,, since J(Z;,) = (2) N (3) = (6). Thus if 0 = ru € H
with r € Z, u € Z,, , implies that eitheru € H+J(Z;;,) ={(4)+(6)=(2) or re[H +
J(Z12):Z12] = [(2):Z1,) = 22 .

3. If H is proper submodule of an R-module U with J(U) € H. Then H is a WN-prime if and
only if H is weakly prime submodule .

4.1f U is a semi-simple R-module and H is a proper submodule of U,then H is a weakly prime if
and only if H is WN-prime submodule of U.
Proof

It is well-known if U is a semi-simple, then J(U) = (0) . [14, Theo. (9.2.1) (a)]. So the proof
follows direct.

The following propositions give characterizations of WN-prime submodules.
Proposition (2.3)

Let U be an R-module, H be a submodule of U, then H is a WN-prime submodule of U if
and only if for every submodule L of U and r € R with 0 # (r)L € H, implies that either
LEH+J(Wor(rYUSH+J(U).
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Proof
(=) Suppose that 0 # (r)L € H, forr € R , and L is a submodule of U, withL £ H+ J(U),

then I ¢ H+ J(U) for some non-zero element [ € L. Now 0 # rl € H, then since H is WN-
prime submodule of U, and [ & H + J(U), then we have r € [H+J(U): U], it follows that
(ry S [H+J(U):U]. Thatis (r) U € H + J(U)

(=) Let 0#rueH, forreR, ue U,itfollows that 0 # (r){u) € H, so by hypothesis

either (u) S H+J(U) or (r)YUS H+J(U). That is either ue H+J(U) or rUZS H +
J(U).Hence H is a WN-prime submodule of U.

As direct result of Proposition (2.3) we get the following corollary.

Corollary (2.4)

A proper submodule H of an R-module U is WN-prime if and only if for every submodule K
of U and every r € R such that 0 # rK < H, implies that either K € H+ J(U) orr € [H +
J(U): U].

Proposition (2.5)
Let H be proper submodule of R-module U, then H is WN-prime submodule of U if and,
onlyif [Higx] € [H+ J(U):g UJU[0:gx] forallx € Uandx ¢ H+ J(U).
Proof
(:) Let r€ [H:gx] and x ¢ H+ J(U), then rx e H .If rx # 0, and H is a WN-prime

submodule of U and x ¢ H+J(U) , hence re[H+J(U):zg U]. If rx =0, then r €
[O:R x]ThUST‘ € [H + J( U):R U] U [O:R x]HenCG [H:R x] c [H + J(U)R U] U [O:R x].

(=)Let0O#rxeHforreR,ue U,withx & H+ J(U),thenr € [H: x], by hypothesis
r€[H+J(U):g UJU[0:zx], but rx # 0. Thus, r € [H + J(U):z U]and hence H is a WN-
prime submodule of U .

Proposition (2.6)

Let H be a proper submodule of an R-module U with [H + J(U):x U] is a maximal ideal
of R, then H is a WN-prime submodule of U.
Proof

Suppose that 0 #ru€eH , with reR,ue U and rUZ H+J(U). That is,r ¢
[H+J(U):U],but [H+J(U):U] is maximal, then by [11,Th. 51] R=(r)+[H +
J(U):z U]. It follows that 1 = ar + b, for some a€ R , b € [H+ J(U):x U]. Hence, u =
aru+ bu € H+ J(U). Hence, H is a WN-prime submodule of U.

