

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Some Results via Gril Semi -p-Open Set

Esmaeel R.B.

Department of Mathematics, College of Education for pure science Ibn Al-Haitham University of Baghdad, Iraq. ranamumosa@yahoo.com

Shahadhuh N.M.

Department of Mathematics, College of Education for pure science Ibn Al-Haitham University of Baghdad, Iraq. noora1993327@gmail.com

Article history: Received 9, April, 2021, Accepted 29, June, 2021, Published in October 2021.

Doi: 10.30526/34.4.2707

Abstract

The significance of the work is to introduce the new class of open sets, which is said G-sp-open set with some of properties. Then clarify how to calculate the boundary area for these sets using the upper and lower approximation and obtain the best accuracy.

Keywords. G-semi-P open set, G-semi-P closed set, accuracy seasure $\mathfrak{M}(M)$.

1.Introduction

A nonempty family G of a topological space \dot{X} is named a Grill whenever

i. $M \in G$ and $M \subseteq S \subseteq \dot{X}$ then $S \in G$.

ii. M, $S \subseteq \dot{X} \land M \cup S \in G$ then $M \in G \lor S \in G$. [1] Suppose that \dot{X} is a nonempty set, Then the following families are grills on \dot{X} . [1-3]

 \emptyset and $p(\dot{X}) \setminus \{\emptyset\}$ are trivial examples of a grill on \dot{X}

 G_{∞} which is the collection of all infinite subsets of \dot{X} .

 G_{co} which is the collection of all uncountable subsets of \dot{X} .

 $G_n = \{\Lambda : \Lambda \in p(\dot{X}), p \subseteq \Lambda\}$ is a specific point grill on \dot{X} .

 $G_A = \{S: S \in p(\dot{X}), S \cap M \neq \emptyset \}$, and If (\dot{X}, \mathcal{T}) is a topological space, then the family of all non-nowhere dense subsets called $G = \{M: int_{\mathcal{T}} cl_{\mathcal{T}}(M) \neq \emptyset \}$ is the one of kinds of a grill on \dot{X} . Suppose that G is a grill on (\dot{X}, \mathcal{T}) The operator $\dot{\emptyset}: p(\dot{X}) \rightarrow p(\dot{X})$ is defined by $\dot{\emptyset}$ $(M) = \{x \in \dot{X} \setminus \mathring{u} \cap M \in G, for all \mathring{u} \in \mathcal{T}(\dot{X})\}, \mathcal{T}(\dot{X})$ indicate the neighborhood of x. A mapping $\Psi: p(\dot{X}) \rightarrow p(\dot{X})$ is defined as $\Psi(M) = M \cup \dot{\emptyset}$ (M) for all $M \in p(\dot{X}).[4,5]$

The sap Ψ satisfies Kuratowski closure axioms: [3,4]

1. $\Psi(\emptyset) = \emptyset$

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021

- 2. If $M \subseteq S$, then $\Psi(M) \subseteq \Psi(S)$,
- 3. If $M \subseteq \dot{X}$, then $\Psi (\Psi (M)) = \Psi (M)$,
- 4. If $M,S \subseteq \dot{X}$, then $\Psi (M \cup S) = \Psi (M) \cup \Psi (S)$.

A subset M of (\dot{X}, \mathcal{T}) is a preopen set if $M \subseteq \operatorname{intcl} M$ The complement of a preopen set is named preclosed set. The collection of all preopen sets of \dot{X} is indicate by $\operatorname{po}(\dot{X})$. The collection of all preclosed sets of \dot{X} is indicate by $\operatorname{pc}(\dot{X})$.[7]

Now, PCL=
$$\cap \{M \subseteq \dot{X} : \dot{u} \subseteq M \text{ whenever } M^c \in PO(\dot{X})\}.$$
 [7]

A subset M of (\dot{X}, \mathcal{T}) is named semi-p-open set, if and only if there exists a preopen set in \dot{X} say \dot{V} such that $\dot{V} \subseteq M \subseteq PCL$ \dot{V} . The collection of all semi-p-open sets of \dot{X} is indicated by S-PO(\dot{X}). The complement of a semi-pclosed set. The family of all semi-p-closed sets of \dot{X} is indicate by S-PC(\dot{X}). [7]

It is clear that every preopen set is a S-PO set [7].

