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Abstract 

     The nonhomogeneous higher order linear complex differential equation (HOLCDE) with 

meromorphic (or entire) functions is considered in this paper. The results are obtained by 

putting some conditions on the coefficients to prove that the hyper order of any nonzero 

solution of this equation equals the order of one of its coefficients in case the coefficients are 

meromorphic functions. In this case, the conditions were put are that the lower order of one of 

the coefficients dominates the maximum of the convergence exponent of the zeros sequence 

of it, the lower order of both of the other coefficients and the nonhomogeneous part and that 

the solution has infinite order. Whiles in case the coefficients are entire functions, any nonzero 

solution with finite order has hyper order equals to the lower order of one of its coefficients is 

proved. In this case, the condition that the lower order of one of the coefficients is greater than 

the maximum of the lower order of the other coefficients and the lower order of the 

nonhomogeneous part is assumed. 

 

Keywords: Complex linear differential equations; meromorphic functions; entire functions; 

order of growth; lower order of growth. 

 

1. Introduction 

     The theory of meromorphic functions due to Nevanlinna is a good tool in the complex 

differential equations field. At the forefront of the application of Nevanlinna's theory of 

meromorphic functions to the complex differential equations was Yoseida in 1932, and since 

then complex differential equations have become an active field of study by researchers. We 

refer the reader to, for instance [1], for more information about the differential equations theory 

in the complex plane. One of the aims of studying this type of equation is the order of growth 

of its solutions of it. In our work, we shall study the hyper order of the solutions of Eq. (1) 

below considering the lower orders of coefficients and exponent of convergence of the zeros 
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sequence of one of them. In this paper, we assume that the reader is familiar with the basic 

concepts and the results regarding the Nevanlinna value distribution theory of meromorphic 

functions such as 𝑀(𝑟, 𝑓), 𝑇(𝑟, 𝑓) and 𝑁(𝑟, 𝑓) etc., see [2]. A nonhomogeneous HOLCDE is 

given by 

 

𝑓(𝑛) + 𝐴𝑛−1(𝑧)𝑓(𝑛−1) + ⋯ + 𝐴2(𝑧)𝑓′′ + 𝐴1(𝑧)𝑓′ + 𝐴0(𝑧)𝑓 =  𝐹(𝑧)                                    (1)  
where 𝑓 = 𝑓(0) is unknown and 𝐴𝑗(𝑧), 0 ≤ 𝑗 ≤ 𝑛 − 1, 𝐹(𝑧) are given functions.  

 

Many authors studied Eq. (1) and obtained some results. Here we shall mention some of them. 

The following two results study the hyper order of 𝑓 when the order of one coefficient 

dominates the order of 𝐹 and exponent of convergence of the zeros sequence of that coefficient. 

 

Theorem 1 [3] Let 𝐸 ⊆ ℂ satisfy 𝑚𝑙({|𝑧|: 𝑧 ∈ 𝐸}) = ∞ and 𝐴𝑗(𝑧), 𝑗 = 0,1, … , 𝑛 − 1, 𝐹(𝑧) be 

meromorphic functions. Suppose that it is 𝑠, 0 ≤ 𝑠 ≤ 𝑛– 1, satisfies 

max
0≤𝑗≤𝑛−1

𝑗≠𝑠

{𝜌(𝐴𝑗), 𝜆 (
1

𝐴𝑠
) , 𝜌(𝐹)} ≤ 𝜌(𝐴𝑠) = 𝜌 < ∞                                                                         (2) 

and for some constants 0 ≤ 𝛽 < 𝛼, we have 

|𝐴𝑗(𝑧)| ≤ exp(𝛽|𝑧|𝜌−𝜀) ,   𝑗 ≠ 𝑠                                                                                                         (3) 

|𝐴𝑠(𝑧)| ≥ exp(𝛼|𝑧|𝜌−𝜀)                                                                                                                      (4) 

hold for 𝜀 > 0 and as |𝑧| → ∞, 𝑧 ∈ 𝐸. Then any meromorphic solution 𝑓 ≠ 0 of Eq. (1) with 

poles of uniformly bounded multiplicities satisfies 𝜌2(𝑓) ≥ 𝜌(𝐴𝑠). 

 

Theorem 2 [3] Let 𝐴𝑗(𝑧), 𝑗 = 0,1, … , 𝑛 − 1, 𝐹(𝑧) are satisfied (2). Then every meromorphic 

solution 𝑓 ≠ 0 with 𝜌(𝑓) = ∞ has poles are of uniformly bounded multiplicities of Eq. (1) 

satisfies 𝜌2(𝑓) ≤ 𝜌(𝐴𝑠). 
 

The following result studies the property of 𝑓 when the order of one coefficient dominates the 

maximum orders of 𝐹 and the other coefficients. 