Proposition (2.7)

Let H be a proper submodule of an R-module U with [L:z U] € [H + J(U):g U] and
H + J(U) is a proper submodule of L for each submodule L of U .If [H + J(U):z U] isa prime
ideal of R, then H is a WN-prime submodule of U.
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Proof

Assume that 0 #ru € H ,forreR,ue U and u & H+ J(U).We have H+ J(U) € H +
JW)+u) ,put L=H+JW)+(u) =1L, then [L:g U] € [H + J(U):g U]. That is there exist
a € [L:;gU] and a € [H + J(U):x U]. It follows that aU € L but aU € H + JU. aU < L, implies
that raUcrL=r(H+JW) +(u)) S H+JWU), that is rae[H+JWU):U]. But [H+
J(U):gU] is a prime ideal of R and a ¢ [H + J(U):x U] thenr € [H+ J(U) : U]. Thus H is a
WN-prime submodule of U.

It is well-known that if U is a multiplication R-module and H is a proper submodule of U,
then [L:g U] € [H :x U] for each submodule L of U with H ¢ L [12, Rem. (2.15)].
Corollary (2.8)

Let H be a proper submodule of a multiplication R-module U,then H is a WN-prime
submodule of U, if [H+ J(U):z U] isa prime ideal of R and H + J( U) is a proper submodule
of L for each submodule L of U.

If H is a submodule of an R-module U, then H(S) = {u € U:3t € S such that tu € H} [13].

Proposition (2.9)
Let H be a proper submodule of an R-module U, with [H + J(U):x U] is a prime ideal of
R, then H is WN-prime if and only if H(S) € H + J(U) for each multiplicatively closed subset
S of RwithSNn[H +J(U):g U] = .
Proof
(=) Suppose that H is a WN-prime submodule of U with SN [H +J(U):z U] = ¢. Let

u € H(S), then 3r € S such thatru € H, implies that r € [H:gu] € [H + J(U):x U] U [0:g u]
by Proposition (2.5) .It follows that 0 # ru € H (since H is a WN-prime ), implies that either
ueEH+J(U) or re[H+J(U)x U]l. If re[H+J(U):x U], implies that r€ Sn
[H + J(U):x U] = ¢ which is a contradiction. Thusu € H + J(U) and hence H(S) € H + J(U).

(&) Suppose that 0 #ru € H where r € R,u € U such that u ¢ H+J(U) and r ¢

[H+ J(U):z U].Since r € S, then S = {1,7,72,7r3, ...} is multiplicatively closed subset of R and
SN[H+J(U):g Ul = ¢ (since[H + J(U):xg U] is prime ideal of R ). But u & H+ J(U)
implies that u & H(S) and then 0 # ru € H which is a contradiction. Thus u € H + J(U) or
r € [H+ J(U):x U]. Thatis, H isa WN-prime submodule of U.

The following corollary a direct consequence of Proposition (2.9).
Corollary (2.10)

Let U be an R-module, H be a proper submodule of U, with [H + J(U):g U] is prime ideal
in R, then H is WN-prime ifand only if H(R — ([H +J(U):x U]) € H+J(U).

Proposition (2.11)

Let U be an R-module, and A be a maximal ideal of R, with AU +J(U) # U.Then AU is
a WN-prime submodule of U.
Proof:
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Since AUS AU+ J(U), then A c[A U+J( U):xU] .That is, there exists r € [AU +
J(U):U]and r ¢ A. But A is a maximal ideal of R,then R = A + (r), then 1 = a + sr for some
s € R, it follows that u = au + sru foreachu € U. Thusu € AU + J(U) for each u € U, so
AU+ J(U) = U which is a contradiction. Hence, r € A and it follows that [AU + J(U): U] <
AThus [AU+J(U):U]l=A. That is, [AU+ J(U): U] is a maximal ideal of R, hence by
Proposition( 2.6 ), A U is a WN-prime submodule of U.

Proposition (2.12)

Let H be a proper submodule of an R-module U with [H +J(U):zx U]l =[H +J(U):zx K]
for each submodule K of U such that H + J(U) is a proper submodule of L, then H is a WN-
prime submodule of U.