2. Preliminaries.

Definition 2.1: [8]

Let \dot{X} be a nonempty set and \check{K} be an equivalence relation on \dot{X} , $\acute{M} \subseteq \dot{X}$;

The upper approximation of M for \tilde{K} is denoted by $\tilde{U}(M)$, which is,

 $\tilde{U}(M) = \bigcup_{x \in X} \{ \tilde{K}(x) : \tilde{K}(x) \cap M \neq \emptyset \}$ such that $\tilde{K}(x)$ is the equivalence class of x and the lower approximation of M for \tilde{K} is denoted by f (M), which is,

$$\pounds(M) = \bigcup_{x \in X} \{ \check{R}(x) : \check{R}(x) \subseteq M \}.$$

The boundary region of M for \mathcal{R} is denoted by $\mathcal{B}(M)$, which is,

$$\mathcal{B}\left(\acute{\mathbf{M}}\right) = \tilde{\mathbf{U}}\left(\acute{\mathbf{M}}\right) - \mathbf{\pounds}\left(\acute{\mathbf{M}}\right).$$

Proposition 2.2: [9,10]

If $M, \mathring{y} \subseteq \mathring{X}$ then the following properties are realized

- 1. $\pounds(M) \subseteq M \subseteq \tilde{U}(M)$.
- 2. $M \subseteq \mathring{y}$, then $\pounds(M) \subseteq \pounds(S)$ and $(\tilde{U}M) \subseteq \tilde{U}(\mathring{y})$.
- 3. $\pounds(\emptyset) = \tilde{U}'(\emptyset) = \emptyset \text{ and } \pounds(\dot{X}) = \tilde{U}'(\dot{X}) = \dot{X}$.
- 4. $\tilde{\mathbf{U}}(\mathbf{M} \cup \mathbf{\dot{y}}) = \tilde{\mathbf{U}}(\mathbf{M}) \cup \tilde{\mathbf{U}}(\mathbf{\dot{y}}).$
- $5.\tilde{\mathbf{U}}(M \cap \mathring{\mathbf{v}}) \subseteq \tilde{\mathbf{U}}(M) \cap \tilde{\mathbf{U}}(\mathring{\mathbf{v}}).$
- $6. \, \pounds(M \cup \mathring{y}) \supseteq \pounds(M) \cup \pounds(\mathring{y})$
- $7. \pounds(M \cap \mathring{y}) \subseteq \pounds(M) \cap \pounds(\mathring{y}).$
- $8.\tilde{U}'(\tilde{U}'(M)) = \pounds(\tilde{U}'(M)) = \tilde{U}'(M).$
- 9. $\pounds(\pounds(M)) = \tilde{U}'(\pounds(M)) = \pounds(M)$.

Example 2.3: let
$$\dot{X} = \{ \rho_1, \rho_2, \rho_3, \rho_4 \}$$
 and $G = p(\dot{X}) \setminus \{\emptyset\}$, $\check{K} = \{ (\rho_1, \rho_1), (\rho_2, \rho_2), (\rho_3, \rho_3), (\rho_4, \rho_4), (\rho_1, \rho_2), (\rho_2, \rho_1) \}$, \check{K} $(\rho_1) = \{ \rho_1, \rho_2 \} = \check{K} (\rho_2)$ $\check{K} (\rho_3) = \{ \rho_3 \}$, $\check{K} (\rho_4) = \{ \rho_4 \}$

Table 2.1. The boundary region						
$P(\dot{X})$	Ű (M)	£ (Ḿ)	$\mathcal{B}\left(\acute{M}\right)$			
Ø	Ø	Ø	Ø			
$\{ \rho_1 \}$	$\{ \rho_1, \rho_2 \}$	Ø	$\{ \rho_1, \rho_2 \}$			
$\{ \rho_2 \}$	$\{ \rho_1, \rho_2 \}$	Ø	$\{ \rho_1, \rho_2 \}$			
$\{ ho_3\}$	$\{ ho_3\}$	$\{\rho_3\}$	Ø			
$\{ ho_4\}$	$\{ ho_4\}$	$\{ ho_4\}$	Ø			
$\{ \rho_1, \rho_2 \}$	$\{ \rho_1, \rho_2 \}$	$\{ \rho_1, \rho_2 \}$	Ø			
$\{ \rho_1, \rho_3 \}$	$\{ \rho_1, \rho_2, \rho_3 \}$	$\{\rho_3\}$	$\{ \rho_1, \rho_2 \}$			
$\{ \rho_1, \rho_4 \}$	$\{ s\rho_1, \rho_2, \rho_4 \}$	$\{ ho_4\}$	$\{\rho_1,\rho_2\}$			
$\{ \rho_2, \rho_3 \}$	$\{ \rho_1, \rho_2, \rho_3 \}$	$\{\rho_3\}$	$\{\rho_1,\rho_2\}$			
$\{ \rho_2, \rho_4 \}$	$\{\rho_1,\rho_2,\rho_4\}$	$\{ ho_4\}$	$\{\rho_1,\rho_2\}$			
$\{ \rho_3, \rho_4 \}$	$\{ \rho_3, \rho_4 \}$	$\{ \rho_3, \rho_4 \}$	Ø			
$\{ \rho_1, \rho_2, \rho_3 \}$	$\{ \rho_1, \rho_2, \rho_3 \}$	$\{ \rho_1, \rho_2, \rho_3 \}$	Ø			
$\{\rho_1,\rho_2,\rho_4\}$	$\{\rho_1,\rho_2,\rho_4\}$	$\{\rho_1,\rho_2,\rho_4\}$	Ø			
$\{ \rho_2, \rho_3, \rho_4 \}$	$\{\rho_1,\rho_2,\rho_3,\rho_4\}$	$\{ ho_3, ho_4\}$	$\{\rho_1,\rho_2\}$			
$\{ \rho_1, \rho_3, \rho_4 \}$	$\{\rho_1,\rho_2,\rho_3,\rho_4\}$	$\{\rho_3,\rho_4\}$	$\{\rho_1,\rho_2\}$			
$\{\rho_1,\rho_2,\rho_3,\rho_4\}$	$\{\rho_1,\rho_2,\rho_3,\rho_4\}$	$\{\rho_1,\rho_2,\rho_3,\rho_4\}$	Ø			

