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Abstract

The numerical resolve nonlinear system of Volterra integral equation of the second kind
(NLSVIEK?2) has been considered. The exponential function is used as the base function of
the collocation method to approximate the resolve of the problem. Arithmetic epitome are
performed which have already been solved by weighted residual manner, Taylor manner
and block- by- block(2, 3, 5).
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1. Introduction

Solving the system of (linear and nonlinear) VIE of the second kind, many methods with
enough accuracy and efficiency have already been used by many researches [1 - 9].
We use widened manner to approximate the resolve of the NLVIEK2 since one of its uses is
to exchange intricate careers by some unpretentious careers so that integrated processes can
be more unpretentious uttered.
The approximate manners provide analytical practice for obtaining resolves in the form of
careers, which are close in some sense to the accurately resolve of the given problem [10].
A collocation manner (CM) has been used for solving integral and integro-differential
equations by many authors and researchers [3, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17].
The nonlinear SVIEK2 is defined as follows:
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where y € Q(denotes ¢=1(1)y, K, and ; ¢, €Cl[a,b] ; @,, ¢ =1(2) y natural number) Q
given continuous careers on {(n,A):a<A<n<b}, while ¢,(n), (=11)y are the
unknown careers.

2. Resolve a System of Non-linear VIEK2 by a Collocation Manner:

A collocation manner is based on approximating the resolve ¢, (), ¢=1()y by a partial
sum

SN =30,0,(1) . 0=10)7 )

where @, (r7) naturally be choosing linearly independent ( in this work, we choose
D, (1) = Exp(n))?, a=0(1) Q) is a weighted function and its widening coefficients g,,,6,,
y o 0,0, £=1(1) y are to be determined uniquely [19, 20].

So by putting equation (2) in equation (1) for ¢, (), ¢ =1(1)» we get the residual equation
En(17.6,0,6,....,0,,) such that:

E(1.0,:2=0,0) =540~ [K,(1.2.5,0 1) S0 S M I2-4(0), £=107 (3

The considerations 6,,,6,,, ..., 0,5, ¢=1(1) y must establish by forcing that the residual
E.(®6,.0,,.,06,,) disappears at a certain set of Q+1numbers in the ambit D. So by
choosing Q+1 distinct nodes 7,,7,,....77, € D substituting in equation (3) with the
approximate resolve in equation (2), we get u = y x (2 +1) simultaneous equations so

Eé‘Q(nﬂvego,g(gl,...,eéQ) = O

Z%(GXD(U,;))“ —@(77,;)—IKz(ﬂﬁ,ﬂ,ZG’m(exp(ft))“ ng @xp(4)”.. ,29 (exp(4))*)dA =0;

0=1(Q) y 4)
where 7, = gh, =0(1) x« and h is to be chosen.

Equation (4) leads to the following non-linear system of equations

ur

WRCUDE —J K, 0. 3,0 00", 3., 0" . 20, 002" )b2 =4, (1)

a=0 a=0

=10y, f=1D u. ®)

Here, we need to determine u coefficients 6,,, $=1(1)y, q=0(1) Q2. We construct s x u

system of equations from equation (5) to located coefficient 6,,,6,,, 6,,, ..., 6,,, and

substitute the values of the coefficients into the equation (2), we obtain the approximate

resolve equation (1).
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3. llustrative Epitome:

To illustrate the application of the collocation method we use some examples of nonlinear
system of VIEK2’s in the following epitomes:

Epitome 3.1:

The nonlinear system of VIEK2

o.(0) =n-1"+[ (9. (2) + 9, (4))d2

A U (CLORTADIE

have the following accurate resolves ¢,(7) =71, ¢,(7) =7
Resolve:

We have the accurate resolve ¢,(17) =7, @,(n) =n. Table 1 shows the estimate error of
the current manner (Manner 1) with Taylor manner (Manner 2) [2], weighted residual

manner using the polynomial function (Manner 3) [5] and the Block-by-block manner
(Manner 4) [4, 8] for =2, 3.
Table 1. Comparison of the errors of Epitome 1.

Q=2 Q=3
Manners
24 (77) 0, (77) 21 (77) 0, (77)
-2 -3 -2 _
Manner 1 91833%10 4.7934%10 5.7732%10 8.6877%107°
Manner 2 0 0 0 0
Manner 3 0 0 0 0
MBLM2 0 0 0 0
Manner4 | MBLM3 | 7.6115%107 7.3900%x107% 25163%107° | 12612%107°
MBLM5 | 6.4110x107% 6.0717x1072 2.2870x10™% | 1.0959x10%

Epitome 3.2:

o) = sec() — 1+ [ (A ~ (2, () )2

0,(7) =3tan(n) —7 ~ [ (@, (D) + (¢, (1)) B2

We have the accurate resolve ¢,(17) =sec(n)and ¢,(n)=tan(n). Table 2 shows the
estimate error of the current manner (Manner 1) with Taylor manner (Manner 2) [2],

weighted residual manner using polynomial function (Manner 3) [5] and the Block-by-block
manner (Manner 4) [4, 8] for Q =2, 3.
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Table 2. Comparison of the errors of Epitome 2.

Q=2 Q=
Manners
@, (1) ®,(1) @,(1) @,(n)
Manner 1 5.5729%107° 2.4367x107 82236107 | 4 749x107°
1 -1 -1 -2
Manner 2 1.8302%10 5.2323x10 1.8302%10 6.8365%10
Manner 3 8.0421%10°° 15473107 | 50644%107° | 35906x10°
-1 -1 -3 _
MBLM2 | 3.4937%10 1.0005%10 4.6744%10 3.9331x107°
Manner4 | MBLM3 | 51058%107" 3.2951x107" 12311%107 | { 5505%107?
MBLM5 1.1904x 1072 6.9640 x 1072 3.3693x107% | 4.7832x107%
Epitome 3.3:

Solve a system of non-linear VIEK2’s:

1 1, | 2
=== ~A)@Z(A)dA
A==€ + [ =2l

n
@, (1) =-ne" +2e" -1+ j.ﬂe‘zﬂ(”d;t
0

The exact resolve of this system are ¢,(r7) =—-0.57 and ¢, (7)) =e”. Table 3 shows the

estimate error of current manner (Manner 1) with Taylor manner (Manner 2) [2], weighted
residual manner using polynomial function (Manner 3) [5] and the Block-by-block manner
(Manner 4) [4, 8] for Q=2, 3.

Table 3. Comparison of the errors of Epitome 3.

Q=2 Q=3
Manners
@ (1) @, (1) @ (1) 0, (1)
Manner 1 2.4932x107° | 7.3509x10°° 1.1968x107° | 6.4439x107*
Manner 2 0 1.1914 0 8.9917x 102
Manner 3 5.2255x107* 7.9235%x107 2.2115x10™* | 1.0035x107°
MBLM2 | 5.9824x107 5.4301x107° 15734x107° | 5010110
Manner4 | MBLM3 | 7.7723x10°° 2.2726x1072 6.5937x10° | 85190x10~*
MBLM5 | 7.8419x107% | 7.8582x10% | 1.7864x10°% | 9.7120x107%

4. Conclusion

Many authors solved Non-linear system VIEK2 approximately and analytically. It is
enough to obtain the approximate resolves. Since the analytical resolve is very complicated,
so we proposed the offered manner to find the approximate resolve. In practice, we get the
good accuracy if we choose n sufficiently large n and a suitable choice of collocation point.
We compare the present manner and those from aforementioned manners in order to choose
the best manner to get the approximate resolve for the problem of this system where it is
difficult to find the accrue resolve.
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