Proof

Suppose that 0 = ru € H for each r € R,u € U with u € H + J(U). Assume that K = H +
J(U) +(u), it is clear that H+ J(U) € K, then u € K and so r € [H:z K]. Since H S H +
J(U), then [H:(xK|=[H+J(U):;xK]=[H+J(U):g U] by hypothesis. Thus r€
[H+ J(U):z U], itfollowthat H is a WN-prime submodule of U.

Recall that submodule H of an R-module U is to said to be small, if for any submodule K of U
with U = H + K then K = U [14].
Proposition (2.13)
Let H be a small proper submodule of an R-module U and J(U) is a weakly prime

submodule of U, then H is a WN-prime submodule of U.
Proof

Suppose that 0 # ru € H, where r € R,u € U. Since H is a small submodule of U, then
0+rueHcJW). It follows that 0 = ru € J(U), but J(U) is a weakly prime submodule of
U, implies that either ue JWW) €S H+JW) or rU < J(WU) € H+ J(U). Hence H is a WN-
prime submodule of U.

Remark (2.14)

If H and L are two submodules of R-module U with H is contained in L, L is a WN-prime
submodule of U. Then H not necessary to be WN-prime submodule of U. The following
example explains that. Consider the Z-module Z,, and the submodule H ={0,12}, L =
{0,2,4,6,8,10,12,14,16,18, 20,22} we have L is a WN-prime (since L is a weakly prime )
submodule of the Z-module Z,,, but H is not WN-prime because if 3 € Z,4 € Z,, such that

0#34€H,butd¢ H+J(Z,,) =1{0,6,12,18}and 3 & [H + J(Z,4) : Zp4] = 6Z.

Proposition (2.15)
Let U be an R-module , and H, L are submodules of U with H contained in L,and J(U) <
J(L). If H is WN-prime submodule of U, then H is WN-prime submodule of L.

Proof

Assume that 0 #+=rx € H with r € R,x € L. Since L is a WN-prime submodule of U,
thenx e H+J(U) or re [H+J(U):x U]. But J(U)<J(L) so x€H+J(L) or re
[H+ J(L):g Ul € [H+ J(L):x L]. Hence H is a WN-prime submodule of L.
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Remark (2.16)

The resudule of WN-prime submodule of an R-module U need not to be WN-prime ideal of
R. The following example shows that:
Let U= Z;, ,R =2 and H = {0, 4,8}, H is a WN-prime submodule of Z;, by Remark(2.2)(2).
But [H:; Z,,] = 4Z is not WN-prime ideal of R because 0 #22€4Z,2€ Z but 2¢ 4Z +
J(Z)=4Zand2 ¢ [4Z + T (Z):; Z] = 4Z.

The following propositions show that the resudule of a WN-prime submodule is a WN-prime
ideal in the class of multiplication R-module over a good ring, Artinian ring respectively.

Remember that A ring R is called good if J(U) = J(R).U where U is an R-module [14].

Proposition (2.17)
Let U be a multiplication module over a good ring R , and H is a WN-prime submodule of
U then [H:; U] is a WN-prime ideal of R.

Proof

suppose that 0 # rs € [H:z U] where r,s € R, implies that 0 = r(sU) € H. But H is a WN-
prime submodule of U, then by Corollary (2.4) either sU € H+ J(U) or rU € H+ J(U). For U
a multiplication module over good ring, then J(U) = J(R).U and H = [H:z U].U. Thus either
sUC[H:xUL.U+J(R).U or rU S [H:x U1 U + J(R)U. Hence either s € [H:z U]+ J(R) or
r € [H:ig U] + J(R) = [[H:g U] + J(R):g U]. Therefore [H: U] isa WN-prime ideal of R.

It is well known if U is a module over Artinian ring R then J(U) = J(R)U. [14, Co.
9.3.10(c)].