Table 2.1. The boundary region

Definition 2.4:[11]

let \dot{X} be a nonempty set and $\dot{M} \subseteq \dot{X}$ such that \check{R} is any relation on \dot{X} so, by using the concepts of lower and upper approximation.

$$\mathfrak{M}(\acute{M}) = \tfrac{|\pounds(\acute{M})|}{|\ddot{U}(\acute{M})|} \quad , |\pounds(\acute{M})| \neq \emptyset$$

we can define the second accuracy measure of \acute{M} which is called a semi-accuracy measure of approximation.

$$\mathfrak{M}_{\xi}(\acute{M}) = \frac{|\mathring{U}(\pounds(\acute{M}))|}{|\mathring{U}(\acute{M})|} \quad , |\pounds(\acute{M})| \neq \emptyset$$

The third measure is called pre -accuracy measure of approximation.

$$\mathfrak{M}_p(\acute{\mathbf{M}}) = \frac{|\pounds(\mathring{\mathbf{U}}\acute{\mathbf{M}})|}{|\mathring{\mathbf{U}}\acute{\mathbf{U}}\acute{\mathbf{M}})|} \quad , |\pounds(\acute{\mathbf{M}})| \neq \emptyset$$

Example 2. 5:

Let
$$\dot{X} = {\rho_1, \rho_2, \rho_3, \rho_4}$$
 and, $G = p(\dot{X}) \setminus {\emptyset}$,

$$\check{R} = \{(\rho_1, \rho_1), (\rho_2, \rho_2), (\rho_3, \rho_3), (\rho_4, \rho_4), (\rho_2, \rho_3), (\rho_3, \rho_2)\}$$

$$\check{R}\left(\rho_{1}\right)=\left\{ \right. \rho_{1} \right\}, \check{R}\left(\rho_{2}\right)=\left\{ \rho_{2}, \rho_{3} \right\}=\check{R}\left(\right. \rho_{3}\right), \check{R}\left(\rho_{4}\right)=\left\{ \rho_{4} \right\}.$$

Table 2. 2. Accuracy measure of approximation

		•	* *		
P(X)	ữ (M)	£ (Ḿ)	$\mathcal{B}\left(\acute{M}\right)$	$\pounds (\tilde{U}'(\acute{M}))$	Ũ' (₤ M))
Ż	Ż	Ż	Ø	Ż	Ż
Ø	Ø	Ø	Ø	Ø	Ø
$\{ ho_1 \}$	$\{ ho_1\}$	$\{ ho_1\}$	Ø	$\{ ho_1 \}$	$\{ \rho_1 \}$
$\{ \rho_2 \}$	$\{ \rho_2, \rho_3 \}$	Ø	$\{ \rho_2, \rho_3 \}$	$\{ \rho_2, \rho_3 \}$	Ø
$\{ ho_3\}$	$\{\rho_2,\rho_3\}$	Ø	$\{ \rho_2, \rho_3 \}$	$\{\rho_2,\rho_3\}$	Ø

