Some Properties for the Restriction of \mathcal{P}^*–field of Sets

Hind F. Abbas
Department of Mathematics / College of Computer Science and Mathematics / Tikrit University/ Iraq.
hind.f.abbas35386@st.tu.edu.iq

Hassan H. Ebrahim
Department of Mathematics /
College of Computer Science and Mathematics / Tikrit University/
Iraq
hassan1962pl@tu.edu.iq

Ali Al-Fayadh
Department of Mathematics and Computer Applications / College of Science/Al – Nahrain University/
Iraq
aalfayadh@yahoo.com

Article history: Received 20 February 2022, Accepted 17 May, 2022, Published in July 2022.

Doi: 10.30526/35.3.2814

Abstract

The restriction concept is a basic feature in the field of measure theory and has many important properties. This article introduces the notion of restriction of a non-empty class of subset of the power set on a nonempty subset of a universal set. Characterization and examples of the proposed concept are given, and several properties of restriction are investigated. Furthermore, the relation between the \mathcal{P}^*–field and the restriction of the \mathcal{P}^*–field is studied, explaining that the restriction of the \mathcal{P}^*–field is a \mathcal{P}^*–field too. In addition, it has been shown that the restriction of the \mathcal{P}^*–field is not necessarily contained in the \mathcal{P}^*–field, and the converse is true. We provide a necessary condition for the \mathcal{P}^*–field to obtain that the restriction of the \mathcal{P}^*–field is included in the \mathcal{P}^*–field. Finally, this article aims to study the restriction notion and give some propositions, lemmas, and theorems related to the proposed concept.

Keywords: σ–field, σ– ring, field, smallest σ–field and restriction.

1. Introduction

In the real analysis and probability, the σ–field concept is the class \mathcal{M} for a subset of a universal set \mathcal{U} such that $\mathcal{U} \subseteq \mathcal{M}$ and it is closed under the complement, countable union [1] and [2]. The main reason for σ–field is the idea of measure, which is substantial in the real analysis as the basis of Lebesgue integrals, where it exponent as a family of events which may
be assigned probability [3] and [4]. In the probability theory, a \(\sigma \)-field is essential in the conditional expected. Also, in statistics, sub \(\sigma \)-field is necessary for an official mathematical definition for sufficient statistic, where a statistic be a map or a random variable. A \(\sigma \)-ring idea was studied by [5] as a class \(\mathcal{M} \) such that \(B_1 \setminus B_2 \in \mathcal{M} \) and \(\bigcup_{n=1}^{\infty} B_n \in \mathcal{M} \) whenever \(B_1, B_2, ... \in \mathcal{M} \). Many authors were interested in studying \(\sigma \)-field and \(\sigma \)-ring; for example, see [6], [7], and [8]. In this work, we denote a universal set by \(\mathcal{U} \).

Preliminaries

In the following, we mention some basic definitions and notations in measure space that will be used in this paper.

Definition 2.1 [9].

Suppose \(\mathcal{M} \) is a class of subsets of \(\mathcal{U} \). Then, \(\mathcal{M} \) is the \(\mathcal{P}^* \)-field of \(\mathcal{U} \) if:

1. \(\Phi \in \mathcal{M} \).
2. \(N, M \in \mathcal{M} \); then, \(N \cap M \in \mathcal{M} \).
3. \(M_2, ... \in \mathcal{M} \); then, \(\bigcup_{i=1}^{\infty} M_i \in \mathcal{M} \).

Example 2.2 [9].

Let \(\mathcal{U} = \{1,2,3,4\} \). Consider \(\mathcal{M} = \{ \Phi, \{1\}, \{1,2\}, \{1,3\}, \{1,2,3\} \} \).

Then \(\mathcal{M} \) is a \(\mathcal{P}^* \)-field of \(\mathcal{U} \).

Definition 2.3 [5].

The family of all subsets of \(\mathcal{U} \) is called a power set and denoted by \(\mathcal{P}(\mathcal{U}) \), in symbols:

\[\mathcal{P}(\mathcal{U}) = \{ B : B \text{ is a subset of } \mathcal{U} \} \]

Proposition 2.4 [9].