 

Theorem 3 [4] Let 𝐴𝑗(𝑧), 𝑗 = 0,1, … , 𝑛 − 1, 𝐹(𝑧) entire functions. Suppose there is 0 ≤ 𝑠 ≤

𝑛– 1, such that 

max { max
0≤𝑗≤𝑛−1

𝑗≠𝑠

𝜌(𝐴𝑗), 𝜌(𝐹)} < 𝜌(𝐴𝑠) ≤
1

2
 

Then every solution of Eq. (1) is either a polynomial or infinite order entire function. 

Theorem 4 [5] Let 𝐴𝑗(𝑧), 𝑗 = 0,1, … , 𝑛 − 1, 𝐹(𝑧) be defined as in Theorem 3 such that 

max{𝜌(𝐴𝑗), 𝜌(𝐹)} < 𝜌(𝐴𝑠) <
1

2
 

Then every transcendental solution of Eq. (1) satisfies 𝜌2(𝑓) = 𝜌(𝐴𝑠). Furthermore, if 𝐹 ≠ 0 

then 𝜆2(𝑓) = 𝜌(𝐴𝑠). 

 

2. Material  
     We recall the following definitions. 

 

Definition 1 [6] Let 𝐸 ⊆ [0, ∞). Then the linear measure of 𝐸 is  

𝑚(𝐸)  = ∫ 𝑑𝑡

𝐸
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Definition 2 [7, 8] Let 𝐸 ⊆ [1, ∞), then the logarithmic measure of 𝐸 is  

𝑚𝑙(𝐸) = ∫
𝑑𝑡

𝑡
𝐸

 

 

Definition 3 [9, 10] Let 𝑓 be a meromorphic function. We define the order of growth 𝜌(𝑓) 

(respectively) and lower order of growth 𝜇(𝑓), by  

𝜌(𝑓) = lim
𝑟→∞

𝑠𝑢𝑝
𝑙𝑜𝑔+𝑇(𝑟, 𝑓)

𝑙𝑜𝑔 𝑟
 

and 

𝜇(𝑓) = lim
𝑟→∞

𝑖𝑛𝑓
𝑙𝑜𝑔+𝑇(𝑟, 𝑓)

𝑙𝑜𝑔 𝑟
 

If 𝑓 is entire function, then 𝑇(𝑟, 𝑓) is replaced with 𝑙𝑜𝑔+𝑀(𝑟, 𝑓), where 

𝑀(𝑟, 𝑓) = max
|𝑧|=𝑟

|𝑓(𝑧)| 

 

Definition 4 [11, 12] We define the hyper-order 𝜌2(𝑓) of meromorphic function 𝑓 by   

𝜌2(𝑓) = lim
𝑟→∞

𝑠𝑢𝑝
𝑙𝑜𝑔+𝑙𝑜𝑔+𝑇(𝑟, 𝑓)

𝑙𝑜𝑔 𝑟
 

If 𝑓 is entire function, then 

𝜌2(𝑓) = lim
𝑟→∞

𝑠𝑢𝑝
𝑙𝑜𝑔+𝑙𝑜𝑔+𝑙𝑜𝑔+𝑀(𝑟, 𝑓)

𝑙𝑜𝑔 𝑟
 

 

Definition 5 [3] Let 𝑓 be meromorphic function. By  

𝜆(𝑓) = lim
𝑟→∞

sup
𝑙𝑜𝑔+𝑁(𝑟,

1
𝑓

)

𝑙𝑜𝑔𝑟
 

we meant the convergence exponent of the zeros sequence of 𝑓, while  

𝜆 (
1

𝑓
) = lim

𝑟→∞
sup

𝑙𝑜𝑔+𝑁(𝑟, 𝑓)

𝑙𝑜𝑔𝑟
 

is called the convergence exponent of the poles sequence of 𝑓. 

 

Definition 6 [3] The lower and upper logarithmic densities of 𝐸 ⊆ [1, ∞) are as follows 

𝑙𝑜𝑔𝑑𝑒𝑛𝑠𝐸 = 𝑙𝑖𝑚
𝑟→∞

𝑖𝑛𝑓 
𝑚𝑙(𝐸⋂[1, 𝑟])

 𝑙𝑜𝑔𝑟
 

and 

𝑙𝑜𝑔𝑑𝑒𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐸 = 𝑙𝑖𝑚
𝑟→∞

𝑠𝑢𝑝 
𝑚𝑙(𝐸⋂[1, 𝑟])

 𝑙𝑜𝑔𝑟
 

respectively. We say that 𝐸 has logarithmic density if  

𝑙𝑜𝑔𝑑𝑒𝑛𝑠𝐸 = 𝑙𝑜𝑔𝑑𝑒𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐸 

 

3. Methods of Work 

     This section has introduced some results that will help us to prove our results. 

