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Abstract

In this paper, Bayes estimators of Poisson distribution have been derived by using two loss
functions: the squared error loss function and the proposed exponential loss function in this
study, based on different priors classified as the two different informative prior distributions
represented by erlang and inverse levy prior distributions and non-informative prior for the
shape parameter of Poisson distribution. The maximum likelihood estimator (MLE) of the
Poisson distribution has also been derived. A simulation study has been fulfilled to compare
the accuracy of the Bayes estimates with the corresponding maximum likelihood estimate
(MLE) of the Poisson distribution based on the root mean squared error (RMSE) for different
cases of the parameter of the Poisson distribution and different sample sizes.

Keywords: The Poisson distribution, MLE, Bayes estimation, SELF, the proposed loss
function.

1. Introduction

The Poisson distribution is a discrete probability distribution for the counts of events that
occur randomly in a given interval of time (or space). Also, it is an appropriate model for; the
number of phone calls received by a telephone operator in a ten minutes the number of flaws
in a bolt of fabric, the number of spelling errors on each page of a document. The Poisson
distribution has widespread applications in almost every science, engineering and medicine.
So, it is important to study different estimation methods for the Poisson distribution. Many
authors investigate the effects on Bayes’ estimators of the Poisson distribution based on
different loss functions, and the prior distributions represented by informative prior and non-
informative prior. We mention some of them as follows: [1] discussed Bayes estimators for
the binomial and Poisson distribution, based on informative and non-informative priors. He
concludes that using non-informative priors results in equal tails posterior probability intervals
in the corresponding frequentist confidence intervals. Also, he pointed out that the posterior

60

—G)
This work is licensed under a Creative Commons Attribution 4.0 International License.



https://creativecommons.org/licenses/by/4.0/
mailto:drjanan1964@gmail.com

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 35(1)2022

mean is larger than the MLE, which explains why the Bayesian interval is slightly shifted to
the right compared to the frequentist interval. [2] examined Bayes estimators of unknown
parameters of the Poisson distribution under different priors. They have derived the posterior
distributions for the unknown parameter of the Poisson distribution using single priors such as
uniform, Jeffrey’s, Gamma distribution, Also under double priors such as Gamma-Chi-square
distributions, Gamma-exponential distributions, Chi-square-exponential distributions. They
used R Software to find posterior estimates. They explained the results of this study through
numerical and graphical posterior densities of the parameters. [3] deals with the problem of
estimating parameters of some well-known distribution functions such as Binomial, Poisson,
normal and exponential distribution function. He derived estimation of parameters by using
maximum likelihood, method of moment, and Bayes estimation. He derived Bayes estimators
for the parameters of these distributions using Lindley's Approximation based on different
types of priors. [4] discussed different estimation methods for Poisson parameter estimations.
Which were represented by maximum likelihood, Markov chain Monte Carlo, and Bayes
method. He derives the Bayes estimators under the squared error loss function based on
gamma prior distribution. He used a simulation study for investigating the performance of the
ML method, the Markov chain Monte Carlo method, and the Bayes method. Also, he applies
to test a hypothesis that the means of Poisson parameter estimations obtained from the ML
method, Markov chain Monte Carlo method, and Bayes method were not different from the
true parameters. [5] described several interval estimators for the Poisson mean, such as
classical interval estimators: The Wald interval estimator, the score interval estimator, the
exact interval estimator, and the bootstrap interval estimator. Also, they described Bayes
credible estimators , such as the equal tails credible interval estimator, Jeffrey's prior credible
interval estimator, the highest posterior density (HPD) credible interval estimator, the relative
surprise credible interval estimator. They derived Bayes estimators based on four different
priors, such as uniform prior, exponential prior, gamma prior and chi-square prior.
Performances of the proposed Bayes estimators have been studied and compared in terms of
coverage probabilities and coverage lengths based on a simulation study. The methodology is
also illustrated on a real data set. [6] derived the Bayes posterior estimator of the parameter of
the Poisson distribution under the squared error and Stein's loss functions. He obtains the
empirical Bayes estimators of the parameter of the Poisson distribution based on gamma prior
distribution. He investigates the behavior of estimators for the parameter of Poisson
distribution by using simulation results. [7] discussed the E-Bayesian and empirical E-
Bayesian estimates for the parameter of the Poisson distribution. He also derived posterior risk
for empirical E-Bayesian E-Bayesian approximation based on the squared error loss function.
He investigates the behavior of different estimators for the parameter of Poisson distribution
based on Monte Carlo simulation. He also applied EE-Bayesian estimates and EE-posterior
risk on a real data set. [8] used different estimation methods for the parameter Poisson,
represented by maximum likelihood, Empirical Bayes and Bayes estimation. she derived the
posterior distribution of the Poisson parameter under the squared error and quadratic loss
functions based on gamma prior distribution. She used a simulation method to obtain the
results, to including the point estimates and confidence intervals and the mean square error
(MSE) for the parameter Poisson. She applied methods of estimation on a real data set.

