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Abstract

The main purpose of this paperis to introduce a topological space(D, 7), which is induced
by reflexive graph and tolerance graph D, such that D may be infinite. Furthermore, we offer
some properties of (D,7p) such as connectedness, compactness, Lindel6f and separate
properties. We also study the concept of approximation spaces and get the sufficient and
necessary condition that topological space is approximation spaces.
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1. Introduction

Graph theory [1] is a tool for optimization and solving practical application in all fields
such as engineering study and representation of economic and social networks, complex
general systems, information theory and others. In particular, graphs are one of the prime
objects of study in mathematics.

Rough set was offered by Pawlak [2] as a method for dealing with uncertainly of imprecise
data, the equivalence relation is the cornerstone of Pawlak's theory of rough set. Topology is a
major mathematics branch with independent theoretic frame work and wide applications.

Z. Li [3] offered the concept of transmitting expression of relation and produced several
important results of rough sets topological properties. We can apply topological approaches to
the theory of rough set and search the connection between rough set theory and topological
theory. The topological properties of various rough operators have been debated in [4]. We
built on some of the results in [5-10], [11-15] and [16].
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2. Generalized Rough Graphs Generated By Graphs.

We will remember several fundamental concepts of the theory of rough set. In this
article,D = (V(D),E(D)) is a graph whereV (D) implies the universe which may be infinite,
the power set of V(D) symbolized by P(V (D)) and the closure of subgraph Q in D symbolized
by Q wherever V(D) is a topological space.

Let D = (V(D), E(D)) be a graph. For each subgraph Q of D, we will define operators D_ and
D, from P(V(D))to itself as the following:

D_(Q)={reV(D):if (x,u) € E(D), thenu € V(Q)},
D, (Q) ={r € V(D): there exists u € V(Q) such that (¥r,u) € E(D)}.

D_(Q) is named lower approximation of Q and D, (Q) is named upper approximation of V (Q).
The pair (V(D), E(D)) is named generalized rough graph or generalized approximation space.
Q is named generalized exact graph or definable graph if D_(Q) = D, (Q).While Q is called
undefinable graph if D_(Q) # D, (Q). If D is an equivalence graph, a generalized rough graph
(V(D), E(D))means the rough graph in the Pawlak's sense.

Definition 2.1. Let D = (V(D), E(D)) be a nonempty graph. We define 7, for each Q < D by

p ={Q € D:D_Q =V(Q)}

If D is a reflexive graph, then 7, constitutes a topology on V (D), tpcan be named the
topology produced by D.

Definition 2.2. IfDis a reflexive graph, then (D, tp) is named the topological space produced
by D.

Definition 2.3. LetD be a graph, if D is both reflexive and symmetric graph then D is called
tolerance graph.

Definition 2.4. Let D, and Dg be two graphs on V(D,) = V(Dg) = V(D). Dg is named
transmitting expression of D, if for everyr, u € V(D),(x,u) € E(Dp)if and only if (r,u) €
E(D,) or there exists {v;, vy, V3, ..., vy} € V(D) Where(¥,v,) € E(D,), (v1,v,) € E(Dy), ...,
(vn, u) € E(Dy).

Proposition 2.5. Let D, be a graph and Dg the transmitting expression of D,, then Dg is a
transitive graph, furthermore,

(1) If D is reflexive, then Dg is also reflexive,

(2) If D, is symmetric, then Dy is also symmetric,

(3) If D, is transitive, then Dz = D,,.
Proof. (1) Let D, is reflexive graph, then for each r € V(D),(¥,¥) € E(D,), since Dy is a
transmitting expression of D,, then (,¥) € E(Dg), so Dg isa reflexive graph.
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(2) Let (x,u) € Dg, since Dg the transmitting expression of D,, then (r,u) € D, or there
exists {vy, vy, vg, ..., vy} € V(D) where (¥,v;) € D,, (v1,v3) € D, ..., (v, u) € D, if and
only if (r,u) € Dg, because D, is symmetric, so (u,¥) € D, or there exists
{vi, vy, V3, ..., v} € V(D) Where,(u,v,) € Dy, ..., (V5,v1) € Dy, (v1,¥) € D, if and only if
(u,¥) € Dg, which implies to Dg is symmetric.