 

Lemma 1 [13] Let (𝑓, 𝛤) denote a pair that consists of transcendental meromorphic function 

𝑓(𝑧) and a finite set 

Γ = {(𝑘1, 𝑗1), (𝑘2, 𝑗2), … , (𝑘𝑞 , 𝑗𝑞)} 

of distinct pairs in ℤ+ 𝑘𝑖 > 𝑗𝑖 ≥ 0 for 𝑖 =  1,2, . . . , 𝑞, let 𝛼 > 0, 𝜀 > 0. Then the following 

hold: 
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i) There is 𝐸1 ⊆ [0, 2𝜋) with 𝑚(𝐸1) = 0, and there is 𝑐 > 0 that depends only on 𝛼 and Γ such 

that if 𝜑0 ∈  [0, 2𝜋)\E1, there is 𝑅0 = 𝑅0(𝜑0) > 1 such that for 𝑎𝑟𝑔 𝑧 = 𝜑0 and |𝑧| = 𝑟 ≥
𝑅0, & for (𝑘, 𝑗) ∈ Γ, we have 

|
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
| ≤ 𝑐 (

𝑇(𝛼𝑟, 𝑓)

𝑟
 𝑙𝑜𝑔𝛼𝑟 log 𝑇(𝛼𝑟, 𝑓))

𝑘−𝑗

                                                                  (5) 

In particular, if 𝑓(𝑧) with 𝜌(𝑓 ) < ∞, then (5) is replaced by: 

|
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
| ≤ 𝑐|𝑧|(𝑘−𝑗)(𝜌(𝑓)−1+𝜀)                                                                                                    (6) 

ii) There is 𝐸2 ⊆ [1, ∞) with 𝑚𝑙(𝐸2) < ∞, and 𝑐 > 0 that depends only on 𝛼 and Γ such that 

for |𝑧| = 𝑟 ∉ 𝐸2 ∪ [0, 1] and for (𝑘, 𝑗) ∈ Γ, (5) holds. In particular, if 𝑓(𝑧) is with 𝜌(𝑓) <
∞, then (6) holds. 

iii) There is 𝐸3 ⊂ [0, ∞) with 𝑚(𝐸3) < ∞, and 𝑐 > 0 that depends only on 𝛼 and Γ such that 

for |𝑧| = 𝑟 ∉ 𝐸3 and (𝑘, 𝑗) ∈ Γ, we have 

|
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
| ≤ 𝑐 (𝑇(𝛼𝑟, 𝑓)𝑟𝜀 𝑙𝑜𝑔 𝑇(𝛼𝑟, 𝑓))𝑘−𝑗                                                                            (7) 

In particular, if 𝑓(𝑧) with 𝜌(𝑓) < ∞, then (7) is replaced by  

|
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
| ≤ 𝑐|𝑧|(𝑘−𝑗)(𝜌(𝑓)+𝜀)                                                                                                        (8) 

 

Lemma 2 [14] Let 𝑓 be meromorphic with order 𝜌 = 𝜌(𝑓 ) < ∞. Then, for 𝜀 > 0, there is 

𝐸 ⊆ (1, ∞) with 𝑚𝑙(𝐸) < ∞, 𝑚(𝐸) < ∞, s. t. 

|𝑓(𝑧)| ≤ exp(𝑟𝜌+𝜀) 

for |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸. 

 

Lemma 3 [3] Let 𝑓(𝑧) =
𝑔(𝑧)

𝑑(𝑧)
 be meromorphic, where 𝑔(𝑧) and 𝑑(𝑧) are entire that satisfy 

𝜇(𝑔) = 𝜇(𝑓) = 𝜇 ≤ 𝜌(𝑔) = 𝜌(𝑓) ≤ ∞ 

𝜆(𝑑) = 𝜌(𝑑) = 𝜆 (
1

𝑓
) = 𝛽 < 𝜇 

Then there is 𝐸 ⊆ (1, ∞) with 𝑚𝑙(𝐸) < ∞, s. t.  

𝑓(𝑛)(𝑧)

𝑓(𝑧)
= (

𝑣(𝑟, 𝑔)

𝑧
)

𝑛

(1 + 𝑜(1)), 𝑛 ≥ 1 

holds for 𝑧 with |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸, |𝑔(𝑧)| = 𝑀(𝑟, 𝑔), 𝑀(𝑟, 𝑔) = max
|𝑧|=𝑟

|𝑔(𝑧)|, where 𝑣(𝑟, 𝑔) 

is the central index of 𝑔. 

 

Lemma 4 [11] Let 𝑔(𝑟) and ℎ(𝑟) be monotone nondecreasing functions on [0, ∞), such that 

𝑔(𝑟) ≤ ℎ(𝑟) for 𝑟 ∉ 𝑆 where 𝑆 is a set with 𝑚𝑙(𝑆) < ∞, let 𝛼 > 1. Then there is 𝑟0 > 1, such 

that 𝑔(𝑟) ≤ ℎ(𝛼𝑟) for 𝑟 > 𝑟0. 