If \(\{\mathcal{M}_i\}_{i \in I} \) is a family of \(\mathcal{P}^* \)-field of \(\mathcal{U} \), then so is \(\bigcap_{i \in I} \mathcal{M}_i \).

Definition 2.5 [9].

If \(\mathcal{M} \) is \(\sigma \)-field, then \(\mathcal{M} \) is a \(\sigma \)-ring.

Proposition 2.6 [9].

If \(\mathcal{I} \subseteq \mathcal{P}(\mathcal{U}) \), then \(\mathcal{P}^*(\mathcal{I}) = \bigcap \{ \mathcal{M}_i : \mathcal{M}_i \text{ is a } \mathcal{P}^* \text{-field of } \mathcal{U} \text{ and } \mathcal{M}_i \supseteq \mathcal{I} \text{, } \forall i \in I \} \) is called the \(\mathcal{P}^* \)-field generated by \(\mathcal{I} \).

Proposition 2.7 [9].

If \(\mathcal{M} \) is \(\sigma \)-field, then \(\mathcal{M} \) is a \(\sigma \)-ring.

Proposition 2.8 [9].

Every \(\sigma \)-field is \(\mathcal{P}^* \)-field.
Proposition 2.9 [9].

Every \(\sigma \)-ring is \(\mathcal{P}^* \)-field.

2. The Main Results

In this section, the basic definitions and facts related to this work are recalled, starting with the following definition:

Definition 3.1

Suppose \(\mathcal{M} \) is a \(\mathcal{P}^* \)-field of \(\mathcal{U} \) and \(\Phi \neq \mathcal{B} \subseteq \mathcal{U} \), then a restriction of \(\mathcal{M} \) over \(\mathcal{B} \) is defined as:

\[
\mathcal{M}|_{\mathcal{B}} = \{ N : N = M \cap \mathcal{B}, \text{for some } M \in \mathcal{M}\}.
\]

Proposition 3.2

Suppose \(\mathcal{M} \) is \(\mathcal{P}^* \)-field of \(\mathcal{U} \) and \(\Phi \neq \mathcal{B} \subseteq \mathcal{U} \), then \(\mathcal{M}|_{\mathcal{B}} \) is \(\mathcal{P}^* \)-field on \(\mathcal{B} \).

Proof.

Since \(\Phi \in \mathcal{M} \) and \(\Phi = \Phi \cap \mathcal{B} \), then \(\Phi \in \mathcal{M}|_{\mathcal{B}} \).

Let \(N_1, N_2 \in \mathcal{M}|_{\mathcal{B}} \), then there is \(M_1, M_2 \in \mathcal{M} \) such that \(N_i = M_i \cap \mathcal{B} \) where \(i = 1, 2 \) which implies that

\[
N_1 \cap N_2 = (M_1 \cap \mathcal{B}) \cap (M_2 \cap \mathcal{B}) = (M_1 \cap M_2) \cap \mathcal{B}.
\]

Since \(\mathcal{M} \) is a \(\mathcal{P}^* \)-field of \(\mathcal{U} \), then \(M_1 \cap M_2 \in \mathcal{M} \). Thus \(N_1 \cap N_2 \in \mathcal{M}|_{\mathcal{B}} \).

Let \(N_1, N_2, \ldots \in \mathcal{M}|_{\mathcal{B}} \), then there is \(M_1, M_2, \ldots \in \mathcal{M} \) such that \(N_i = M_i \cap \mathcal{B} \) where \(i = 1, 2 \ldots \) which implies that \(\bigcup_{i=1}^{\infty} N_i = \bigcup_{i=1}^{\infty} (M_i \cap \mathcal{B}) = (\bigcup_{i=1}^{\infty} M_i) \cap \mathcal{B} \).

Since \(\mathcal{M} \) is a \(\mathcal{P}^* \)-field of a set \(\mathcal{U} \), then \(\bigcup_{i=1}^{\infty} M_i \in \mathcal{M} \) and hence \(\bigcup_{i=1}^{\infty} N_i \in \mathcal{M}|_{\mathcal{B}} \).

Thus, \(\mathcal{M}|_{\mathcal{B}} \) is a \(\mathcal{P}^* \)-field on \(\mathcal{B} \).

