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Abstract

This paper is devoted to compare the performance of non-Bayesian estimators represented
by the Maximum likelihood estimator of the scale parameter and reliability function of inverse
Rayleigh distribution with Bayesian estimators obtained under two types of loss function
specifically; the linear, exponential (LINEX) loss function and Entropy loss function, taking
into consideration the informative and non-informative priors. The performance of such
estimators assessed on the basis of mean square error (MSE) criterion. The Monte Carlo
simulation experiments are conducted in order to obtain the required results.

Keyword: Inverse Rayleigh distribution, Entropy loss function, LINEX loss function, Prior
information.

1. Introduction

Inverse Rayleigh distribution (IRD) is one of the comprehensive and relevant lifetime
model, and its applications are in reliability and survival data sets .A numerous work has
been done in the literature concerning IRD. The distribution was supported by Voda in
1972,who considered its properties and consider MLE estimator for estimate its scale parameter
[1]. Next, Gharraph in 1993 developed closed form expressions for the mean, mode, median,
harmonic mean and geometric mean of IRD [2]. Furthermore, Soliman, Amin, and Abd-El
Aziz in 2010 estimated the parameter using different traditional and Bayesian estimation's
methods [3].

The probability density function of inverse Rayleigh distribution is defined as follows [4]:
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20 (2]
f(t,6)=t—3exp(—t—2), t>06>0 (D

Where (t) is a random variable that follows IRD and 6 is the scale parameter. The cumulative
distribution function is given by [4]:

0
F(t,9)=exp(—t—2), t>06>0 (2)
The reliability function of IRD is therefore defined as [4]:
0
R(t,H)=1—F(t,9)=1—exp(—t—2), £>0,6>0 3)

It is worth mentioning here that the variance and higher order moments not exists in this
distribution.

In this section, Maximum Likelihood Estimators, Posterior density of the inverse Rayleigh
parameter based on (Jeffrey's prior information, exponential prior distribution) and Types of
loss functions (Entropy loss function, linear Exponential loss function) will be considered .

2. Maximum Likelihood Estimators

Let t;t, ... t, be random samples drawn from the density given in equation (1), then the
likelihood function is defined as

1 0375
L(Ele) = Hll:lf( tile) =2"ne" ?zlt?e tl:z (4)

Taking the natural logarithm for the likelihood function, we get

InL (£]6) = nin2 + nlnd + S, In 5~ 0 XL,

By differentiating the log likelihood function with respect to 8 and then equating the resultant
derivative to zero, we get

alnL(t|0) _n n 1_g
0 6 (=1p2 ™

Hence, the MLE for & denoted by 8, is

~ n n
Omre = E =z ()

1
where T = Z?zlt—z
i

3. Posterior Density of Inverse Rayleigh Parameter Based on Jeffrey's Prior Information

Assume that 6 has a non-informative prior. Applying Jeffrey's rule [5], we get

g(6) < /I(8) or g(6) =cyI(6)
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Where g(0) represents Jeffrey's prior information, C is the constant of proportionality and 1(6)
represents Fisher information, defined as follows:

— _n 821n f(¢,0)
1(6) = —nE |[Z5222 (6)
Therefore,
921 ,0
9:(60) = cJ —nE (25L022) ()

By taking the logarithm of equation (1), we get

Inf(t;,0) = In(2) + In(6) + In(3) — =
dl1nf(t;,0) l _ 1
26 6t
Thus, the second derivative is
0?Inf(t;, ) 1
d 02 62
Hence, we get:
£ 0% Inf (t;,0) 1
d 62 E
After substitution into (7), we get
@) =<vn  ,8>0 (8)

The posterior density function is defined as:

= 9OLEs
h(61t) TR gO)L(tle) §

Hence, the posterior density function for 6 based on Jeffreys prior will be

i * Jn 2mer 13 exp( Oy iz)
hl(e|£) = o C 1 i
Jy g Vn2rom I} t3exp< oy —2) ae
gn—1p -60T 1
hy(8t) = —Gn ot =Xz, 0>0

Hence, the posterior density function of 6 with Jeffreys prior can be written as
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Tngn—le—BT

— (10)

The posterior density function is recognized as the density of the Gamma distribution, i.e.