 

Lemma 5 [15] Assume that 𝑔(𝑧) is an entire function with 0 ≤ 𝜇(𝑔) < 1. Then, for 𝛼 ∈

(𝜇(𝑔), 1), there is 𝐸 ⊆ [0, ∞) such that 𝑙𝑜𝑔𝑑𝑒𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝐸)  ≥ 1 −
𝜇(𝑔)

𝛼
 , where 

𝐸 = {𝑟 ∈ [0, ∞) ∶  𝑚(𝑟) > 𝑀(𝑟) 𝑐𝑜𝑠 𝜋𝛼} 

where 

𝑚(𝑟) = 𝑖𝑛𝑓|𝑧|=𝑟 𝑙𝑜𝑔|𝑔(𝑧)| 

𝑀(𝑟) = 𝑠𝑢𝑝|𝑧|=𝑟 𝑙𝑜𝑔|𝑔(𝑧)| 
 

Lemma 6 [16] Let 𝑔(𝑧) satisfy the hypothesis of Lemma 5 with 𝜌(𝑔) = 𝜌 instead of 𝜇(𝑔). If  

𝜌 < 𝛼 < 1 , then 
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𝑙𝑜𝑔𝑑𝑒𝑛𝑠(𝐸) ≥ 1 −
𝜌

𝛼
 

Lemma 7 [15] Let 𝑓(𝑧) be an entire function with 𝜇(𝑓 ) = 𝜇 <
1

2
 and 𝜇 < 𝜌 = 𝜌(𝑓 ). If 𝜇 ≤

𝛿 <  𝑚𝑖𝑛(𝜌,
1

2
) and 𝛿 < 𝛼 <

1

2
, then 

 

𝑙𝑜𝑔𝑑𝑒𝑛𝑠{𝑟 ∈ [0, ∞): 𝑚(𝑟) > (𝑐𝑜𝑠𝜋𝛼)𝑀(𝑟) > 𝑟𝛿} > 𝐶(𝜌, 𝛿, 𝛼) 

where 𝐶(𝜌, 𝛿, 𝛼) > 0 and 𝑚(𝑟) and 𝑀(𝑟) are given as in Lemma 5. 

 

Lemma 8 [5] Let 𝑓(𝑧) be transcendental entire function. Then there is 𝐸 ⊆ (1, ∞) with 

𝑚𝑙(𝐸) < ∞, s. t. for a point 𝑧 with |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸 & |𝑓(𝑧)| = 𝑀(𝑟, 𝑓) , we have 

|
𝑓(𝑧)

𝑓(𝑠)(𝑧)
| ≤ 2𝑟𝑠 (𝑠 ∈ ℕ) 

 

Lemma 9 [3] Let 𝑓 be an infinite order entire function, with 𝜌2(𝑓 ) < ∞, and let 𝜈(𝑟, 𝑔) be 

the central index of 𝑓. Then 

lim
𝑟→∞

sup
𝑙𝑜𝑔+𝑙𝑜𝑔+𝜈(𝑟, 𝑔)

𝑙𝑜𝑔𝑟
= 𝜌2(𝑓 ) 

 

Lemma 10 [3]  Let 𝑓(𝑧) =
𝑔(𝑧)

𝑑(𝑧)
 be given as in Lemma 3. If 0 ≤ 𝜌(𝑑) < 𝜇(𝑓), then 𝜇(𝑔) =

𝜇(𝑓), 𝜌(𝑔) = 𝜌(𝑓).  Moreover, if 𝜌(𝑓) = ∞, then 𝜌2(𝑓) = 𝜌2(𝑔). 

 

4. Results and Discussion 

     The coefficients in the following two results are meromorphic and one of them has lower 

order that dominates the others on some subset of ℂ with a finite order solution. 

 

Theorem 5 Let 𝐸 ⊆ ℂ and define 𝑆 = {|𝑧|: 𝑧 ∈ 𝐸} and let 𝐸 satisfies 𝑚𝑙(𝑆) = ∞. Suppose 

that 𝐴𝑗(𝑧), 𝑗 = 0,1, … , 𝑛 − 1 and 𝐹(𝑧) are meromorphic functions. Suppose that it is 𝑠, 0 ≤

𝑠 ≤ 𝑛– 1, such that 

𝑝 = max
0≤𝑗≤𝑛−1

𝑗≠𝑠

{𝜇(𝐴𝑗), 𝜆 (
1

𝐴𝑠
) , 𝜇(𝐹)} ≤ 𝜇(𝐴𝑠) = 𝜇

< ∞,                                                                                                                        (9) 

holds and for a constant 0 ≤ 𝛽 < 𝛼, the relations (3) and (4) hold, for 𝜀 > 0 and as |𝑧| → ∞, 

𝑧 ∈ 𝐸. Then any solution 𝑓 ≠ 0 of Eq. (1) with 𝜌(𝑓) < ∞ satisfies 𝜌2(𝑓 ) ≥ 𝜌(𝐴𝑠). 