(3) Let (r,u) € E(Dg), we have to show that (r,u) € E(D,).Since Dy the transmitting
expression of D,, then(r,u) € E(Dp)if and only if (r,u) €D, or there exists
{vi, vy, V3, ..., v} € V(D) Where (x,v1) € E(Dy), (v1,v2) € E(Dy), (vo,v3) € E(Dy) ...,
(v, u) € E(Dg).

() If (+,u) € E(D,) the prove is complete.

(i) If there exists {vq,v,,v3,...,v} S V(D) where (¥,v,) € E(D,), (vi,v,) € E(D,),
(va,v3) EE(Dy) ..., (vy,u) € E(D,), and we have that D, is transitive, so (x,u) € E(D,),
which means Dg = Dj,.

Definition2.6. (1) Let (D, t) be a topological space and By, a base of (D, tj,), where (D, tp) is
induced by a reflexive graph D. Then B € By, is called maximal element of B, if does not
exist B € Bp\{B} suchthat B < B'.

(2)The set of all maximal elements of B, symbolized by B},. Because UB, = V(D), Bj, is
referred to as the minimal complete cover of (D, tp) according to the base Bj.

We will define a pseudo-metric map on graph D.

Definition2.7. Let D = (V(D), E(D)) be a nonempty graph, then d: V(D) x V(D) — [0, +)
is called pseudo-metric map on D, if for all ¥, v,u € V(D),

@) d(r,¥) =0,

(b) d(¥,v) =d(v,¥),

(©) d&v) < d@Fxuw) +du,v).
Foreachr € V(D),Q € D,e > 0,

B(r,e) ={v € V(D):d(x,v) <€}, d(x, Q) = inf{d(x,v):v € V(Q)}.

If there exists pseudo-metric mapdon Dwhere{B(¥,€): ¥ € V(D),e > 0} configures a base of
D, then a topological space (D, tp) is referred to as pseudo-metrizable space.

Proposition 2.8. Let D be pseudo-metrizable space. IfQ < Dand d is pseudo-metric map on D,
thenr € Q ifandonlyif d(¥,Q) = 0.

Proof. ¥ € Q if and only if for each € > 0, B(x,€) N V(Q) # @ if and only if for each € > 0,
there exists u € V(Q) such that d(¥,u) < € if and only if inf{d(¥,u):u € V(Q)} if and only if

d(¥,Q) =0.
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Definition 2.9. Let (D, tp) be a topological space. D is named a pseudo-discrete space if
Q € Disopenin D ifand only if Q is closed in D.

3. The Properties of Topological Spaces Induced by a Reflexive Graph

We will study through this part, the properties of the topological space (D, 1), where
(D, tp) is produced by a reflexive graph D.

Lemma3.1. Let D, be a reflexive graph and Dg the transmitting expression of D, for every
r € V(D), chose L, = {v € V(D): (x,v) € E(Dg)}, then

(1) Ly € 1p,,

(2) {L,} is an open neighborhood base of ¥,

(3) L, is compact subset of (Dy, 7p,),

(4) Bp, = {Le:¥ € V(D)}is abase for (Dg, 1p,).
Proof. (1) It is sufficient to show thatL, < Int(L,). Let u € L,,s0 (x,u) € E(Dg), then there
exists {vy, vy, v3,...,0p} € V(D) where (x,v1) € E(Dy), (v1,v2) €EE(D,), ... , (v,u) €
E(Dg), SO u € [v,]p,. For y € V(D) such that y € L,, (v,,¥) € E(Dy), s0(x,v1) € E(Dg),
(v1,v2) € E(Dg), ... , (v, y) € E(Dy), then (x,y) € E(Dg), SO y € [r]DB, then y € L,,
[Vn]lp, € Ls sOu € Int(L,), which implies to L, € Int(L,). Hence, L, € tp_.

(2) Let B € tp such that ¥ € B, we will show that L, € B. Let u € L,, then (¥,u) € E(D,) or
there exists {vy,v,, v, ..., } S V(D) where (r,v;) € E(D,) , (v1,v,) €E(Dy) , ... ,
(v, w) € E(Dy).

(i) If (x,u) € E(D,), then we claim u € B. For otherwise, u € B¢, then, L, € B¢, but D, is
reflexive, so ¥ € L, and L, € B¢, then ¥ € B¢, which is a contradiction. Hence, u € B.