Proposition (2.18)

Let U is a multiplication module over Artinian ring R, and H is a WN-prime submodule of
U then [H:; U]is a WN-prime ideal of R.
Proof

Let 0 # rI € [H:g U] where r € R and I is an ideal of R, then 0 # rI € H. Since H is a
WN-prime submodule of U, then by Corollary (2.4) either IUS H+ J(U) or rUCS H +
J(U).But U is a multiplication module over good ring R, then J(U) = J(R)U and H =
[H:z U]U. It follows that either IU € [H:z UJU + J(R)U or rU < [H:x UJU + J(R).U. Hence
gither 1 € [H:x U] + J(R) or 7 € [H:ix U] + J(R) = [[H:g U] + J(R):g U]. Therefore [H:z U] is
a WN-prime ideal of R.

It is well known that if U is a projective R-module then J(U) = J(R).U [14, Th. 9.2.1(9)].
Proposition (2.19)
Let U be a projective multiplication R-module , and H is a WN-prime submodule of U
then [H:g U] isa WN-prime ideal of R.
Proof
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Follows in the same way of Proposition (2.17) and Proposition (2.18).

It is well known if U is a multiplication finitely generated R-module , and A, B are ideals of R,
then AU <€ B U ifand only if A € B 4+ ann( U) [15, Cor. of th. 9].

Proposition (20)
Let U be a multiplication finitely generated faithful module over good ring R , A is a WN-

prime ideal of R.Then A U is a WN-prime submodule of U.
Proof

Suppose that 0 # aH € AU where a € R,H is a submodule of U,implies that 0 # al U €
AU for U is a multiplication, it follows that 0 = al € A+ ann( U).But U is faithful, then
ann(U) = (0). Thus 0 # al < A. But A is a WN-prime ideal of R, then either I € A + J(R) or
r€[A+J(R):R]=A+J(R). Hence IUCAU+J(R)Uor rUCAU+J(R)U. That is
either TUCAU+J(U) or rUSAU+J(U). Thus either HS AU+ J(U) or re
[AU + J(U):g U]. Therefore A U is a WN-prime submodule of U.

Proposition (2.21)
Let U be a finitely generated multiplication faithful module over Artinian ring R, and A be
a WN-prime ideal of R, then A U is a WN-prime submodule of U.
Proof
Similar as in Proposition (2.20).

Proposition (2.22)
Let U be a finitely generated projective multiplication R-module , and A is a WN-prime

ideal of R with ann(U)< A then AU is a WN-prime submodule of U.
Proof

Suppose that 0 = au € AU for a € R,u € U so, 0 # a(u) € AU. Since U is a multiplication,
then (u) = JU for some ideal J of R, hence 0 # aJU < AU, since U is finitely generated
multiplication, then 0 # aJ € A + ann(U). But ann(U) € A, then 0 # aJ € A, since Ais a
WN-prime ideal of R then by Corollary (2.4) either J € A+ J(R)ora € [A+J(R):;xR]=A+
J(R). That is either JU <€ AU+ J(R)U or aU <€ AU + J(R)U. But U is a projective, then
J(R)U =J(U). Thus either (u) SAU+J(U) or a€[AU+J(U):zx U]. That is either
u€eAU+JW)orae€[AU + TJ(U):x U]. Thus AU is a WN-prime submodule of U.

Proposition (2.23)
Let H be a WN-prime submodule of an R-module U, then S™'H is a WN-prime
submodule of S~*R-module S~ U, where S is a multiplicatively closed subset of R.

Proof
Suppose that (0) # 2= € S~!H for Z—l € S™'R and Si eS'Uandr €R, 5,5, ES,u€ U.

S1 52 1 2

Then % € ST1H, where t = s;5, € S, that is there exists non-zero element t; € S such that

0 # t;ryu € H. But H is a WN-prime submodule of U, then either t;u e H+ J(U) or r; €

[H+J(U):z U], it follows that either fl—su €ESTYH+I(U)SSTH+I(S™ U)orZ—l €
1°2 1
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STHH+J(U):x Ul S [STH+J(S71U):x ST U]. Hence either Si ESTTH+JI(S™1U) or
2
Z—l E[STIH+IJ(S 1 U):x S™T U]. Thus S~*H is a WN-prime submodule of S~*R-module S~ U.