 

Proof From Eq. (1), we have 

 

𝐴𝑠 =
𝐹

𝑓
 

𝑓

𝑓(𝑠)
− {

𝑓(𝑛)

𝑓(𝑠)
+ 𝐴𝑛−1

𝑓(𝑛−1)

𝑓(𝑠)
+ ⋯ + 𝐴𝑠+1

𝑓(𝑠+1)

𝑓(𝑠)

+
𝑓

𝑓(𝑠)
(𝐴𝑠−1

𝑓(𝑠−1)

𝑓
+ ⋯ + 𝐴1

𝑓′

𝑓
+ 𝐴0)}                                                        (10) 

Using Lemma 1 (ii), with 𝛼 = 2, there is 𝐸1 ⊆ [1, ∞) with 𝑚𝑙(𝐸1) < ∞ and 𝐵 > 0, such that  

|
𝑓(𝑗)(𝑧)

𝑓(𝑠)(𝑧)
| ≤ 𝐵𝑟(𝑇(2𝑟, 𝑓))

𝑗−𝑠
, 𝑗 = 𝑠 + 1, 𝑠 + 2, … , 𝑛                                                               (11) 

and 

|
𝑓(𝑗)(𝑧)

𝑓(𝑧)
| ≤ 𝐵𝑟(𝑇(2𝑟, 𝑓))

𝑗
,    𝑗 = 1, 2, … , 𝑠 − 1,                                                                          (12) 

hold for |𝑧| = 𝑟 ∉ ([0, 𝑅1] ∪ 𝐸1), 𝑅1 > 1. 
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Put 𝑓(𝑧) =
𝑔(𝑧)

𝑑(𝑧)
 where 𝑔(𝑧) is entire, 𝑑(𝑧) is a product of poles sequence of 𝑓. 

Let 𝜂 be such that 𝑝 < 𝜂 < 𝜇(𝐴𝑠). Using Lemma 2, there is 𝐸2 ⊆ (1, ∞) with 𝑚𝑙(𝐸2) < ∞, 

such that 

|𝐹(𝑧)𝑑(𝑧)| ≤ exp(𝑟𝜂)                                                                                                                     (13) 

holds for |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸2. 

Thus, there is 𝑅2 (> 𝑅1), such that, for all 𝑧 satisfying 

|𝑧| = 𝑟 > 𝑅2, 𝑣 (𝑟, 𝑔) > 1, |1 + 𝑜(1)| >
1

2
 

and |𝑔(𝑧)| = 𝑀(𝑟, 𝑔) > 1 the following holds: 

|
𝑓(𝑧)

𝑓(𝑠)(𝑧)
|

≤ 2𝑟𝑠                                                                                                                                                 (14) 
Set 

𝐻 = {|𝑧| ∶ 𝑧 ∈ 𝐸}\([0, 𝑅2] ∪ 𝐸1 ∪ 𝐸2) 

Then 𝑚𝑙(𝐻) = ∞. It follows from (13) that 

|
𝐹(𝑧)

𝑓(𝑧)
| = |

𝐹(𝑧)

𝑔(𝑧)
 𝑑(𝑧)| = |

𝐹(𝑧)

𝑀(𝑟, 𝑔)
| |𝑑(𝑧)| ≤ exp(𝑟𝜂)                                                              (15) 

for |𝑧| = 𝑟 ∈ 𝐻, 𝑟 > 𝑅2, and |𝑔(𝑧)| = 𝑀(𝑟, 𝑔). 

It follows from (10), (11), (12), (14), (15) and (3), (4), that 

exp (𝛼𝑟𝜌−𝜀) ≤ 2(𝑛 + 1)𝐵𝑟𝑠+1(𝑇(2𝑟, 𝑓))
𝑛+1

exp (𝛽𝑟𝜌−𝜀)exp (𝑟𝜂) 

for 𝑧 with |𝑧| = 𝑟 ∈ 𝐻, 𝜀 ∈ (0,
𝜇(𝐴𝑠)–𝜂 

2
) and |𝑔(𝑧)| = 𝑀(𝑟, 𝑔). 

Since 𝜂 < 𝜇(𝐴𝑠), we obtain 

𝜌2(𝑓 ) ≥ 𝜌(𝐴𝑠) 

 

In the following result, the same conditions described in the previous Theorem are given with 

a solution that has infinite order and obtains the opposite result. 

 

Theorem 6 Let 𝐴𝑗(𝑧), 𝑗 = 0,1, … , 𝑛 − 1, 𝐹(𝑧) be defined as in Theorem 5 and satisfy 

inequality (9). Then every solution 𝑓 ≠ 0 with 𝜌(𝑓) = ∞ of Eq. (1) satisfies 𝜌2(𝑓 ) ≤ 𝜌(𝐴𝑠).  
 