Our aim in this study is to examine the effects of the squared error loss function, and the
proposed exponential loss function which are presented in this study, based on different priors
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represented by erlang and levy prior distributions and non-informative prior on Bayes’s
estimators of Poisson distribution. We compared the accuracy for Bayes’ estimators with the
corresponding maximum likelihood estimator (MLE) of Poisson distribution based on the root
mean squared error (RMSE).

2. Poisson Distribution

Assuming that (t,,t,,..., t,)be identical independent distribution (iid) random variables

from the Poisson distribution with the following probability mass function [7,8].
e %0t
p(t6)= "

With the shape parameter 6 > 0. The cumulative distribution function has no particular
form. With mean =variance= 6.

, t=0,1,2,... and 0>0 (1)

2.1 Maximum Likelihood Estimation (MLE)
The likelihood function for the sample observation of the Poisson distribution defined by
equation (1) will be as follows [7,8]:
_no st
e p-i=l

L(tl,tz,..., tn;e):Hn—tl (2)
i=1"

The log-likelihood function ¢=In (L) ,then the first partial derivative of the log of the
likelihood L with respect to 6 as follows

n

>t

f=—no+ ¥ tLogd-3 Logt, = L =n-iE 1o
i-1 i=1 00 0

Then Maximum Likelihood Estimator(MLE) of 0 is given by

A Zn t
Ome =<' —1t 3)
N

2.2 Bayesian Estimation
We derive the posterior distribution of 6 under assuming different priors informative priors
such as erlang and levy and non-informative prior whereas, Bayes estimation under squared
error loss function and Bayes estimation under the proposed loss function based on different
priors.
2.2.1 Posterior Distribution
(a). Posterior distribution under erlang's prior information

It is assumed the prior for an unknown parameter 0 is erlang distribution with

hyperparameters (6) as given below[9,10]:
k,(0)=5> 0 exp(-60) with 0,5 >0 (4)
Then, the posterior distribution of 6 for the given the data t is given by :
h(o6\t) = L(6) k(O) 5)
| L®) k(6)d6
0
Substituting equation (2) and equation (4) in equation (5), yields the posterior probability
density function of the shape parameter 0 as the following:
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not
_ i=1 i
exp( neze [620 exp(-50 )] Lot+l

h,(0\t) = 1T, t! _ 0 exp(—6(3+n))
. -

o exp(-n0) 63N, t. o N ot o+1

| : 152 0exp(-560)]d0 [0 T Texp(—0(3+n))do

0 Hi:lt! 0

(6)
Rewrite >, t.+1=(31, t,+2)—1 and by multiplying the integral in equation (6) by the
quantity which equals to

Gemy > T T 4 +2) _ _
( o t 12) ( o0t ) .where T'(.)is a gamma function .After some
- (©+n)

simplification, it yields

(5+n)(2.-1 t, +2)

I'( XLt +2) At,0)
(5+n)(2—1 t +2)

h,(0\1t) = aCL + L e~ 0(5+n))  (7)

Where A(t,0)= j 0+ oxn(—9(5+n)) dd=1. Be the integral of

0 L t+2)

the pdf of gamma distribution [11]. Then the posterior distribution of 6 is gamma distribution
as

(Z| =1 t + )
(6 +N ) (ZP=1 t+2)-1 —
h,(0\t)= Tt 12) exp(-0(@+n)) ,06>0,8n>0 (8)
i.e.(0\t) gamma(( X, t; +2),(6+n)) with posterior mean is E(6\t)= —(Zg:'n;z) and

t)= Lt +2)
(6+n)
(b). Posterior distribution under inverse levy's prior information
It is assumed the prior for an unknown parameter 6 is inverse levy distribution with
hyperparameters (v) as given below[9,12]:

1
k,(0)= /zl 02 expl-~0) with 0,v>0 (9
i 2

Substituting equation (2) and equation (9) in equation (5) yields the posterior probability
density function of the shape parameter 8 like the following:

oyo=i -1 -
expin6) [\F 0 2o 0)]
H 1 2n

posterior variance is var( 0\t

h,(0\1) =

le'e} |_1
| e"p(”e)e r '[\/7 0 2exp(-—9)]d9
0 t!
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1
LI -
07 T 2ep(-0(Y+n))
h,(0\1) : 2 (10)
o X4 ti_g v
|6 exp(—0 (= +n))do
0 2

Rewrite >, t, —% =t +%)—1 and by multiplying the integral in equation (10) by the

quantity which equals to

P, t, +05) oL
= >h . t.+0.5)
(0.5v+nn) ) ( =1 n' ) ,where T'(.)is a gamma function
ret . t.+05 &P, t.+05)
(201 ) 05v+n) =1
After some simplification, it yields
< L, +05)
h,(0\n= O3V+N) (w081 o g05ven)) (1)
(D t; +0.5)AL(t,6)
>N t.+05)
0 i .
Where AL(t0)= [ O2V*N) o 051 oy g (05v+n)) do=1. Be the
0 reh, ti +0.5)

integral of the pdf of gamma distribution [11]. Then the posterior distribution of 6 is gamma
distribution as
(X t;+05)

>
h (0\f)= LO2V+N) o 401 0y 9(0.5v+n)),
ren, t; +0.5)

06>0,v,n>0 (12)
ie. (0\t) gamma((X, t; +0.5),(0.5v+n)) with posterior mean is

(X t; +0.5) (X t. +0.5)
— 1 and posterior variance is var(e\'g)z—'2 :
(0.5v+n) 0.5v+n)

(c). Posterior distribution under non-informative's prior information
It is assumed that the prior for an unknown parameter 0 is non-informative with hyper

parameter (c) as given below[9]:

E(6\D) =

k,(0)a ic with 0,c >0 (13)

0
Substituting equation (2) and equation (13) in equation (5) yields the posterior probability
density function of the shape parameter 6 like the following:
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n

exp(-n 9)92' =L

=
n T 221 t. —C
h.(0\0) = Hi=1t! 0 _ 0 I “exp(-0n)
3 Shot © I -
T ee(no) o =1 (Ll 10T T ew(-0n)do
n c 0
0 m_ 0
(14)

Rewrite >, t,—c=(, t,—c+1)—1 and by multiplying the integral in equation (14) by
the quantity which equals to

(n)(Zﬂl G-¢D e, t;—c+1)

reh, ti —Cc+1) (n)(Zirll ti —-c+1)

),where T(.)is a gamma function .After some

simplification, it yields

0 )(Zirll '[i —c+1)

h,(0\t) = oGk =eD)T oun_on)  (15)

(XN, t,—Cc+1)A2(t,6)

© (n )(Zirll ti —-c+1)
Where A2(t,0)= |

0 F(Zirll ti -C+1))
pdf of gamma distribution [11]. Then the posterior distribution of 6 is gamma distribution as

(n )(anll ti -Cc+1)

0k t=¢ D=1 oyn_0n) do =1. Be the integral of the

h,(0\t)= gD o0 9n), 850 ,c>1,n>0 (16)
ren t; —c+1)
Ie. (0\t) gamma(( X, t,—c+1),(n))with posterior mean IS
(N t.—c+1)
E(6\t)= ' for c>1 and posterior variance IS
(XL t.—c+1)
var(0\t) = ! for c¢>1.

n2
2.2.2 Bayes Estimation under Squared Error Loss Function

We derive Bayes estimation under the squared error loss function assuming different priors'
informative priors such as erlang and levy and non-informative prior. Then, the risk function
is denoted by

R,(0,0)=E[L,(6-0)°],R,(0-0)=0°-20E(0\t)+E(6°\t).The value of 0
minimizes the risk function under squared error loss function which satisfies the following
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conditionﬁAR(e-e):O ; we get Bayes estimator of 6 denoted by 6 for each of the
00

previous priors as follows 6 =E(0\t) = j oh(6\tdo  (17)
0

i.e.,, 6=E(06\1) is equal to the posterior mean for different priors informative priors( erlang
and levy ) and non-informative prior as have been derived in section 4.1.