(ii) If there exists {v,, vy, v3, ..., v} € V(D) where (v,v,) € E(D,), (v1,v,) € E(Dy), ...,
(vp,u) € E(D,), thenby (i) we getv, E B,v, €EB, ... ,u €B.

So L, € B, Which implies to {L,}constitutes an open neighborhood base of .

(3) Let {K;|2 € A} be an open cover of L, then r € K; for some 4; € A, then by (2) L, € K;,.
Therefore, L, is a compact subset of (D, tp).

(4) It is obvious by (2)

Remark 3.2. (1) Let D = (V(D),E(D)) be a graph, for each r,u € V(D), if (x,u)€
E(D)and(u,¥) € E(D), then L, = L,,.

(2) For all B € Bp, B cannot be represented as the union of some elements of B,\{B}.
Otherwise, there exists O, € Bp\{B} such that B =U Op. By B € Bp, there exists ¥ € V(D)
where B = L,. Because ¥ € B, there exists Q € Op such that ¥ € Q € B. By Lemma 3.1,
L. € Q. Then B = Q, so we obtain a contradiction. Hence, H cannot be represented as the
union of some elements of B, \{B}.
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(3) Let Hp form a base for (D,tp). Then B, & Hj. Otherwise, there exists B € B, but
B ¢ Hp. Notice that B € By, there exists ¥ € B where B = L,. Because H, is a base for
(D, tp), there exists H}, © Hj such that B = U H},. Thus ¥ € H € B for some H € H}. By
using Lemma 3.1, B € H. S0 B = H € H, and that means a contradiction. Therefore, B, €
Hp.

Theorem 3.3.Let (D, tj) be a topological space generated by a reflexive graph D, then

(1) (D, tp) is a first countable space,

(2) (D, tp) is a locally compact space,

(3) If D is countable, then (D, tj) is second countable space.
Proof. (1) By lemma 3.1(2) {L,} is an open neighborhood base of ¥, then (D, tp)is a first
countable space.

(2) By lemma 3.1(3), we have for each ¥ € V(D), ¥ has compact neighborhood. Hence (D, tp)
is locally compact space.

(3) By lemma 3.1(4),Bp = {L,: ¥ € V(D)}is abase for (D, tp), which implies to there exists a
countable base for zj, so (D, tp) is a second countable space.

Theorem 3.4. If D = (V(D), E(D)) is a reflexive graph and D the transmitting expression of
D, then (D, TD) = (D, TDB)

Proof. According to Lemma 3.1(4), By, = {L,: ¥ € V(D)} is a base for (D, 1), we will prove
that By = {L,: ¥ € V(D)} is also a base for (D, 7p,).

By definition L, = {uV(D):(r,u) € Dg} € Tpg- Let reK € Tpg for any u € L,, then
(r,u) € Dg, since ¥ € K, by Lemma 3.1(2) r € L, S K. So B is also base for Tpg hence
(D’TD) = (D,TDB)-

Lemma 3.5. Let (D, tp)be atopological space generated by a reflexive graph D, if B the
minimal complete cover of (D, tp) according to the base Bj, then for all F € Bj,, U(Bp\
{F}) #= V(D) and U(Bp\{F}) # V(D).

Proof. Suppose that U(Bp\{F}) = V(D), then there exists By, < Bp\{F} such that F € U B},
Since F € B, © Bp, there exists ¥ € V(D) such that F = L,, so ¥ € F* for some F' € Bj. By
Lemma 3.1(2), F = L, € F*'. Consequently F is not a maximal element of H; which implies a
contradiction. So, U(Bp\{F}) # V(D). Since U(Bp\{F}) # V(D), U(Bp\{F}) # V(D).

Lemma 3.6.Let (D, tp) be a topological space generated by a reflexive graph D, If B}, the
minimal complete cover of (D, tp) according to the base By, and H, an open cover of (D, tp).
Then for all F € By, there exists H € H}, where F € H.

Proof. Since H, an open cover of (D,tp), for any F € By, there exists H}, < H}, such that
F € UH}. Because F € B}, € Bp, then F = L, for some ¥ € F, so there exists H € H}, <
Hpsuchthaty € H. By Lemma 3.1, F € H.
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Lemma 3.7.Let (D, tp) be a topological space generated by a reflexive graph D. If B}, is the
minimal complete cover of (D, tp) according to the base B, and H, an open cover of (D, tp),
which is made up of some elements of By, then B;, S Op,.