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021

$\{\rho_4\}$	$\{ ho_4\}$	$\{ ho_4\}$	Ø	{p ₄ }	$\{ ho_4\}$
$\{ \rho_1, s\rho_2 \}$	$\{ \rho_1, \rho_2, \rho_3 \}$	$\{ ho_1 \}$	$\{ \rho_2, \rho_3 \}$	$\{\rho_1,\rho_2,\rho_3\}$	$\{ \rho_1 \}$
$\{ \rho_1, \rho_3 \}$	$\{ \rho_1, \rho_2, \rho_3 \}$	$\{ ho_1\}$	$\{ \rho_2, \rho_3 \}$	$\{ \rho_1, \rho_2, \rho_3 \}$	$\{ \rho_1 \}$
$\{ \rho_1, \rho_4 \}$	$\{ \rho_1, \rho_4 \}$	$\{ \rho_1, \rho_4 \}$	Ø	$\{ \rho_1, \rho_4 \}$	$\{ \rho_1, \rho_4 \}$
$\{ \rho_2, \rho_3 \}$	$\{ \rho_2, \rho_3 \}$	$\{\rho_2,\rho_3\}$	Ø	$\{ \rho_2, \rho_3 \}$	$\{ \rho_2, \rho_3 \}$
$\{ \rho_2, \rho_4 \}$	$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ ho_4 \}$	$\{ \rho_2, \rho_3 \}$	$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ ho_4\}$
$\{ \rho_3, \rho_4 \}$	$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ ho_4 \}$	$\{ \rho_2, \rho_3 \}$	$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ ho_4\}$
$\{ \rho_1, \rho_2, \rho_3 \}$	$\{ \rho_1, \rho_2, \rho_3 \}$	$\{ \rho_1, \rho_2, \rho_3 \}$	Ø	$\{ \rho_1, \rho_2, \rho_3 \}$	$\{ \rho_1, \rho_2, \rho_3 \}$
$\{\rho_1,\rho_2,\rho_4\}$	X	$\{ \rho_1, \rho_4 \}$	$\{ \rho_2, \rho_3 \}$	Ż	$\{ \rho_1, \rho_4 \}$
$\{ \rho_1, \rho_3, \rho_4 \}$	Ż	$\{ \rho_1, \rho_4 \}$	$\{ \rho_2, \rho_3 \}$	Ż	$\{ \rho_1, \rho_4 \}$
$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ \rho_2, \rho_3, \rho_4 \}$	Ø	$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ \rho_2, \rho_3, \rho_4 \}$

Table 2. 3 Accuracy measure of approximation

P(X)	m(M)	$\mathfrak{M}_{\xi}(ext{ iny})$	$\mathfrak{M}_p(ext{ iny})$
Ż	1	1	1
Ø	1	1	1
$\{ \rho_1 \}$	0	0	1
$\{ \rho_2 \}$	0	0	1
$\{ ho_3\}$	1	1	1
$\{ ho_4\}$	1/3	1/3	1
$\{ \rho_1, \rho_2 \}$	1/3	1/3	1
$\{ \rho_1, \rho_3 \}$	1	1	1
$\{ \rho_1, \rho_4 \}$	1	1	1
$\{ \rho_2, \rho_3 \}$	1/3	1/3	1
$\{ \rho_2, \rho_4 \}$	1/3	1/3	1
$\{ \rho_3, \rho_4 \}$	1	1	1
$\{ \rho_1, \rho_2, \rho_3 \}$	1/2	1/2	1
$\{ \rho_1, \rho_2, \rho_4 \}$	1/2	1/2	1
$\{ \rho_1, \rho_3, \rho_4 \}$	1	1	1
$\{0_2,0_2,0_4\}$	1	1	1

3. Grill semi-p-open sets

Definition 3.1 Let $(\dot{X}, \mathcal{T}, G)$ be a grill topological space and $M \subseteq \dot{X}$, then M is called Grill semi-popen set denoted by "G-SPO set" if $\exists v \in PO(\dot{X})$ such that v-M $G \land M$ -PCL $(v) \notin G$. The set of all G-SPO sets is denoted by G-SPO (\dot{X}) .

$$\begin{split} &\textbf{Example 3.2} \ \ \text{Let } \dot{X} = \{\rho_1, \rho_2, \rho_3\}, \, \mathcal{T} = \{\dot{X}, \emptyset, \{\rho_1\}\} \\ &\text{PO}(\dot{X}) = \{\mathring{u} \subseteq \dot{X}; \, \rho_1 \in \mathring{u}\} \cup \emptyset \ \ , \, \text{PC}(\dot{X}) = \{\mathcal{F} \subseteq \dot{X}; \, \rho_1 \notin \mathcal{F} \ \} \cup \dot{X} \, . \end{split}$$
 Then G-SPO $(\dot{X}) = p(\dot{X})$.