(6]t)~Gamma (n, %), with
E(6) = ; . Var(d) = Tl (11)

4. Posterior Density of Inverse Rayleigh Parameter Based on Exponential Prior
Distribution

Assuming that the inverse Rayleigh parameter 8 follows exponential prior distribution with
parameter A [6], that is

g2(8) =2e™ , x>0, >0 (12)
Where g,(6) denotes the exponential prior distribution of the inverse Rayleigh parameter 6.

From Bayesian theorem the posterior density function of @ denoted by h, (9| g) can be obtained
as

gne—0(T+1)

hy (ng) = [ 6me6T+D) ag (13)

1
where T = Z?zlt—z
i

(T+/'L)n+19n e—H(T+)l)

h2(9|£) =

6>0 (14)

r(n+1)

It can easily be noted that 6|x~Gamma (n +1 %) where P =T + A with

E(6l0) = =, Var (81t) = o7 (15)

P P2

5. Types of Loss Functions [7]

From the Bayesian viewpoint, the essential step in the estimation and prediction problems
was represented by choosing the loss function. In fact, there is no specific analytical procedure
to determine the suitable loss function to be employed. In this paper, we consider two types of
loss function, the Entropy loss function and Linear Exponential loss function (LINEX), as
follows:

i) Entropy Squared Loss Function which is defined as below
-1 (16)
i) Linear Exponential Loss Function (LINEX) which isdefined as below

L(6,0) =e®® —(6-6)—1 (17)

128



Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021

6. Bayesian Estimation

The Bayes estimator of the parameter 6 is the value of 6 that minimize the posterior
expectation known as the risk function denoted by R(8,8), that is

R(9,0) =E[L(8,0)] = [° L(8,0)r(6]t)d6 (18)
Where h(6|t) is the posterior density of 8|t

7. Bayes Estimator of Parameter @ and Reliability Function of IRD under Entropy Loss
Function [8, 9].

If entropy loss function is chosen, then according to equation (18), we have
~ o 8 9
R(0,6) = [, [;—Iny—1]h(8]t)do
By differentiating R(8, 8) with respect to & and setting the resultant, derivative equal to zero,

then solving for 8 , we get

~ 1
en = Frpatoinan 9

On the basis of non-informative prior and according to equation (10), the Bayes estimator of
inverse Rayleigh parameter 8 denoted as 9511( 5 is given by

n-—1

é\ETL(]) = T (20)

If the inverse Rayleigh parameter follows the exponential prior distribution, then by equation
(14) we conclude that

Ot = % ,  where p=T+A 1)

The estimator of the reliability function based on Jeffrey's prior can be approximated as

éE"(n
R(t)EnU) =]l—e ¢

n-1

R(O)pn,, =1—e1@ (22)

The estimator of the reliability function based on exponential prior can be approximated as

~ _9En
R(t)En(E) =]1—e 2

n

R)gny, =1~ e pt? (23)
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8. Bayes estimator of the parameter @ and reliability function under LINEX
By substituting from L(8,6) given in equation (17) into equation (18), we get

R(8,6) = [’[e®=9) — (6 - 0) — 1]r(6]t)d6
By simplification, we get
e ["e 0 h(6|t)do =1

By differentiating R(6,6) with respect to 6 then equating the resultant derivative to zero and
solving for 8, we get the Bayes estimator of 6 under linear Exponential loss function denoted
by 8, as follows

Oz = —In [ e~ h(6|t)do

on the basis of non-informative prior, the Bayes estimator of the inverse Rayleigh parameter 6
denoted as 6, is given by

~ T\
Oggy =—In (m) (24)
If the inverse Rayleigh parameter follows the exponential prior distribution éLE(E) =
P n+1
~In(557) ' (25)
the estimator of the reliability function based on Jeffrey's prior can be approximated as
BLE )

R\(t)LEU) E 1 - e_ tz
Which implies that

- in(57)
2

=
~
—
—/
=
s
=
N
_
[
®
o

n
2

R(Ouey, =1 - () (26)

The estimator of the reliability function based on exponential prior can be approximated as

" RE0)
R(t)LE(E) = 1 — e tz

Which implies that

n+1
_ - in(35p)
R(t)LE(E) = 1 — e tz

n+1

ROuey =1- () 2 (27)

1+P
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10. Simulation Study

In our simulation study, number of repetitions L=2000 sample of size n=10,50,100 and 200
are generated in order to represent, small, moderate, large and very large sample sizes from
inverse Rayleigh distribution with two values of the scale parameter (6 = 0.5,6 = 1.5), the
scale parameter A of exponential prior was chosen to be (A=0.5, A=1) and mean square error
(MSE) is employed to compare the performance of different methods for estimation of the scale
parameter and reliability function of IRD where

MSE(9) = 15,0, - 0)° (28)
MSE[R(t)] = £ 2, [Ri(6) — R(1))? (29)

The results are presented in the following Tables (1-8).