Proof From Eq. (1), we have 

−
𝑓(𝑛)

𝑓
= 𝐴𝑛−1

𝑓(𝑛−1)

𝑓
+ ⋯ + 𝐴𝑠

𝑓(𝑠)

𝑓
+ ⋯ + 𝐴1

𝑓′

𝑓
+ 𝐴0

−
𝐹

𝑓
                                                    (16) 

Using Lemma 2, for 𝜀 > 0, there is 𝐸3 ⊆ (1, ∞) with 𝑚𝑙(𝐸3) < ∞, such that 

|𝐴𝑗(𝑧)| ≤ exp(𝑟𝜌(𝐴𝑠)+𝜀) ,   𝑗 = 0,1, … , 𝑛 − 1                                                                            (17) 

and 

|𝐹(𝑧)| ≤ exp(𝑟𝜌(𝐴𝑠)+𝜀),                                                                                                                 (18) 

holds for |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸3. 

Put 𝑓(𝑧) =
𝑔(𝑧)

𝑑(𝑧)
 as in the proof of Theorem 6. Thus by Lemma 3, there is 𝐸4 ⊆ (1, ∞) with 

𝑚𝑙(𝐸4) < ∞, such that  

𝑓(𝑗)(𝑧)

𝑓(𝑧)
= (

𝑣(𝑟, 𝑔)

𝑧
)

𝑗

(1 + 𝑜(1)), 𝑗 = 1, … , 𝑛                                                                      (19) 

holds for |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸4, |𝑔(𝑧)| = 𝑀(𝑟, 𝑔) > 1. 

Hence from (16), (17) and (19) there is 𝑅 > 1, such that  
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|(
𝑣(𝑟, 𝑔)

𝑧
)

𝑛

(1 + 𝑜(1))| {|(
𝑣(𝑟, 𝑔)

𝑧
)

𝑛−1

(1 + 𝑜(1))| + ⋯ + |(
𝑣(𝑟, 𝑔)

𝑧
)

𝑠

(1 + 𝑜(1))| + ⋯

+ |(
𝑣(𝑟, 𝑔)

𝑧
) (1 + 𝑜(1))| + 1} exp(𝑟𝜌(𝐴𝑠)+𝜀) + |

𝐹(𝑧)

𝑓(𝑧)
|                               (20) 

holds for |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸3 ∪ 𝐸4. 

Since 𝜌(𝑑) < 𝜌(𝐴𝑠), we have for 𝑟 > 𝑅, 

|𝑑(𝑧)| ≤ exp(𝑟𝜌(𝐴𝑠)+𝜀)                                                                                                                     (21) 

Then from (18) and (21) we have 

|
𝐹

𝑓
| = |

𝐹

𝑔
 𝑑| = |

𝐹

𝑀(𝑟, 𝑔)
 𝑑| ≤ exp(2𝑟𝜌(𝐴𝑠)+𝜀) 

Combining (20) and the above inequality, we get 

(𝑣(𝑟, 𝑔))
𝑛

|1 + 𝑜(1)| ≤ (𝑛 + 1) exp(2𝑟𝜌(𝐴𝑠)+𝜀) |𝑧|𝑛(𝑣(𝑟, 𝑔))
𝑛−1

|1 + 𝑜(1)| 
Hence 

𝑣𝑔(𝑟) ≤ (𝑛 + 1) exp(2𝑟𝜌(𝐴𝑠)+𝜀)|𝑧|𝑛 

Combining Lemma 9 and Lemma 4 and the above inequality, we get 

𝜌2(𝑔 ) ≤ 𝜌(𝐴𝑠) 
Combining Lemma 10 and the above inequality we get  

𝜌2(𝑓 ) ≤ 𝜌(𝐴𝑠) 
This completes the proof. 

 

Theorem 7 Under the assumptions of the previous two Theorems we have 𝜌2(𝑓 ) = 𝜌(𝐴𝑠). 
 

 

In what follows we shall consider Eq. (1) when 𝐴𝑗(𝑧) and 𝐹(𝑧) are entire.  

 

Theorem 8 Assume that 𝐴𝑗(𝑧), 𝑗 = 0,1, … , 𝑛 − 1 and 𝐹(𝑧) are entire functions and it is 𝑠, 0 ≤

𝑠 ≤ 𝑛– 1, such that 

𝑞 = max
0≤𝑗≤𝑛−1

𝑗≠𝑠

{𝜇(𝐴𝑗), 𝜇(𝐹)} < 𝜇(𝐴𝑠) <
1

2
  

Let 𝑓 ≠ 0 be any solution with 𝜌(𝑓) < ∞. Then 𝜌2(𝑓 ) = 𝜇(𝐴𝑠).  
 