Example 3.3: Let $\dot{X} = {\rho_1, \rho_2, \rho_3, \rho_4}, \mathcal{T} = {\dot{X}, \emptyset, {\rho_1}, {\rho_4}, {\rho_1, \rho_4}}, G = p(\dot{X}) \setminus {\emptyset},$

 $PO(\dot{X}) = {\dot{X}, \emptyset, {\rho_1}, {\rho_4}, {\rho_1, \rho_4}, {\rho_1, \rho_2, \rho_4}, {\rho_1, \rho_3, \rho_4}}. PC(\dot{X}) =$

 $\{\dot{X}, \emptyset, \{\rho_2, \rho_3, \rho_4\}, \{\rho_1, \rho_2, \rho_3\}, \{\rho_2, \rho_3\}, \{\rho_3\}, \{\rho_2\}\}\$, then G-SPO(\dot{X})= $\{\dot{X}, \emptyset, \{\rho_1\}, \{\rho_4\}, \{$

 $\{\rho_1,\rho_2\},\{\rho_1,\rho_3\},\{\rho_1,\rho_4\},\{\rho_2,\rho_4\},\{\rho_3,\rho_4\},\{\rho_1,\rho_2,\rho_3\},\{\rho_1,\rho_2,\rho_4\},\{\rho_2,\rho_3,\rho_4\},\{\rho_1,\rho_3,\rho_4\}.$

Remark 3.4: [7] $\bigcup_{i \in \wedge} PCL(\mathring{\mathbf{u}}_i) \subseteq PCL(\bigcup_{i \in \wedge} \mathring{\mathbf{u}}_i)$.

Proposition 3.5: If $M_i \in G\text{-SPO}(\dot{X}) \ \forall \ i \in \Lambda$, then $\bigcup_{i \in \Lambda} M_i \in G\text{-SPO}(\dot{X})$.

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021

Proof: Let $M_i \in G\text{-SPO}(\dot{X})$, $\exists \ \mathring{u} \in PO(\dot{X})$, $(\mathring{u}_i - M_i) \notin G$ $\land (M_i - PCL(\mathring{u}_i)) \notin G \forall i \in \land$. this implies, $\bigcup_i (\mathring{u}_i - M_i) \notin G$, so $(\bigcup_i \mathring{u}_i - \bigcup_i M_i) \subseteq \bigcup_i (\mathring{u}_i - M_i) \notin G$, therefore, $(\bigcup_i \mathring{u}_i - \bigcup_i M_i) \notin G$, On the other hands, $(M_i - PCL(\mathring{u}_i)) \notin G \forall i \in \land$, $\bigcup_i (M_i - PCL(\mathring{u}_i)) \notin G$, $(\bigcup_i M_i - \bigcup_i PCL(\mathring{u}_i)) \subseteq \bigcup_i (M_i - PCL(\mathring{u}_i)) \notin G$ so, $\bigcup_i M_i - \bigcup_i (PCL(\mathring{u}_i)) \notin G$, since $\bigcup_i PCL(\mathring{u}_i) \subseteq PCL(\bigcup_i \mathring{u}_i)$, there for $(\bigcup_{i \in \land} M_i - PCL(\bigcup_i \mathring{u}_i)) \subseteq (\bigcup_i M_i - \bigcup_i PCL(\mathring{u}_i)) \notin G$ so, $(\bigcup_i M_i - PCL(\bigcup_i \mathring{u}_i)) \notin G$.

Corollary 3.6: If $\mathcal{F}_i \in G\text{-SPC}(\dot{X})$, then $\bigcap_i \mathcal{F}_i \in G\text{-SPC}(\dot{X})$.

Remark 3.7: *let* $M, S \in G$ -SPO(\dot{X}) then $M \cap S$ need not to be a G-SPO set.

Example 3.8: Let $\dot{X} = {\rho_1, \rho_2, \rho_3, \rho_4}, \mathcal{T} = {\dot{X}, \emptyset, {\rho_1}, {\rho_4}, {\rho_1, \rho_4}}.$ Then

 $PO(\dot{X}) = \{\dot{X}, \emptyset, \{\rho_1\}, \{\rho_4\}, \{\rho_1, \rho_4\}, \{\rho_1, \rho_2, \rho_4\}, \{\rho_1, \rho_3, \rho_4\}\},\$

 $PC(\dot{X}) = {\dot{X}, \emptyset, {\rho_2, \rho_3, \rho_4}, {\rho_1, \rho_2, \rho_3}, {\rho_2, \rho_3}, {\rho_2}}, {\rho_2, \rho_3}, {\rho_2}}, \text{ when } G=p(\dot{X}) \setminus {\emptyset},$