Table 1. MSE for parameter 6 by using Jeffrey's prior information at & = 0.5

n 10 50 100 200
Estimator
MLE 0.0043 0.0001082 0.000026176 0.000006513
Ent 0.0033 0.0001019 0.000025396 0.000006412
Lin 0.0250 0.0050 0.0025 0.0013
Best Ent Ent Ent Ent

Table 2. MSE values of the Reliability function estimators by using Jeffrey's prior information at 8 = 0.5

n 10 50 100 200
Estimator
MLE 0.000321 0.0000101 0.0000024924 0.0000006246
Ent 0.000269 0.0000097 0.0000024460 0.0000006185
Lin 0.000283 0.0000098 0.0000024635 0.0000006209
Best Ent Ent Ent Ent
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Table 3. MSE for parameter 6 by using exponential prior information at 6 = 0.5

n 10 50 100 200
Estimator
Ent A=05 0.2810 0.0472 0.0231 0.0114
A=1 0.2968 0.0479 0.0232 0.0114
Lin A=105 0.0250 0.0050 0.0025 0.0013
A=1 0.0250 0.0050 0.0025 0.0013
Best Lin Lin Lin Lin

Table 4. MSE values of the Reliability function estimators by using Exponential prior information at 8 = 0.5

n 10 50 100 200
Estimator
Ent A=0.5 0.0090 0.0018 0.00087303 0.00043568
A=1 0.0094 0.0018 0.00087669 0.00043659
Lin A=0.5 0.000317 0.0000101 0.0000025078 0.0000006267
A=1 0.000278 0.0000098 0.0000024731 0.0000006223
Best Lin Lin Lin Lin
Table 5. MSE for parameter 6 by using Jeffrey's prior information at 8 = 1.5
n 10 50 100 200
Estimator
MLE 0.0391 0.00097346 0.00023557 0.00005862
Ent 0.0293 0.00091708 0.00022856 0.000057715
Lin 0.2250 0.0450 0.0225 0.0113
Best Ent Ent Ent Ent

132




Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021

Table 6. MSE values of the Reliability function estimators by using Jeffrey's prior information at 8 = 1.5

n 10 50 100 200
Estimator
MLE 0.000691 0.000024581 0.0000061457 0.0000015451
Ent 0.000647 0.000024264 0.0000061043 0.0000015393
Lin 0.000551 0.000023534 0.0000060124 0.0000015278
Best Lin Lin Lin Lin
Table 7. MSE for parameter 6 by using exponential prior information at 6 = 1.5
n 10 50 100 200
Estimator
Ent A=05 0.0660 0.0137 0.0069 0.0035
A=1 0.0584 0.0134 0.0068 0.0034
Lin A=05 0.2250 0.0450 0.0225 0.0113
A=1 0.2250 0.0450 0.0225 0.0113
Best Ent Ent Ent Ent

Table 8. MSE values of the Reliability function estimators by using exponential prior information at 8 = 1.5

n 10 50 100 200
Estimator
Ent A=0.5 0.00310 0.00061919 0.00030974 0.00015491
A=1 0.00260 0.00060029 0.00030498 0.0000015371
Lin A=0.5 0.000474 0.000022883 0.0000059292 0.000001517
A=1 0.000423 0.00002227 0.0000058461 0.000001506
Best Lin Lin Lin Lin

11. Simulation Results and Conclusions

From our simulation study, the following conclusions are pointed out :

1. When 6 = 0.5, the Bayes estimators of the scale parameter and reliability function
under Entropy loss function with Jeffrey's prior is the best for all cases as shown in
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tables (1—4). While the estimators under Linear Exponential loss function (LINEX) are
the best when the prior information is exponential.

. At 6 = 1.5, the Bayes estimator of the scale parameter best on Entropy loss function is
the best for all cases, while the Bayes estimator of the reliability function under Linear
Exponential loss function (LINEX) is the best for all cases as shown in tables (5-8).
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