Proof From Eq. (1) we have Eq. (10). Using Lemma 1 (ii), there is 𝐸1 ⊆ [1, ∞) with 𝑚𝑙(𝐸1) <
∞ such that  

|
𝑓(𝑗)(𝑧)

𝑓(𝑠)(𝑧)
| ≤ 𝑀𝑟𝑐(𝑇(2𝑟, 𝑓))

2𝑛
,   𝑗 = 𝑠 + 1, … , 𝑛                                                                         (22) 

and 

|
𝑓(𝑗)(𝑧)

𝑓(𝑧)
| ≤ 𝑀𝑟𝑐(𝑇(2𝑟, 𝑓))

2𝑛
, 1 ≤ 𝑗 ≤ 𝑠 − 1                                                                      (23) 

holds for |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸1. 

Choose 𝛼, 𝛽 such that, 𝑞 < 𝛼 <  𝛽 < 𝜇(𝐴𝑠). 

Then we have 

|𝐴𝑗(𝑧)| ≤ exp(𝑟𝛼) ,   0 ≤ 𝑗 ≤ 𝑛 − 1, 𝑗 ≠ 𝑠                                                                                   (24) 

|𝐹(𝑧)| ≤ exp(𝑟𝛼)                                                                                                                              (25) 

for 𝑟 → ∞. 

By Lemma 6 or Lemma 7 there is 𝐻 ⊆ (1, ∞) with 𝑚𝑙(𝐻) = ∞, such that  

|𝐴𝑠(𝑧)| > exp(𝑟𝛽)                                                                                                                            (26) 

holds for |𝑧 | = 𝑟 ∈ 𝐻. 
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Because 𝑀(𝑟, 𝑓 ) > 1, by (25) we have 
|𝐹(𝑧)|

𝑀(𝑟, 𝑓 )
≤ exp(𝑟𝛼)                                                                                                                           (27) 

for 𝑟 → ∞. By Lemma 8, there is 𝐸2 ⊆ (1, ∞) with 𝑚𝑙(𝐸2) < ∞, such that  

|
𝑓(𝑧)

𝑓(𝑠)(𝑧)
| ≤ 2𝑟𝑠                                                                                                                                    (28) 

for a point 𝑧 with |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸2 and |𝑓(𝑧)| = 𝑀(𝑟, 𝑓). 

From (22)-(24), (26-28) and Eq. (10) we have 

exp(𝑟𝛽) < 𝑀𝑟𝑐(𝑇(2𝑟, 𝑓))
2𝑛

(𝑛 exp(𝑟𝛼))2𝑟𝑠 

and  

exp (𝑟𝛽(1 + 𝑜(1)) < (𝑇(2𝑟, 𝑓))
2𝑛

                                                                                              (29) 

for a point z with |𝑧| = 𝑟 ∈ 𝐻 ∖ ([0,1] ∪ 𝐸1 ∪ 𝐸2). 

Thus from (29) and since 𝛽 is arbitrary, we deduce 

𝜇(𝐴𝑠) ≤ 𝜌2(𝑓 )                                                                                                                                   (30) 

Now, we prove that 𝜌2(𝑓 ) ≤ 𝜇(𝐴𝑠). By Lemma 3, there is 𝐸3 ⊆ (1, ∞) with 𝑚𝑙(𝐸3) < ∞, 

such that  

𝑓(𝑗)(𝑧)

𝑓(𝑧)
= (

𝑣(𝑟, 𝑓)

𝑧
)

𝑗

(1 + 𝑜(1)),   1 ≤ 𝑗 ≤ 𝑛                                                                             (31) 

holds for |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸3. Hence for 𝜀 > 0, we have  

|𝐴𝑗(𝑧)| ≤ exp(𝑟𝜇(𝐴𝑠)+𝜀) , 0 ≤ 𝑗 ≤ 𝑛 − 1                                                                                    (32) 

|𝐹(𝑧)| ≤ exp(𝑟𝜇(𝐴𝑠)+𝜀)                                                                                                                (33) 

for 𝑟 → ∞. 

Because (33) and |𝑓(𝑧)| = 𝑀(𝑟, 𝑓 ) > 1, we get 

|
𝐹(𝑧)

𝑓(𝑧)
| ≤ exp(𝑟𝜇(𝐴𝑠)+𝜀)                                                                                                                   (34) 

for 𝑟 → ∞. 

