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Abstract 

     The numerical resolve nonlinear system of Volterra integral equation of the second kind 

(NLSVIEK2) has been considered. The exponential function is used as the base function of 

the collocation method to approximate the resolve of the problem. Arithmetic epitome are 

performed which have already been solved by weighted residual manner,  Taylor manner 

and block- by- block(2, 3, 5). 
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1. Introduction 

     Solving the system of (linear and nonlinear) VIE of the second kind, many methods with  

enough accuracy and efficiency have already been used by many researches [1 - 9]. 

We use widened manner to approximate the resolve of the NLVIEK2 since one of its uses is 

to exchange intricate careers by some unpretentious careers so that integrated processes can 

be more unpretentious uttered. 

The approximate manners provide analytical practice for obtaining resolves in the form of 

careers, which are close in some sense to the accurately resolve of the given problem [10]. 

A collocation manner (CM) has been used for solving integral and integro-differential 

equations by many authors and researchers [3, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17]. 

The nonlinear SVIEK2 is defined as follows: 




 )1(1],,[;))(,),(,,()()( 1    baHdk
a

                               (1) 
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where  (denotes  )1(1 , k and  ],[; baC  )1(1,;  natural number)   

given continuous careers on }:),{( ba   , while )( , )1(1  are the 

unknown careers. 

2. Resolve a System of Non-linear VIEK2 by a Collocation Manner: 

A collocation manner is based on approximating the resolve  )1(1 ),(   by a partial 

sum 






 
0

)()(


  S     , )1(1                                                                                      (2) 

where )(  naturally be choosing linearly independent ( in this work, we choose 



  ))(exp()(  ,  )1(0 ) is a weighted function and its widening coefficients
0 ,

1

, ...,  , )1(1  are to be determined uniquely [19, 20]. 

So by putting equation (2) in equation (1) for  )1(1 ),(   we get the residual equation 

),...,,,( 10   E  such that: 

  

x

a

dSSSKSE )())(...,),(),(,,()(),0;,( 21    , )1(1            (3) 

The considerations 0 , 1 , ...,  , )1(1  must establish by forcing that the residual  

),...,,,( 10   E  disappears at a certain set of 1 numbers in the ambit D. So by  

choosing 1  distinct nodes D ,...,, 10  substituting in equation (3) with the 

approximate resolve in equation (2), we get )1(   simultaneous equations so 

0),...,,,( 10   E

0)))(exp(...,,))(exp(,))(exp(,,()())(exp(
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)1(1                                                                                                                                 (4)  

where   )1(0,  h  and h is to be chosen. 

Equation (4) leads to the following non-linear system of equations 

)()))(exp(...,,))(exp(,))(exp(,,())(exp(
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)1(1 ,  )1(1 .                                                                                                            (5) 

Here, we need to determine  coefficients  (1)1 , q ,   )1(0q . We construct 

system of equations from equation (5) to located coefficient 0 , 1 , 2 , ...,  , and 

substitute the values of the coefficients into the equation (2), we obtain the approximate 

resolve equation (1).  
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3. Illustrative Epitome: 

To illustrate the application of the collocation method we use some examples of nonlinear 

system of VIEK2’s in the following epitomes: 

Epitome 3.1: 

The nonlinear system of VIEK2  

       




0

21

2

1 ))()(()( d   

     


d))()((
3

1

2

1
)( 2

0

2

1

32

2    

have the following  accurate resolves   )(,)( 21  

Resolve: 

    We have the  accurate resolve   )(,)( 21 . Table 1 shows the estimate error of 

the current manner  (Manner 1) with Taylor manner (Manner 2) [2], weighted residual 

manner using the polynomial function (Manner 3) [5] and the Block-by-block manner 

(Manner 4) [4, 8] for  =2, 3. 

Table 1. Comparison of the errors of Epitome 1. 

Manners 

 =2  =3 

)(1   )(2   )(1   )(2   

Manner 1 91833
210  4.7934

310  5.7732
210  8.6877

310  

Manner 2 
0 0 0 

0 

Manner 3 
0 0 0 

0 

Manner 4 

MBLM2 
0 0 0 

0 

MBLM3 7.6115
210  7.3900

210  2.5163
310  1.2612

310  

 
MBLM5 6.4110

0210  6.0717
0210  2.2870

0310  1.0959
0310  

 

Epitome 3.2: 

     


d 
0

2

2

2

11 ))(())(()sec()(  

     


d 
0

2

2

2

12 ))(())(()tan(3)(  

      We have the  accurate resolve )sec()(1   and )tan()(2   . Table 2 shows the 

estimate error of the current manner  (Manner 1) with Taylor manner (Manner 2) [2], 

weighted residual manner using polynomial function (Manner 3) [5] and the Block-by-block 

manner (Manner 4) [4, 8] for  =2, 3. 
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Table 2. Comparison of the errors of Epitome 2. 

Manners 
 =2  =3 

)(1   )(2   )(1   )(2   

Manner 1 5.5729
310  2.4367

210  8.2236
210  4.2749

310  

Manner 2 1.8302
110  5.2323

110  1.8302
110  6.8365

210  

Manner 3 8.0421
210  1.5473

210  5.0644
210  3.5296

310  

Manner 4 

MBLM2 3.4937
110  1.0005

110  4.6744
310  3.9331

310  

MBLM3 5.1058
110  3.2951

110  1.2311
210  1.2225

210  

MBLM5 1.1904
0210  6.9640

0210  3.3693
0310  4.7832

0310  

 

Epitome 3.3: 

Solve a system of non-linear VIEK2’s: 

 



 
0

2

2

2

1 )()(
4

1

4

1
)( de  




 deee 



0

)(2

2
112)(  

      The  exact resolve of this system are  5.0)(1   and  e)(2
. Table 3 shows the 

estimate error of current manner  (Manner 1) with Taylor manner (Manner 2) [2], weighted 

residual manner using polynomial function (Manner 3) [5] and the Block-by-block manner 

(Manner 4) [4, 8] for  =2, 3. 

Table 3. Comparison of the errors of Epitome 3. 

Manners 
 =2  =3 

)(1   )(2   )(1   )(2   

Manner 1 2.4932
310  7.3509

310  1.1968
310  6.4439

410  

 
Manner 2 0 1.1914 0 

8.9917
210  

Manner 3 5.2255
410  7.9235

410  2.2115
410  1.0035

510  

Manner 4 

MBLM2 5.9824
210  5.4301

210  1.5734
310  2.0101

410  

MBLM3 7.7723
310  2.2726

210  6.5937
510  8.5190

410  

MBLM5 7.8419
0210  7.8582

0210  1.7864
0310  9.7120

0410  

4. Conclusion 

     Many authors solved Non-linear system VIEK2 approximately and analytically. It is 

enough  to obtain the approximate resolves. Since the analytical resolve is very complicated, 

so we proposed the offered manner to find the approximate resolve. In practice, we get the 

good accuracy if we choose n sufficiently large n and a suitable choice of collocation point. 

We compare the present manner and those from aforementioned manners in order to choose 

the best manner to get the approximate resolve for the problem of this system where it is 

difficult to find the accrue resolve.  
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