Proposition 3.3

If \(\mathcal{M} \) is \(\mathcal{P}^* \)-field of \(\mathcal{U} \) and \(C \subseteq \mathcal{B} \subseteq \mathcal{U} \) such that \(C \in \mathcal{M} \), then \(C \in \mathcal{M}|_{\mathcal{B}} \).

Proof.

Clearly.

The following examples explain that if \(\mathcal{M} \) is a \(\mathcal{P}^* \)-field of a set \(\mathcal{U} \), then it is not necessarily that:

1. \(\mathcal{M}|_{\mathcal{B}} \subseteq \mathcal{M} \).
2. \(\mathcal{M} \subseteq \mathcal{M}|_{\mathcal{B}} \).

Example 3.4

Let \(\mathcal{U} = \{1,2,3,4\} \) and \(\mathcal{M} = \{ \Phi, \{1,3\}, \{1,2,3\}, \{1,3,4\}, \mathcal{U} \} \). Then, \(\mathcal{M} \) is a \(\mathcal{P}^* \)-field of \(\mathcal{U} \). If \(\mathcal{B} = \{2,3,4\} \), then \(\mathcal{M}|_{\mathcal{B}} = \{ \Phi, \{3\}, \{2,3\}, \{3,4\}, \mathcal{B} \} \). It is clear that \(\mathcal{M}|_{\mathcal{B}} \not\subseteq \mathcal{M} \), since \(\{3\} \in \mathcal{M}|_{\mathcal{B}} \) but \(\{3\} \notin \mathcal{M} \).

Example 3.5

Let \(\mathcal{U} = \{1,2,3,4\} \) and \(\mathcal{M} = \{ \Phi, \{1,2\}, \{1,2,3\}, \{1,2,4\}, \mathcal{U} \} \). Then, \(\mathcal{M} \) is a \(\mathcal{P}^* \)-field of \(\mathcal{U} \). If \(\mathcal{B} = \{2,3,4\} \), then \(\mathcal{M}|_{\mathcal{B}} = \{ \Phi, \{2\}, \{2,3\}, \{2,4\}, \mathcal{B} \} \). It is clear that \(\mathcal{M} \not\subseteq \mathcal{M}|_{\mathcal{B}} \), since \(\{1,2\} \in \mathcal{M} \) but \(\{1,2\} \notin \mathcal{M}|_{\mathcal{B}} \).
Proposition 3.6
If \mathcal{M} is \mathcal{P}^*-field on \mathcal{U} and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$ such that $\mathcal{B} \in \mathcal{M}$. Then $\mathcal{M}|_{\mathcal{B}} = \{ C \subseteq \mathcal{B} : C \in \mathcal{M} \}$.

Proof.
Assume that $N \in \mathcal{M}|_{\mathcal{B}}$, then $N = M \cap \mathcal{B}$, for some $M \in \mathcal{M}$ and thus $N \in \mathcal{M}$. Hence, $N \in \{ C \subseteq \mathcal{B} : C \in \mathcal{M} \}$. Therefore, $\mathcal{M}|_{\mathcal{B}} \subseteq \{ C \subseteq \mathcal{B} : C \in \mathcal{M} \}$. Let $D \in \{ C \subseteq \mathcal{B} : C \in \mathcal{M} \}$. Then $D \subseteq \mathcal{B}$ and $D \in \mathcal{M}$, hence $D = D \cap \mathcal{B}$, but $D \in \mathcal{M}$, then $D \in \mathcal{M}|_{\mathcal{B}}$. So, we get $\{ C \subseteq \mathcal{B} : C \in \mathcal{M} \} \subseteq \mathcal{M}|_{\mathcal{B}}$. Consequently, $\mathcal{M}|_{\mathcal{B}} = \{ C \subseteq \mathcal{B} : C \in \mathcal{M} \}$.

Corollary 3.7
If \mathcal{M} is \mathcal{P}^*-field on \mathcal{U} and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$ such that $\mathcal{B} \in \mathcal{M}$.
Then, $\mathcal{M}|_{\mathcal{B}} \subseteq \mathcal{M}$.