Proof. For each B € By, we claim that B € Op. If not, B ¢ Op. Since U Op = V(D), U(Op\
{B}) = V(D), So U(Bp\{B}) = V(D). By using Lemma3.5U(Bp\{B}) # V(D), which
implies a contradiction. So By, € Op.

Theorem 3.8.Let (D, tp)be a topological space generated by a reflexive graph D, B, the
minimal complete cover of (D, tp)according to the base Bj. Then is a finite set if and only
if(D, tp) is compact space.

Proof. The only if part clear by Lemma (4.6).Conversely, suppose that (D, tp) is compact,
asH is an open cover of (D, 1) then H, has a finite subcover ;. By using Lemma 3.7,
Bp € Bp, thus |Bp| < |Bp|. Hence By, is a finite set.

4. The Properties of Topological Spaces generated by a Tolerance Graph

Through this part, we will achieve the properties of (D, t), where (D,7p) is a topological
space induced by tolerance graph D.

Lemma 4.1If (D, tp) is a topological space generated by a tolerance graph D, then for all
Q € D, Qisopenifand only if Q is closed.

Proof. Q isopen & Q = Int(Q) & Q¢ = Int(Q°€) < QF€ is open graph < Q is closed.

Theorem 4.2. If(D, Tp)is a topological space generated by a tolerance graph D. Then (D, tp) is
discrete if and only if (D, tp) is T, — space.

Proof.The only if part is clear. We are going to prove the if part. Let (D, tp) be Ty — space.
Depending on the Lemma 3.1(4), we have if D is reflexive, then {L,: ¥ € V(D)} is a base for
(D, tp). We claim that L, = {r} for any ¥ € V(D). Suppose that L, # {r} for some ¥ € V(D).
By Proposition 2.5, Dy is an equivalent graph on V(D), so L, = [¢]p,. Chose u € [r]p, such
that u # ¥. Since (D, tp) is Ty — space, there exists an open subgraph O where ¥ € V(0) and
u & V(0), or there exists an open subgraph U where u € V(U) and ¥ & V(U). If there exists
an open subgraph V(0) where ¥ € V(0) and ¥ € V(U), then r € L, € V(0) for some v €
V(D)depending on the Lemma 3.1(4). It follows u & L,,. As Dg is an equivalence graph on
vV (D), [r]DB = [v]Dﬁ = L,. Thus u € [r]DB = L, means a contradiction. Similarly if there
exists an open subgraph Uwhereu € V(U) and ¥ & V(U). Hence, {r} is open for all ¥ € V(D).
Therefore, all subgraphs of V(D) are open which means that (D, tj,) is discrete.

Theorem 4.3.Let (D, t) be a topological space generated by a tolerance graph D. Then, the
statements are equivalent:

(1) V(D) / E(Dg) is countable,
(2) (D, tp) is asecond countable space,
(3) (D, tp) is a separable space,
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(4) (D, tp) is a lindelof space.
Proof. (1)=(2). Since Dgis an equivalence graph on V(D), {L,:¥ € V(D)} = V(D) / E(Dg).
By Lemma 3.1(4), (D, tp) is second countable space.

(2)=(1) Suppose that B is a countable base for (D, tp), then for ¥ € V(D), there exists
B. € Bsuchthaty € B, € L,. By Lemma 3.1(4), r € L, S B, forsome u € V(D). Since
Ly = [¥lp, = [ulo, = Lu, By = [¥lp,, e define £: V(D) / E(Dg) — B by f ([£lp,) = B,
then f is injective. So|V(D) / E(Dﬁ)| < |B|. Hence V(D) / E(Dpg) is countable.

(2) = (3) and (2) = (4) are clear.

(3) = (2). Suppose that C is a countable dense subgraph of (D,tp). Put A = {L.:¥ € V(C)},
then A is countable. By Lemma 3.1(4), for all ¥ € V(D) and open subgraph O with ¥ € V(0),
we have ¥ € L, € V(0) for some u € V(D). Since C is dense, L, NV (C) # @, Chose
v € L, NnV(C), then L, € A. Since D; is an equivalence graph on V(D), L, = [U]Dﬁ =
[u]Dﬁ = L,. It follows ¥ € L,, € V(0). Therefore, A is a base for (D, ). Hence (D, 1p) is a
second countable space.