2.2.3 Bayes Estimation under the Proposed Exponential Loss Function

We derive Bayes estimation under the proposed exponential loss function assuming different
priors' informative priors such as erlang , levy and non-informative prior. Then, the risk
function is denoted by

R, (6,0) = E[ L, (exp( 6) -exp (6))°],

R,(0,0)=exp(20) —2exp(0)E(exp(0)\t) + E(exp(2 )\ t) .The value of 6 minimizes the
risk function under the proposed exponential loss function which satisfies the following

N

condition iAR(e-e)zo ; we get Bayes estimator of 6 denoted by6 for each of the

00
previous priors

0=1In E(exp(e)\t):In(fexp(e)h(e\t)de) (18)
0
(a). The Bayes estimator for parameter under erlang prior can be derived as follows

é:InE(exp(e)\t)=In(Texp(e)hl(e\t)d6) (18)

(8+n)(z£1 t;+2)

0= In( [exp(0) o w42 gy 0 (54n))do)
0

reh t+2)

é= In(of (6+n)(zirll t. +2)
0 I_1(Zir11 t; +2)

By multiplying the integral in equation (19) by the quantity which equals to

9 v +2L oxn(—0 (5+n-1))do) 19)

_ L t+2)
(®+n-1) it yields
(8+n_1)(2irll ti +2)
A (Zirll t;+2)
0= In( (6+n) B(t,0)) , where

(8+n _1)(221 ti +2)
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(ZI_l t|+2)
B(t,0) = OF (6+n-1)

0 F( Z =1 | + 2 )
the pdf of gamma distribution [11], i.e.

L 5+2) N
)=0=I (——

0 42D eyn(—0(5+n-1))do=1 , be the integral of

o o3
( (8+n) 6+n )(zrll t|+2)(20)

d+n-1

(8+n_1)(2| =1 ti +2)

(b). The Bayes estimator for parameter under inverse levy prior can be derived as follows

A:InE(exp(e)\t):In(Texp(G)hz(e\t)de) (18)

(0 5V+n )(Zl—l t| +05)

ren t +0.5)

0 = In( j exp( ) g t+09)L oy 9 (0.5v4n)) d)

N Ci([) (O 5V+n)(2|71 t| +05)
0 reh t. +0.5)
By multiplying the integral in equation (21) by the quantity which equals to

(Zi":1 t+0.5)-1 exp(— 0 (05V +Nn '1)) de) (21 )

(0.5v+n -1)(221 t; +0.5)

isy 1, +0.5)

it yields
(0.5v+n- 1)(Z

)(Zirll t;+0.5)

0.5V +n -1)(Zarll t, +0.5)

B1(t,0)), where

0 = In( (0.5v+n

o0 _ (X, t;+05)
B1(t,0)= [ &SVFn-1) g 6 +0.5)1 o9 (0.5v+n-1))do=1, be the
0 Il t;+0.5)

integral of the pdf of gamma distribution [11], i.e.

A Nt +05) .
0 = In( (0.5v+n) )= 0= (05\/—+n)(2 t‘+0'5)....(22)
t, +0.5)

n

(0.5v+n-1)Zn

(c). The Bayes estimator for parameter under non-informative prior can be derived as
follows

A:InE(exp(e)\t):In(Tem(O)h3(6\t)de) (18)

(Zirll ti-c+1)
(n) oGl e Lo 1Y do)

(A9= In(Texp( 0)
0 r(Zh ti—c+1)

6_ In(ojo (n)(Zirll t,—c+1)
o T'CCh ti-c+1)

oL v e DLy 0(n-1)) do) (23)
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By multiplying the integral in equation (23) by the quantity which equals to

_ X ti-c+1)
(n-1) it yields

(n _1)(2{11 t,-c+1)

A (n)(2|l11 ti_C"':I-)

0= In( B2(t,0) ), where

(n _1)(Zirll ti—c+1)

0 Nt -c+1)
B2(1,0)= [ 1)
0 F(Zirll t; —Cc+1)

pdf of gamma distribution [11], i.e.