Proof.
The proof follows Proposition 3.6.

Definition 3.8
If \mathcal{U} is a universal set and $\mathcal{I} \subseteq P(\mathcal{U})$ and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$, then a restriction of \mathcal{I} on \mathcal{B} is defined as:
$\mathcal{I}|_{\mathcal{B}} = \{ N : N = M \cap \mathcal{B}, \text{ for some } M \in \mathcal{I} \}$.

Proposition 3.9
If $\mathcal{I} \subseteq P(\mathcal{U})$ and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$. Assume \mathcal{M} is a \mathcal{P}^*-field of \mathcal{U} that contains \mathcal{I} and $\mathcal{B} \in \mathcal{M}$, then $\mathcal{P}^*(\mathcal{I})|_{\mathcal{B}}$ is a \mathcal{P}^*-field of \mathcal{B}.

Proof.
The proof is done by proposition 2.6 and 3.2.

Theorem 3.10
Assume $\mathcal{I} \subseteq P(\mathcal{U})$ and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$, then $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$ is the smallest \mathcal{P}^*-field on \mathcal{B} that contain $\mathcal{I}|_{\mathcal{B}}$, where
$\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}}) = \cap \{ \mathcal{M}_i|_{\mathcal{B}} : \mathcal{M}_i|_{\mathcal{B}} \text{ is a } \mathcal{P}^* \text{-field of } \mathcal{B} \text{ and } \mathcal{M}_i|_{\mathcal{B}} \supseteq \mathcal{I}|_{\mathcal{B}}, \forall i \in I \}$.

Proof.
In the same way as in proposition 2.4, we can prove that $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$ is a \mathcal{P}^*-field on \mathcal{B}. To prove that $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}}) \supseteq \mathcal{I}|_{\mathcal{B}}$, assume that $\mathcal{M}_i|_{\mathcal{B}}$ is a \mathcal{P}^*-field on \mathcal{B} and $\mathcal{M}_i|_{\mathcal{B}} \supseteq \mathcal{I}|_{\mathcal{B}}$, $\forall i \in I$, then $\mathcal{I}|_{\mathcal{B}} \subseteq \cap_{i \in I} \mathcal{M}_i|_{\mathcal{B}}$; hence $\mathcal{I}|_{\mathcal{B}} \subseteq \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$. Now, let $\mathcal{M}^*|_{\mathcal{B}}$ be a \mathcal{P}^*-field on \mathcal{B} such that $\mathcal{M}^*|_{\mathcal{B}} \supseteq \mathcal{I}|_{\mathcal{B}}$. Then, $\mathcal{M}^*|_{\mathcal{B}} \supseteq \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$.
Therefore, $\mathcal{P}(\mathcal{I}|_{\mathcal{B}})$ is the smallest \mathcal{P}^*-field on \mathcal{B} containing $\mathcal{I}|_{\mathcal{B}}$.

Theorem 3.11
If $\mathcal{I} \subseteq P(\mathcal{U})$ and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$, define a class \mathcal{M} by:
$\mathcal{M} = \{ M \subseteq \mathcal{U} : M \cap \mathcal{B} \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}}) \}$. Then \mathcal{M} is a \mathcal{P}^*-field on a set \mathcal{U}.
Proof.

By Theorem 3.10, we have \(P^* (J|_B) \) as a \(P^- \)-field on \(B \), so \(\Phi \in P^* (J|_B) \).
Since \(\Phi = \Phi \cap B \), then we get \(\Phi \in \mathcal{M} \).
Assume that \(M_1, M_2 \in \mathcal{M} \). Then \((M_1 \cap B, M_2 \cap B) \) for each \(i = 1, 2 \).
Now, \((M_1 \cap M_2) \cap B = (M_1 \cap B) \cap (M_2 \cap B) \). Since \(P^* (J|_B) \) \(\subseteq \) a \(P^- \)-field on \(B \), \(P^* (J|_B) \) \(\subseteq \) \(P^* (J|_B) \).
Let \(M_1, M_2, \ldots \in \mathcal{M} \). Then \((M_i \cap B) \in P^* (J|_B) \), for \(i = 1, 2, \ldots \).
Since \(P^* (J|_B) \) \(\subseteq \) a \(P^- \)-field on \(B \), \(\cup_{i=1}^{\infty} (M_i \cap B) \in P^* (J|_B) \).
Now, \(\cup_{i=1}^{\infty} (M_i \cap B) = \cup_{i=1}^{\infty} (M_i \cap B) \in P^* (J|_B) \), thus \(\cup_{i=1}^{\infty} M_i \in \mathcal{M} \).
Therefore, \(\mathcal{M} \) \(\subseteq \) \(P^- \)-field on a universal set \(U \).