(4) = (2). Suppose that V(D) / E(Dg) is not countable. Since Dg is an equivalence graph on
V(D), {L;:¥ €V(D)}= V(D) /E(Dg). It is obvious that {L,: ¥ € V(D)} is an open cover of
(D,tp) but {L.:¥ €V(D)} does not have any countable subcover Hence we get a
contradiction.

Theorem 5.4 Let (D,tp) be a topological space generated by a tolerance graph D. Then
(D, tp) is a connected space if and only if E(Dg) = V(D) x V(D).

Proof. Suppose that (D,tp) is connected, If E(Dg) # V(D) X V(D), then V(D) x V(D) /
E(Dg) # @. Chose (r,u) € (V(D) X V(D))\E(Dﬁ), then u ¢ [r]DB = L.. So L, # V(D)
and L, # @. By Lemma 4.1, L, is both open and closed, so we obtain a contradiction.
Conversely, Suppose that E(Dg) = V(D) x V(D), then V(D) / E(Dg) = [V(D)]. So 1p =
{V(D), 8}, thus (D, tp) is connected.

Theorem 4.6. Let (D, tp) be a topological space generated by a tolerance graph D. Then

(1) (D, tp) is a locally connected space
(2) (D, tp) isalocally separable space,
(3) (D, tp) is aregular space,
(4) (D, tp) is a normal space,
(5) (D, tp)is a pseudo-metrizable space.
Proof.(1) By lemma 3.1(2) every open neighborhood of ¥ contains L, which is connected.

(2)Since {L,} is an open neighborhood base of ¥, we just need to show that L, is a separable
subset of (D, ;). Let {¥} be the closure of {¥} and suppose that there exists u € {¥} such that
u €L, so [r]DB N [u]u,; = @. For an open neighborhood L, of u, {r}nL, =@ ,50 u & {¥}
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which is a contradiction, hence, u € L, then {¥} S L,. On the other hand, let u € L, then
ueE [r]DB, then L. = L,. Suppose O is an open neighborhood of u, so L, € V(0) then
L,NnV(0)#®, so L,NnV(0) # @, then, {r}NV(0) # @ then u € {r}, so L, S {¥}. Hence,
L. = {¥}, and we obtained that {r} is countable dense subset of L, which implies to L, is
separable subset of (D, tp). Hence, (D, tp) is locally separable space.

(3) Let Q be closed subgraph of D and ¥ € V(Q)¢, by Lemma 4.1 Q is open if and only if Q is
closed, soQ and Q¢ are two open disjoint subgraph of D such that V(Q) € V(Q) and r €
V(Q)¢. Hence (D, tp) is a regular space.

(4) Let Q, M are two disjoint closed subgraphs of D, then by Lemma 4.1 they are also disjoint
closed subgraphs of V(D). But we have V(Q) <€ V(Q)and V(M) < V(M). Hence (D, tp) is a
normal space.

(5) Since there exists the trivial pseudo-metrizable map d induced by the pseudo-metrizable
space, where

lifr=u

d: V(D) X V(D) — [0, o), such that d = {0 A

Foranyr € V(D) and € > 0,

{r} ife<1

Bre) = {V(D) ifex>1

Then, {r} € tp, so (D,7p) is pseudo-discrete, then B(¥,1) = {u € V(D):d(r,u) < 1} =
fueV(D):d(r,u) = 0} = {r}. Thus {B(x,€): ¥ € V(D)and € > 0} forms a base for (D, tp).
Hence (D, tp) is pseudo-metrizable.

5. Approximation spaces on digraph

We will present the concept of approximation spaces in this part; furthermore, we will
get their characterizations and properties.

Definition 5.1. Let (D, p) be a topological space, then (D, p) is called an approximation space
if there exists an equivalence graph D = (V(D), E(D))such that 7, = p.

According to Lemma 4.1, we get that approximating spaces are pseudo-discrete spaces.
But the question, would pseudo-discrete spaces are approximating space? This problem is
certainly answered by the following theorem.

Theorem 5.2. 6.2 If (D, p) is a topological space, we have the next equivalence:

(1) (D, p) is an approximating space,
(2) (D, p) is both pseudo-metrizable and pseudo-discrete,
(3) (D, p) is pseudo-discrete space.