1

It is well known that if ¢ : U — Y is an R-epimorphism and Ker¢ small submodule of R-
module U, then o( J(U)) = J(Y), 9 *(J(Y)) = J(U) [14, Cor. 9.1.5(a)].

Proposition (2.24)
Let ¢ : U — U’ be an R-epimorphism with Kere is small submodule of U, and K be a
WN-prime submodule of U’, then ¢ ~1(K) is a WN-prime submodule of U.

Proof

let 0#rx€ @ 1(K) where r€R,x € U with x & ¢ 1(K) + J(U), it follows that
p(x) & K+@(I(U))=K+JI(U"). Since 0=rx € ¢ *(K), implies that 0 # r ¢p(x) € K.
But K be a WN-prime submodule of U’and ¢(x) € K+ J(U'), it follows that rE
[K+J(U"):xg U], that is rU" < K+ J(U"), hence r o(U) = o(rU) € K+ J(U"). Implies
thatr U € ¢~ 1(K) + J(U). Therefore ¢ ~1(K) is a WN-prime submodule of U.

Proposition (2.25)

Let f : U — U’ be an R-epimorphism with Kerf is small submodule of U, and H be a WN-
prime submodule of U with Kerf < H. Then f(H) is a WN-prime submodule of U'.
Proof

Since Kerf < H, that's clearlyf(H) is a proper submodule of U’. Now, suppose that 0+
rx' € f(H), where r € R, x" € U'. Since f is an epimorphism then f(x) = x' for some x € U,
thus 0 #rx’ =rf(x) = f(rx) € f(H),it follows that there exists non-zeroy € H such that
f(rx) = f(y), implies that f(rx —y) =0,hence rx —y € Ker f CH=0=+*rx € H.butH is
a WN-prime submodule of U, then either x € H + J(U) or rU € H + J(U), it follows that either
xX'=fx)efH)+ITJW') or rU' =rfU) < f(H)+JI(U"). That is f(H) is a WN-prime
submodule of U’.

3. Conclusion
In this article the concept WN-prime submodule was introduced and studied as generalization
of a weakly prime submodule. The results that we set in this research are the following:

1. Every weakly prime submodule of R-module U is WN-prime, but not conversely .

2. A proper submodule H of an R-module U is a WN-prime if and only if whenever 0 #
(r)L € H where r € R, L is a submodule of U implies that either L€ H+ J(U) or
(MUCSH+JI(U).

3. A proper submodule H of an R-module U is WN-prime if and only if [H:z x] S
[H+J(U):g UlU[0:gx] forallx € Uandx ¢ H+ J(U).

4. Let H be a proper submodule of an R-module U, with [H + J(U):; U] isa prime ideal of
R, then H is a WN-prime if and only if H(S) € H + J(U) for each multiplicatively closed
subset S of RwithSNn[H + J(U):x U] = ¢.

5. If asubmodule H of an R-module U is small and J( U) is a weakly prime submodule of U,
then H is WN-prime submodule of U.
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6. Let U be a multiplication module over Artinian ring R, and H is a WN-prime submodule of
U then [H:g U] is a WN-prime ideal of R.

7. If U is a projective multiplication R-module , and H is a WN-prime submodule of U then
[H:z U]isa WN-prime ideal of R.

8. If U is finitely generated faithful multiplication module over good ring R, and A be WN-
prime ideal of R, then A U is WN-prime submodule of U.

9. If U is finitely generated projective multiplication R-module then A U is a WN-prime
submodule of U for all WN-prime ideal A of R with ann( U) C A.

10. If H is a WN-prime submodule of an R-module U, then S™H is a WN-prime submodule
of ST1R-module S~ U, where S is a multiplicatively closed subset of R.
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