Hence G-SPO(\dot{X}) = { \dot{X} , \emptyset , { ρ_1 }, { ρ_4 }, { ρ_1 , ρ_2 }, { ρ_1 , ρ_3 }, { ρ_1 , ρ_4 },

 $\{\rho_2,\rho_4\},\{\rho_3,\rho_4\},\{\rho_1,\rho_2,\rho_3\},\{\rho_1,\rho_2,\rho_4\},\{\rho_2,\rho_3,\rho_4\},\{\rho_1,\rho_3,\rho_4\}\},\ let\ M=\{\rho_1,\rho_2,\rho_3\}\ and\ n=\{\rho_1,\rho_2,\rho_3\}$

 $S = {\rho_2, \rho_4}$, then M and S are G-SPO(\dot{X}) But $M \cap S = {\rho_2}$, Which is not a G-SPO(\dot{X}).

Remark 3.9: let M, $S \in G$ -SPC(\dot{X}) then M \cup S need not be a G-SPC set.

See Example 2.8, $let M = \{\rho_1, \rho_2, \rho_3\}, S = \{\rho_2, \rho_4\}, M^c = \{\rho_4\}, S^c = \{\rho_2, \rho_3\}$, M^c , S^c are G- $SPC(\dot{X})$, and $M^c \cup S^c = \{\rho_1, \rho_3, \rho_4\}$ which is not a G-SPC(\dot{X}).

Remark 3.10: [7] Each open set is a preopen set.

Proposition 3.11: Each open set is a G -SPO set.

Proof: Let $M \in \mathcal{T}$ by Remark 2.4, so M is a preopen set; $\exists M \in po(\dot{X})$, such that, $M-M = \{\emptyset\}$ \notin G, And M-PCL $(M) = \{\emptyset\} \notin$ G, therefor M is a G-SPO set.

Corollary 3.12: If F is a closed set, then F is a G-SPC set.

Proposition 3.13: Every semi-PO set is a G-SPO set.

Proof: Let $M \in S\text{-PO}(\dot{X})$ for that $\exists \dot{u} \in PO(\dot{X})$ such that $\dot{u} \subseteq M \subset PCL(M)$, further more $\dot{u} = \{\emptyset\} \notin G \land M\text{-}PCL(M) = \{\emptyset\} \notin G$. Hence, M is a G-SPO set.

As for the reverse proposition (2.13), it is not necessarily to be achieved.

Example 3.14: suppose that

$$\begin{split} &\dot{X} = \{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\}, \mathcal{T} = \{\dot{X}, \emptyset, \{\rho_{1}\}, \{\rho_{4}\}, \{\rho_{1}, \rho_{4}\}\}, \\ &G = \emptyset \ , PO(\dot{X}) = \{\dot{X}, \emptyset, \{\rho_{1}\}, \{\,\rho_{4}\}, \{\,\rho_{1}, \rho_{4}\}, \{\rho_{1}, \rho_{2}, \rho_{4}\}, \{\rho_{1}, \rho_{3}, \rho_{4}\}\}, \\ &PC(\dot{X}) = \{\dot{X}, \emptyset, \{\rho_{2}, \rho_{3}, \rho_{4}\}, \{\rho_{1}, \rho_{2}, \rho_{3}\}, \{\rho_{2}, \rho_{3}\}, \{\rho_{2}\}\}, \\ &G \text{-SPO}(\dot{X}) = p(\dot{X}). \ \text{Then} \ \{\rho_{2}\} \in G \text{-SPO}(\dot{X}), \text{But} \ \{\rho_{2}\} \notin G \text{-SPO}(\dot{X}). \end{split}$$

Corollary 3.15: The set of all G-SPO is a supra topological space.

Now, let's calculate the following example;

Example 3.16: Let $\dot{X} = \{\rho_1, \rho_2, \rho_3\}$, $\mathcal{T} = \{\dot{X}, \emptyset, \{\rho_1\}\}$ Then G-SPO $(\dot{X}) = p(\dot{X})$ and $\check{R} = \{(\rho_1, \rho_1), (\rho_2, \rho_2), (\rho_3, \rho_3)\} \check{R}(\rho_1) = \{\rho_1\}, \check{R}(\rho_2) = \{\rho_2\}, \check{R}(\rho_3) = \{\rho_3\}.$