Proof. (1) = (2). It holds depending on Lemma 4.1 and Theorem 4.6.
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(2) = (1). Let(D,p)be both pseudo-metrizable and pseudo-discrete, then there exists a
pseudo-metric map d on V(D) where {B(x,€):¥ € V(D)and € > 0} is a base for (D, p). We
define a graph D on V(D) as thereinafter:

Forall r,u € V(D), (r,u) € E(D) ifand only if d(¥,u) = 0.

Since d is pseudo-metric on (D), so D is an equivalence graph. We will prove that 7, = p.
Let Q € p, by Proposition 2.8, Q = {¥ € V(D):d(¥, Q) = 0}. Since (D, p)is pseudo-discrete,
Q is closed in (D,p), so V(Q)={reV(D):d(¥ Q) =0}. It is obvious that V(Q) <
U{lrlp:r € V(Q)}. If uelr]p, with ¥ € V(Q), then, d(x,Q) <d(u,¥) = 0. So u €
{freV(D):d(x,Q)=0}=V(Q), that is meanV(Q) 2 U{[rlp:r € V(Q)}. Thus V(Q) =
U{[¥]p: ¥ € V(Q)}, it follows that V(Q) € tp, SOp S Tp.

On the other side, let ¥ € V(D), by Proposition 2.8, {¥r} = {u € V(D):d(u,¥) = 0}, then
{r} = {r}p. Now [r], is closed in (D,p), since (D,p)is pseudo-discrete,[¥], € p. Since
{[¥]p: ¥ € V(D)} is a base for (D, 1p), Tp S p.

Hence 7, = p. This means that (D, p) are an approximation space.
(2) = (3). Clear.

(3) = (2). Let(D,p)be pseudo-discrete. For eachr € V(D), C(¥) denoted a connected
component with ¥ € C(¥), then C(¥) is closed in (D,p). So {¥} € C(¥). Let u € C(¥), since
C(¥) is a connected component with ¥ € C(¥), there exists a connected subgraph Q of
Dwherer, u € V(Q). Since D is pseudo-discrete, {¥} is both open and closed in (D, p). Note that
{r} NV (Q) is both open and closed in the subspace Q and Q is connected. Then {¥} NV (Q) =
V(Q), so u € {¥}. This indicates that C(¥) € {¥}. Thus C(¥) = {¥}.

We define d: V(D) x V(D) — [0, ) as follows:

0 if C(x) =C(w),

dlru) = {1 if C(¥) # C(w).

The assumption that d is pseudo-metric on V(D)can be easily proved. For any ¥ € V(D) and
€>0,

(7} ife<i,
Bre) = {V(D) if e > 1.

Then B (¥, e)will be closed in (D, p). BecauseD is pseudo-discrete, B(¥,€) € p. Let ¥ € V(D)
and V(0) € p with ¥ € V(Q). Since Dis pseudo-discrete, V(Q)is closed in (D, p). So{¥}
V(Q). By Proposition 2.8,{r} = {u € V(D):d(¥, u) = 0}. Then .V(D) and € > 0} is a base
for (D, p). Therefore(D, p) is pseudo-metrizable.

Corollary 5.3. Discrete spaces are approximating spaces.
Theorem 5.4. Quotient maps preserve approximating spaces.
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Proof. Suppose that the image of an approximating space Dunder a quotient map f is D’. We
have to show that D’ is an approximating space. Since fis a quotient map, N € D’ is open in D’
if and only if f~1(N) is open in D. By using Theorem, 5.2, f~1(N) is open in D if and only if
f~Y(N) is closed in D. Sincef is a quotient map, then, f~1(N) is closed if and only if N € D’
is closed in D'. SON < D'is open in D' if and only if N is closed inD’. According to Theorem
5.2,D' is an approximating space.

Corollary5.5. Continuous maps do not preserve an approximating space.
We will explicate Corollary 5.5. in the next example.

Example 5.6.Suppose thatV (D) is a real numbers set R given with the usual discrete topology
and V(D") is a real numbers Rgiven with the usual Euclidean topology, let f: V(D) — V(D")
be the identity map, it is obvious that f is continuous map. According to the Corollary 5.3,
V(D) is an approximating space. But V(D") is not an approximating space. Therefore,
continuous maps do not preserve approximating spaces.

3.Conclusion

We offer the topological space generated by a reflexive graph and tolerance graph
consecutively and discussed the topological structure of generalized rough graph. We have also
achieving approximating spaces and get sufficient and necessary conditions that topological
spaces are approximating spaces on graphs.
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