A (Zin=l t,-c+1)
0= In(—")

ok ti—c+)-1 exp(—0 (n-1)) do =1, be the integral of the

)= 0=l ()0 e (o)
(n _1)(2{11 ti_c"”]-) n-l

3. Simulation Study
we perform a simulation study to compare the accuracy of the different estimates of the
parameter 0 of the Poisson distribution. The experiments have been repeated (r = 3000)with
different sample sizes (n = 25, 50, and100). Assuming different values for the true value of
the parameter 6 and the hyper parameters (d,v, ¢) as combinations to compare the accuracy
of the different estimates for 6 as follows:
e A data is generated from the Poisson distribution, for several values assumed to the
true value of the parameter 6 will be 6 =1,3,9.
e The value for a parameter of the erlang prior can be chosen arbitrarily as ¢ =2,3,5.
e The value for a parameter of the inverse levy prior is chosen arbitrarily as v=135.
e The value for a parameter of the non- informative prior is chosen arbitrarily as
c=235.
To compare between the estimates, we depend on the root mean square error criterion, i.e.
the estimates with the smallest RMSE's will be the best estimates.

S 1 SQ0 2) 0) 25
RMSE =, |—— r)-
3000, =, (0 (00 (25)
We obtain the results by using MATLAB-R2018a program. The results were summarized and
tabulated in the following tables for each estimator and for all sample sizes.

A

Table 1.Estimated values (6) and RMSE’s for the estimators of the Poisson distribution under
the SELF, based on different priors.

true sample | method MLE Bayes under
value | size Criteria erlang( ) prior inverse levy(v) prior
(6) [ 8=2 | 6=3 | 8=5 | v=1 | v=3 | v=5
0=1 1|25 Est. values | 1.0004 | 1.0004 | 0.96467 | 0.90036 | 1.0004 | 0.96267 | 0.92766
RMSE 0.1973 | 0.18268 | 0.17967 | 0.19225 | 0.19343 | 0.18984 | 0.1934
50 Est. values | 0.99681 | 0.99694 | 0.97813 | 0.94256 | 0.99684 | 0.97749 | 0.95887
RMSE 0.1428 | 0.1373 | 0.13645 | 0.14193 | 0.14138 | 0.14042 | 0.14205
100 Est. values | 0.9994 | 0.9994 | 0.98971 | 0.97086 | 0.9994 | 0.98956 | 0.9799
RMSE 0.0983 | 0.0964 | 0.09601 | 0.09807 | 0.0978 | 0.09743 | 0.09801
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0=3 |25 Est. values | 2.9999 | 2.8518 | 2.7499 | 2.5666 | 2.9607 | 2.849 2.7454
RMSE 0.33873 | 0.3469 | 0.39243 | 0.51721 | 0.33441 | 0.35344 | 0.39956
50 Est. values | 3.003 2.926 2.8708 | 2.7664 | 2.9832 | 2.9253 | 2.8695
RMSE 0.24378 | 0.24579 | 0.26378 | 0.322 0.24193 | 0.24818 | 0.26629
100 Est. values | 3.0008 | 2.9615 | 2.9328 | 2.8769 | 2.9908 | 2.9613 | 2.9325
RMSE 0.17482 | 0.17566 | 0.18256 | 0.20705 | 0.1742 | 0.17652 | 0.18345
0=9 | 25 Est. values | 9.0033 | 8.4104 | 8.1101 | 7.5694 | 8.8464 | 8.5125 | 8.203
RMSE 0.58613 | 0.80132 | 1.0324 | 1.5117 | 0.59482 | 0.73714 | 0.95873
50 Est. values | 9.0036 | 8.6957 | 8.5317 | 8.2214 | 8.9243 | 8.751 8.5843
RMSE 0.4215 | 0.50678 | 0.61437 | 0.86776 | 0.42412 | 0.479 0.57785
100 Est. values | 8.9985 | 8.8417 | 8.7559 | 85891 | 8.9587 | 8.8705 | 8.7839
RMSE 0.30358 | 0.3371 | 0.38272 | 0.50244 | 0.30487 | 0.32593 | 0.36661
Note: The shadow cells represent the smallest value of RMSE.
Continue Table 1
true value | sample method MLE Bayes under
(0) size Criteria noninformative(c) prior
(") c=2 c=3 c=5
0=1 25 Est. values 1.0004 0.96043 0.92043 0.84043
RMSE 0.1973 0.20123 0.21274 0.25375
50 Est. values 0.99681 0.97681 0.95681 0.91681
RMSE 0.1428 0.14463 0.14915 0.16523
100 Est. values 0.9994 0.9894 0.9794 0.9594
RMSE 0.0983 0.09889 0.10046 0.10638
0=3 25 Est. values 2.9999 2.9599 2.9199 2.8399
RMSE 0.33873 0.3411 0.34807 0.37465
50 Est. values 3.003 2.983 2.963 2.923
RMSE 0.24378 0.24435 0.24655 0.25562
100 Est. values 3.0008 2.9908 2.9808 2.9608
RMSE 0.17482 0.17507 0.17588 0.17917
0=9 25 Est. values 9.0033 8.9633 8.9233 8.8433
RMSE 0.58613 0.58727 0.59112 0.60672
50 Est. values 9.0036 8.9836 8.9636 8.9236
RMSE 0.4215 0.42181 0.42306 0.42836
100 Est. values 8.9985 8.9885 8.9785 8.9585
RMSE 0.30358 0.30379 0.30433 0.30639
Note: The shadow cells represent the smallest value of RMSE.