Table 3. 1 Grill of Accuracy measure of approximation

G-SPO(X)	Ű' (G -	£ (G-	B(G-	£ (Ũ' (G -	€ (G-SPO(X)
	$SPO(\dot{X}))$	$SPO(\dot{X}))$	$SPO(\dot{X}))$	$SPO(\dot{X})$	
Ż	Ż	Ż	Ø	X	X
Ø	Ø	Ø	Ø	Ø	Ø
{ p ₁ }	{ p ₁ }	{ p ₁ }	Ø	{ p ₁ }	{ p ₁ }
$\{ \rho_2 \}$	$\{ \rho_2 \}$	$\{ ho_2 \}$	Ø	$\{ \rho_2 \}$	$\{ ho_2 \}$
$\{ ho_3\}$	$\{\rho_3\}$	$\{ ho_3\}$	Ø	$\{ ho_3\}$	$\{\rho_3\}$
$\{\rho_1,\rho_2\}$	$\{ \rho_1, \rho_2 \}$	$\{ \rho_1, \rho_2 \}$	Ø	$\{ \rho_1, \rho_2 \}$	$\{ \rho_1, \rho_2 \}$
$\left\{\rho_1,\rho_3\right\}$	$\{ \rho_1, \rho_3 \}$	$\{ \rho_1, \rho_3 \}$	Ø	$\{ \rho_1, \rho_3 \}$	$\{ \rho_1, \rho_3 \}$
$\{\rho_2,\rho_3\}$	$\{\rho_2,\rho_3\}$	$\{\rho_2,\rho_3\}$	Ø	$\{\rho_2,\rho_3\}$	$\{\rho_2,\rho_3\}$

Table 3. 2 Grill of Accuracy measure of approximation

G-SPO(X)	$\mathfrak{M}(G-SPO(\dot{X}))$	$\mathfrak{M}_{\xi}(G-SPO(\dot{X}))$	$\mathfrak{M}_p(G-SPO(\dot{X}))$
Ż	1	1	1
Ø	1	1	1
$\{ ho_1 \}$	1	1	1
$\{ \rho_2 \}$	1	1	1
$\{\rho_3\}$	1	1	1
$\{ \rho_1, \rho_2 \}$	1	1	1
$\{ \rho_1, \rho_3 \}$	1	1	1
$\{\rho_2,\rho_3\}$	1	1	1

By Example 3.3

 $G\text{-SPO}(\dot{X}) = \left\{\dot{X}, \, \emptyset, \, \{\rho_1\}, \{\rho_4\}, \, \{\rho_1, \rho_2\}, \{\rho_1, \rho_3\}, \{\rho_1, \rho_4\}, \{\rho_2, \rho_4\}, \{\rho_3, \rho_4\}, \{\,\rho_1, \rho_2, \rho_3\} \right.,$

 $\{\; \rho_1, \rho_2, \rho_4\}, \{\; \rho_2, \rho_3, \rho_4\}, \{\{\; \rho_1, \rho_3, \rho_4\}\}.$

 $\check{R} = \{(\rho_1, \rho_1), (\rho_2, \rho_2), (\rho_3, \rho_3), (\rho_4, \rho_4), (\rho_3, \rho_4), (\rho_4, \rho_3)\}$

 $\check{R}\;(\rho_1)\!\!=\!\!\{\,\rho_1\}\!,\check{R}(\rho_2)\!\!=\!\!\{\rho_2\}\!,\check{R}(\rho_4),\check{R}(\rho_3)\!\!=\!\!\{\rho_4,\rho_3\}\!.$