Theorem 3.12

If \(U \) is a universal set and \(J \subseteq P(U) \) such that \(\Phi \neq B \subseteq U \), then \(P^*(J|_B) = P^*(J|_B) \).

Proof.

By proposition 2.6, we have \(P^*(J) \) \(\subseteq \) \(P^- \)-field on \(U \). So, we get \(P^* (J|_B) \) \(\subseteq \) a \(P^- \)-field on \(B \) by proposition 3.2. Assume that \(N \in \mathcal{I} |_B \). Then \(N = M \cap B \) for some \(M \in J \).
But \(J \subseteq P^*(J) \), so we have \(\Phi \in P^*(J) \) and thus \(N \in P^*(J|_B) \).
Hence \(J|_B \subseteq P^*(J)|_B \). Therefore, \(P^*(J)|_B \) \(\subseteq \) \(P^*(J|_B) \), which implies that \(P^*(J|_B) \subseteq P^*(J)|_B \).
Now, if we define a class \(\mathcal{M} \) by \(\mathcal{M} = \{ C \subseteq U : C \cap B \in P^*(J|_B) \} \), then in Theorem 3.11, we have \(\mathcal{M} \) as a \(P^- \)-field on \(U \). Let \(C \in J \), then \((C \cap B) \in P^*(J|_B) \), but \(J|_B \subseteq P^*(J|_B) \) implies that \((C \cap B) \in P^*(J|_B) \), hence \(C \subseteq \mathcal{M} \) and \(J \subseteq \mathcal{M} \).
Now, if we assume that \(N \in P^*(J|_B) \), then \(N = M \cap B \), for some \(M \in P(J) \). But \(P^*(J) \subseteq \mathcal{M} \), then \(M \subseteq \mathcal{M} \), hence \(N \in P^*(J|_B) \). Consequently, \(P^*(J)|_B \subseteq P^*(J|_B) \).
This completes the proof.

3. Conclusions

We tried to define the concept of measure relative to the \(P^- \)-field \(\mathcal{M} \) of \(U \) and also define the idea of the restriction of measure on \(\mathcal{M}|_B \) of a set \(B \). Also, we discuss many properties of these notions. In this article, the idea of \(P^- \)-field is given to refer to the generalization of each \(\sigma^- \)-field and \(\sigma^- \)-ring. Furthermore, some properties of the purposed notion are proven as explained below:

1. Let \(\mathcal{M} \) be a \(P^- \)-field of a set \(U \) and let \(B \) be a nonempty subset of \(U \). Then, \(\mathcal{M}|_B \) is a \(P^- \)-field of a set \(B \).
2. Assume that \(\mathcal{M} \) is a \(P^- \)-field on \(U \) and \(A \subseteq B \subseteq U \). If \(A \in \mathcal{M} \), then \(A \in \mathcal{M}|_B \).
3. If \(\mathcal{M} \) is a \(P^- \)-field and \(B \) be a nonempty subset of \(U \) such that \(B \in \mathcal{M} \). Then \(\mathcal{M}|_B = \{ A \subseteq B : A \in \mathcal{M} \} \).
4. Suppose that \(\mathcal{M} \) is a \(P^- \)-field and \(B \subseteq U \) such that \(B \in \mathcal{M} \). Then \(\mathcal{M}|_B \subseteq \mathcal{M} \).
5. If \(J \subseteq P(U) \) and \(\Phi \neq B \subseteq U \) and \(P^*(J)|_B \) is a \(P^- \)-field on \(B \). Then, \(P^*(J|_B) = P^*(J)|_B \).
References