A

the proposed exponential loss function, based on different prior.

Table 2. Estimated values (6) and RMSE’s for the estimators of the Poisson distribution under

true | sample method MLE Bayes under
value | size Criteria erlang( o) prior inverse levy(v) prior

(6) | (M §=2 §=3 | 8=5 | v=1 | v=3 | v=5
0=1 |25 Est. values | 1.0004 | 1.0194 | 0.98231 | 0.9157 | 1.0206 | 0.9813 | 0.94495
RMSE 0.1973 | 0.18716 | 0.18025 | 0.18726 | 0.19839 | 0.19065 | 0.19082
50 Est. values | 0.99681 | 1.0066 | 0.98747 | 0.95123 | 1.0068 | 0.9871 | 0.96812
RMSE 0.1428 | 0.13877 | 0.13654 | 0.13976 | 0.14293 | 0.14056 | 0.14093
100 Est. values | 0.9994 | 1.0043 | 0.99454 | 0.97551 | 1.0044 | 0.99446 | 0.98471
RMSE 0.0983 | 0.09697 | 0.09608 | 0.09722 | 0.09842 | 0.09751 | 0.09760

0=3 |25 Est. values | 2.9999 | 2.9059 | 2.8002 | 2.6104 | 3.0203 | 2.9041 | 2.7966
RMSE 0.33873 | 0.33315 | 0.36708 | 0.48398 | 0.33939 | 0.33956 | 0.37388

50 Est. values | 3.003 2.9545 | 2.8982 | 2.7918 | 3.0131 | 2.954 2.8972
RMSE 0.24378 | 0.241 0.25349 | 0.30552 | 0.24412 | 0.24336 | 0.25593
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100 Est. values | 3.0008 | 2.9761 | 2.9471 | 2.8907 | 3.0058 | 2.976 2.9469
RMSE 0.17482 | 0.17388 | 0.17857 | 0.19983 | 0.17492 | 0.17474 | 0.17945
0=9 | 25 Est. values | 9.0033 | 8.5701 | 8.2584 | 7.6984 | 9.0245 | 8.6773 | 8.3558
RMSE 0.58613 | 0.70043 | 0.91318 | 1.3931 | 0.58671 | 0.64949 | 0.84234
50 Est. values | 9.0036 | 8.7804 | 8.6132 | 8.2971 |9.0139 | 8.8371 | 8.6672
RMSE 0.4215 | 0.46441 | 0.55747 | 0.80227 | 0.42173 | 0.44418 | 0.52445
100 Est. values | 8.9985 | 8.8853 | 8.7986 | 8.6302 | 9.0036 | 8.9145 | 8.8271
RMSE 0.30358 | 0.32032 | 0.35814 | 0.47023 | 0.3036 | 0.3125 | 0.34422
Note: The shadow cells represent the smallest value of RMSE.
Continue Table 2
true value | sample method MLE Bayes under
(0) size Criteria noninformative(c) prio
() c=2 c=3 c=5
0=1 25 Est. values 1.0004 0.98016 0.93934 0.8577
RMSE 0.1973 0.20233 0.21029 0.24656
50 Est. values 0.99681 0.98671 0.96651 0.92611
RMSE 0.1428 0.14482 0.14805 0.16204
100 Est. values 0.9994 0.99438 0.98433 0.96423
RMSE 0.0983 0.09898 0.10006 0.1051
0=3 25 Est. values 2.9999 3.0208 2.9799 2.8983
RMSE 0.33873 0.34632 0.34628 0.36035
50 Est. values 3.003 3.0133 2.9931 2.9526
RMSE 0.24378 0.24658 0.24632 0.25074
100 Est. values 3.0008 3.0058 2.9958 2.9757
RMSE 0.17482 0.1758 0.17575 0.17738
0=9 25 Est. values 9.0033 9.1475 9.1067 9.025
RMSE 0.58613 0.61608 0.6076 0.59869
50 Est. values 9.0036 9.0746 9.0544 9.014
RMSE 0.4215 0.43225 0.42922 0.42599
100 Est. values 8.9985 9.0338 9.0237 9.0036
RMSE 0.30358 0.30696 0.30602 0.30512
Note: The shadow cells represent the smallest value of RMSE.
4. Discussion