Table 3.3 G- SPO of Accuracy measure of approximation

G-SPO(X)	Ű'(G-SPO(X))	£(G-SPO(X))	$\mathcal{B}(G ext{-SPO}(\dot{X}))$	£ (Ũ' (G-SPO(X)	Ű'(₤ (GSPO(X)
Ż	Ż	Ż	Ø	Ż	Ż
Ø	Ø	Ø	Ø	Ø	Ø
$\{ ho_1 \}$	$\{ ho_1 \}$	$\{ \rho_1 \}$	Ø	$\{ ho_1 \}$	$\{ \rho_1 \}$
$\{ \rho_4 \}$	$\{ ho_3, ho_4\}$	Ø	$\{ ho_3, ho_4\}$	$\{\rho_3,\rho_4\}$	Ø
$\{ \rho_1, \rho_2 \}$	$\{ \rho_1, \rho_2 \}$	$\{ \rho_1, \rho_2 \}$	Ø	$\{ \rho_1, \rho_2 \}$	$\{ \rho_1, \rho_2 \}$
$\{ \rho_1, \rho_3 \}$	$\{ \rho_1, \rho_3, \rho_4 \}$	$\{ ho_1 \}$	$\{ ho_3, ho_4\}$	$\{ \rho_1, \rho_3, \rho_4 \}$	$\{ \rho_1 \}$
$\{\rho_1,\rho_4\}$	$\{ \rho_1, \rho_3, \rho_4 \}$	$\{ ho_1 \}$	$\{ ho_3, ho_4\}$	$\{ \rho_1, \rho_3, \rho_4 \}$	$\{ \rho_1 \}$
$\{\rho_2,\rho_4\}$	$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ ho_2\}$	$\{ ho_3, ho_4\}$	$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ ho_2 \}$
$\{\rho_3,\rho_4\}$	$\{ ho_3, ho_4\}$	$\{ ho_3, ho_4\}$	Ø	$\{\rho_3,\rho_4\}$	$\{\rho_3,\rho_4\}$
$\{ \rho_1, \rho_2, \rho_3 \}$	X	$\{ \rho_1, \rho_2 \}$	$\{ ho_3, ho_4\}$	Ż	$\{ \rho_1, \rho_2 \}$
$\{ \rho_1, \rho_2, \rho_4 \}$	Ż	$\{ \rho_1, \rho_2 \}$	$\{ ho_3, ho_4\}$	Ż	$\{ \rho_1, \rho_2 \}$
$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ \rho_2, \rho_3, \rho_4 \}$	$\{\rho_2,\rho_3,\rho_4\}$	Ø	$\{ \rho_2, \rho_3, \rho_4 \}$	$\{ \rho_2, \rho_3, \rho_4 \}$
$\{ \rho_1, \rho_3, \rho_4 \}$	$\{ \rho_1, \rho_3, \rho_4 \}$	$\{ \rho_1, \rho_3, \rho_4 \}$	Ø	$\{ \rho_1, \rho_3, \rho_4 \}$	$\{ \rho_1, \rho_3, \rho_4 \}$

Table 3. 4. G- SPO of Accuracy measure of approximation

G-SPO(X)	$\mathfrak{M}(G-SPO(\dot{X}))$	$\mathfrak{M}_{\xi}(G-SPO(\dot{X}))$	$\mathfrak{M}_p(G-SPO(\dot{X}))$
Ż	1	1	1
Ø	1	1	1
$\{ ho_1 \}$	0	0	1
$\{ ho_4 \}$	1	1	1
$\{ \rho_1, \rho_2 \}$	1/3	1/3	1
$\{ \rho s_1, \rho_3 \}$	1/3	1/3	1
$\{ ho_1, ho_4\}$	1/3	1/3	1
$\{\rho_2,\rho_4\}$	1	1	1
$\{ ho_3, ho_4\}$	1/2	1/2	1
$\{ \rho_1, \rho_2, \rho_3 \}$	1/2	1/2	1
$\{ \rho_1, \rho_2, \rho_4 \}$	1	1	1
$\{ \rho_2, \rho_3, \rho_4 \}$	1	1	1
$\{ \rho_1, \rho_3, \rho_4 \}$	1	1	1

4. Conclusion

The aim of our study is to define the G-SPO sets and study some of the properties of these sets, and then find the boundary area for the family of G-SPO (\dot{X}). and try to get the best accuracy for the set when it equals 1 for most of M \in G-SPO (\dot{X}).

References

- 1. Choquet, G. Sur les notions de filter et grille, comptes Rendus Acad. Sci. Paris, **1947**, 224,171-173.
- 2. Roy, B .; Mukherjee, M N .On a type of compactness via grills Matematicki vesnik. **2007**, *59* , 113-120.
- 3. Roy, B.; Mukherjee, M.N. On a typical topology induced by a grill Soochow J ath. **2007**, *33*, *4*, 771-786.

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(4)2021

- 4. Shawqi A Hazza; Sobhy A EL-Sheikh Ali Kandil and Mohamed Ahmed Abdelhakem On ideals and grills in topological spaces South A sian Journal of Mathematics. **2015**, *5*, *6*, 233-238.
- Thenmozhi, P.; Kaleeswari, M.; Maheswari, N. Regular generalized closed sets in grill topological spaces, *International Journal of Science Research ISSN*, 2015, 2319-7064.
- 6. Chaudhary, M P .; Vinesh Kumar On g-closed sets in a topological space Global *Journal of Science Frontier Research* .**2010**, *10* , *2*, 10-12.
- 7. R B. Esmaeel, On semi-p-open sets M S, College of Education Ibn AL- Haithatham-University of Baghdad, 2004.
- 8. Pawlak, Z., Rough sets, International journal of computer and Information Sciences. **1982.** 11, 341-356.
- 9. Lellis Thivagar ,M. ;Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention. **2013.** *1*, *1*, 31-37.
- 10.Lellis Thivagar, M. Carmel Richard, Note on Nano topological space (communicated)
- 11. Nayle, M. S.; Nasir A. I. some rough sets properties on simple graphs, *Australian Journal of Basic and Applied science*. **2011.** *5*, *12*, 1824-1829.