Take 𝑧 with |𝑧| = 𝑟 ∉ [0,1] ∪ 𝐸3. From Eq. (1) we have  

|
𝑓(𝑛)

𝑓
| ≤ |𝐴𝑛−1(𝑧)| |

𝑓(𝑛−1)

𝑓
| + ⋯ + |𝐴2(𝑧)| |

𝑓′′

𝑓
| + |𝐴1(𝑧)| |

𝑓′

𝑓
| + 𝐴0(𝑧) + |

𝐹

𝑓
|                 (35) 

Substituting (31), (32) and (34) into (35) yields 

|
𝑣(𝑟, 𝑓)

𝑧
|

𝑛

|1 + 𝑜(1)| ≤ (𝑛 + 1) |
𝑣(𝑟, 𝑓)

𝑧
|

𝑛−1

|1 + 𝑜(1)| exp(𝑟𝜇(𝐴𝑠)+𝜀), 

This gives 

𝜌2(𝑓) = lim
𝑟→∞

sup
𝑙𝑜𝑔+𝑙𝑜𝑔+𝑣(𝑟, 𝑓)

𝑙𝑜𝑔𝑟
≤ 𝜇(𝐴𝑠) + 𝜀                                                                        (36) 

 

Because 𝜀 is arbitrary, by Lemma 9 and Eq. (36), we get 

  
𝜌2(𝑓 ) ≤ 𝜇(𝐴𝑠) 

 

Combining this and (30) yields 𝜌2(𝑓 ) = 𝜇(𝐴𝑠). This completes the proof. 
 

5. Conclusions  

     The hyper order of growth of the solutions of (HOLCDE) under some conditions related to 

the lower order of its coefficients is studied and considered in this paper. It is seen that the 

Nevanlinna theory of the meromorphic functions is a good and helpful tool that we have used 

to prove our results. our results have been obtained by extending some of the previous results 

in this direction. 



IHJPAS. 53 (3)2022 
 

118 

  

Acknowledgments  

     I would like to extend my thanks and gratitude to everyone who helped and supported me 

to complete this modest effort and to highlight it in this form. Special thanks to Mustansiriyah 

University/College of Science/Department of Mathematics. 

 

 

 

References 

 
1. Lain, I. Nevanlinna Theory and Complex Differential Equations; De Gruyter. Germany, 1992, 

ISBN 9783110134223. 

 

2. Yang, CC; Yi HX. Uniqueness Theory of Meromorphic Functions, Springer: Netherlands, 

2003. ISBN 978-1-4020-1448-2. 

 

3. Long, J.; Zhu, J. On hyper-order of solutions of higher order linear differential equations with 

meromorphic coefficients. Adv Diff Eqs. 2016, (2016)107, 1-13. 

 

4. Hellerstein, S.; Miles, J.; Rossi, J. On the growth of solutions of certain linear differential 

equations. Ann Acad Sci f'enn, Ser A I Math. 1992, (17)2, 343-365. 

 

5. Chen, ZX.; Yang, CC. Quantitative Estimations on the Zeros and Growths of Entire Solutions 

of Linear Differential Equations. Comp Var Ellip Eqs. 2000, 42(2), 119-133. 

 

6. Habib, H.; Belaidi, B. Hyper-Order and Fixed Points of Meromorphic Solutions of Higher 

Order Linear Differential Equations. Arab J Math Sci. 2016, 22(1), 96-114. 

 

7. Laine, I.; Wu, P. Growth of Solution of Second Order Linear Differential Equations. Proc 

Am Math Soc. 2000, 128(9), 2693-2703. 

 

8. Alkhalidy, A.; Hussein, E. On the Growth of Solutions of Second Order Linear Complex 

Differential Equations whose Coefficients Satisfy Certain Conditions. Bag Sci J. 2020, 17(2), 

530-536. 

 

9. Long, J.; Wu, T.; Wu, X. Growth of Solutions of Complex Differential Equations with 

Solutions of Another Equation as Coefficients. Comp Meth Fun Th. 2019, 19, 3-16. 

 

10. Pramanik, DC.; Biswas, M.; Mandal, R. On the study of Br¨uck conjecture and some non-

linear complex differential equations. Arab J Math Sci. 2017, 23, 196-204. 

 

11. Hamani, K.; Belaidi, B. On The Hyper-Order of Transcendental Meromorphic Solutions of 

Certain Higher order Linear Differential Equations. Opuscula Math. 2017, 37(6), 853–874. 

 

12. Zhang, Y.; GAO, Z.; Zhang, J. On Growth of Meromorphic Solutions of Nonlinear Difference 

Equations and Two Conjectures of C.C. Yang. Acta Math Sci. 2016, 36(1), 195-202. 

 

13. Long, J.; Heittokangas, J.; Ye, Z. On the relationship between the lower order of coefficients 

and the growth of solutions of differential equations. J Math Anal Appl. 2016, 444(1), 153-

166. 

 

14. Chen, ZX. On the hyper-order of solutions of some second-order linear differential equations. 

Acta Math Sci. 2002, 18, 79–88. 



IHJPAS. 53 (3)2022 
 

119 

 
15. Barry, PD. Some Theorems Related to the 𝑐𝑜𝑠𝜋𝜌 Theorem. Proc Lond Math Soc. 1970, 21(3), 

334-360. 

 

16. Barry, PD. On a theorem of Besicovitch. Quart J Math. 1963, 14(1), 293-302. 

 

 