For the results listed in table.1and table.2, we see that the best Bayes estimates under the
squared error loss function (SELF) according to the smallest value of RMSE as compared with
other estimates based on the other values of the parameters for the same priors as listed below

e Erlangen prior with 8 =3, inverse levy prior with v =3 and non- informative prior with
c =2, for all sample sizes (n) when the true value is 6 =1.
e Erlang prior with =2 , inverse levy prior with v =1and non- informative prior with
c=2,forall nwhen 6=34.
It is observed that the performance of Bayes estimators under SELF are the best according to
the smallest value of RMSE as compared with other estimators in MLE for
e Erlang prior withé =3and inverse levy prior with v =3, for all sample sizes (n) when
0=1.
o Inverse levy prior with v =1, for all n wheno =3.
We see that the best Bayes estimates under the proposed exponential loss function according
to the smallest value of RMSE as compared with other estimates based on the other values of
the parameters for the same priors as listed below
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Erlang prior with 8 =3, inverse levy prior with v =3and non- informative prior with

c=2,forall nwheno =1.

Erlang prior with 6 =2, for all n when6 =3,9.

Inverse levy prior with v =1, for n=25 when 6 =3.and for all n when 6 =9.

¢ Non- informative prior with ¢ =3,5, for all n when 6 = 3,5 respectively.
It is observed that the performance of Bayes estimators under proposed exponential are the
best according to the smallest value of RMSE as compared with other estimators in MLE for
e Erlang prior with 8 =3, inverse levy prior with v=3for all n when 6 =1.
e Erlang prior with 6 =2, for all n wheno =3.
e inverse levy prior with v =1 for n=25 and withv =3 for n=50, 100 when 6 =3.

5. Conclusion
In this paper we have presented the Bayesian and maximum likelihood estimates of the

parameter of the Poisson distribution. The estimation is conducted on RMSE. Bayes

estimators, under squared error loss function and the proposed exponential loss function. The

MLE’s are also obtained. Our conclusions about the results are stated in the following points:

The Bayes estimates under the proposed exponential loss function usually have the most minor

estimated RMSE’s as compared to the RMSE’s estimates under the squared error loss function

based on the same prior, with the same values to their parameters for all sample sizes. From
table 1 and table 2, we can see that

1. Erlang prior with & =2,3when6 =3,9 and with 6=5 when 6 =1,3,9 for all sample

sizes.

2. Inverse levy prior with v=1 when 6 =9 and with v=3 when 6 = 3,9 and with v=5 when

6=1,3,9.

3. non-informative prior with ¢ =3 when 6 =1,3and with c=5when 6=1,3,9 .
The Bayes estimates under the proposed exponential loss function have the smallest estimated
RMSE’s as compared with the RMSE’s of estimates of the maximum likelihood
estimates(MLE), for the same value for 6 and sample sizes. From table 1 and table 2 , we can
see that

1. Erlang prior with (6 =2) when 6 =3 and with §=3,5 when 6=1 .

2. Inverse levy prior with v=3,5 when the true value 6=1.
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