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Abstract 

      The restriction concept is a basic feature in the field of measure theory and has many 

important properties. This article introduces the notion of restriction of a non-empty class of 

subset of the power set on a nonempty subset of a universal set. Characterization and examples 

of the proposed concept are given, and several properties of restriction are investigated. 

Furthermore, the relation between the P*–field and the restriction of the P*–field is studied, 

explaining that the restriction of the P*–field is a P*–field too. In addition, it has been shown 

that the restriction of the P*–field is not necessarily contained in the P*–field, and the converse 

is true. We provide a necessary condition for the P*–field to obtain that the restriction of the 

P*–field is included in the P*–field. Finally, this article aims to study the restriction notion and 

give some propositions, lemmas, and theorems related to the proposed concept   . 

Keywords: σ −field, σ– ring, field, smallest σ −field and restriction.   

1. Introduction  

      In the real analysis and probability, the σ–field concept is the class ℳ for a subset of a 

universal set 𝒰 such that 𝒰ϵℳ and it is closed under the complement, countable union [1] and 

[2]. The main reason for σ–field is the idea of measure, which is substantial in the real 

analysis as the basis of Lebesgue integrals, where it exponent as a family of events which may 
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be assigned probability [3] and [4]. In the probability theory, a σ–field is essential in 

the conditional expected. Also, in statistics, sub σ–field is necessary for an official 

mathematical definition for sufficient statistic, where a statistic be a map or a random variable. 

A σ– ring idea was studied by [5] as a class ℳ such that B1\B2ϵℳ  and 

⋃ Bn
∞
𝑛=1 ϵℳ  wheneverB1, B2, …  ϵℳ  . Many authors were interested in studying σ–field and 

σ– ring; for example, see [6], [7], and [8]. In this work, we denote a universal set by 𝒰. 

Preliminaries 

In the following, we mention some basic definitions and notations in measure space that 

will be used in this paper.  

Definition 2.1 [9].  

      Suppose ℳ is a class of subsets of 𝒰 . Then, ℳ is  𝑡ℎ𝑒 𝒫∗– field of 𝒰 if: 

1- Φ ϵ ℳ. 

2- N, Mϵℳ; then, N⋂M ϵ ℳ. 

3- M2, …  ϵ ℳ; then, ⋃ Mi
∞
i=1  ϵ ℳ. 

Example 2.2 [9].  

    Let 𝒰 ={1,2,3,4}. Consider ℳ ={ Φ,{1},{1,2},{1,3},{1,2,3}}.  

Then ℳ is a 𝒫∗– field of 𝒰. 

Definition 2.3 [5]. 

     The family of all subsets of 𝒰 is called a power set and denoted by P(𝒰),  

In symbols: 

P(𝒰) = { B ∶ B is a subset  of 𝒰}.  

Proposition 2.4 [9] .  

     If {ℳi}iϵΙ
  is a family of 𝒫∗– field of 𝒰, then so is ⋂ ℳi

 
iϵΙ  . 

Definition 2.5 [9]. 

     Let ℐ ⊆ P(𝒰). Then, 𝒫∗(ℐ) = ⋂{ℳi: ℳi  is  a  𝒫∗– field of 𝒰 and ℳi ⊇ ℐ , ∀i ∈ Ι} is called 

the 𝒫∗– field generated by ℐ. 

Proposition 2.6 [9].  

     If ℐ ⊆ P(𝒰), then 𝒫∗(ℐ) is the smallest 𝒫∗– field of 𝒰 that contains ℐ. 

Proposition 2.7 [5]. 

     If ℳ is σ– field, then  ℳ is a σ– ring. 

Proposition 2.8 [9].   

   Every σ– field is 𝒫∗– field. 
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Proposition 2.9 [9].   

   Every σ– ring is 𝒫∗– field. 

2. The Main Results 

     In this section, the basic definitions and facts related to this work are recalled, starting with 

the following definition: 

Definition 3.1 

     Suppose ℳ  is a 𝒫∗– field  of 𝒰 and Φ ≠ ℬ ⊆ 𝒰, then a restriction of ℳ over ℬ is defined 

as: 

ℳ|ℬ = { N: N =M⋂ ℬ, for some M ϵ ℳ}.  

Proposition 3.2 

     Suppose ℳ is 𝒫∗– field of 𝒰 and Φ ≠ ℬ ⊆ 𝒰, then ℳ|ℬ  is 𝒫∗– field on ℬ.  

Proof. 

     Since Φϵ ℳ and Φ = Φ⋂ℬ, then Φϵ ℳ|ℬ.  

Let N1, N2ϵ ℳ|ℬ, then there is M1, M2ϵ ℳ such that Ni=Mi⋂ℬ where i=1,2 which implies that 

N1⋂N2= ( M1⋂ℬ) ⋂(M2⋂ℬ ) =  (M1⋂M2)⋂ℬ. 

Since ℳ is a 𝒫∗– field of 𝒰, then,  M1⋂M2ϵ ℳ. Thus N1⋂N2ϵ ℳ|ℬ 

Let N1, N2, … ϵ ℳ|ℬ, then there is M1, M2, … ϵ ℳ such that Ni=Mi⋂ℬ where i=1, 2… which 

implies that ⋃ , Ni
∞
i=1 = ⋃ (Mi

∞
i=1  ⋂ ℬ)= (⋃ Mi

∞
i=1 ) ⋂ ℬ.. 

Since ℳ is a 𝒫∗– field of a set 𝒰, then ⋃ Mi
∞
i=1 ϵ ℳ and hence ⋃ Ni

∞
i=1  ϵ ℳ|ℬ. 

Thus, ℳ|ℬis a 𝒫∗– field on ℬ.  

Proposition 3.3 

     If ℳ is  𝒫∗– field of 𝒰 and C ⊆ ℬ ⊆ 𝒰 such that Cϵℳ, then Cϵℳ|ℬ.  

Proof. 

     Clearly. 

 

The following examples explain that if ℳ is a  𝒫∗– field of a set 𝒰 , then it is not necessarily 

that : 

1- ℳ|ℬ ⊆ ℳ. 

2- ℳ ⊆ ℳ|ℬ 

Example 3.4 

     Let 𝒰 ={1,2,3,4}and ℳ ={ Φ,{1,3},{1,2,3},{1,3,4},𝒰 }. Then, ℳ is a 𝒫∗– field of 𝒰. If 

ℬ ={2,3,4}, then ℳ|ℬ ={ Φ,{3},{2,3},{3,4}, ℬ}. It is clear that ℳ|ℬ ⊈ ℳ, since {3}∈ ℳ|ℬ 

but {3}∉ ℳ.  

Example 3.5 

     Let 𝒰 ={1,2,3,4}and ℳ ={ Φ,{1,2},{1,2,3},{1,2,4},𝒰 }. Then, ℳ is a 𝒫∗– field of 𝒰. If 

ℬ ={2,3,4}, then ℳ|ℬ ={ Φ,{2},{2,3},{2,4}, ℬ}. It is clear that ℳ ⊈ ℳ|ℬ, since {1, 2}∈ ℳ 

but {1,2}∉ ℳ|ℬ.  



IHJPAS. 53 (3)2022 
 

158 

Proposition 3.6 

     If ℳ is 𝒫∗– field  on 𝒰  and Φ ≠ ℬ ⊆ 𝒰 such that ℬϵ ℳ.  

Then ℳ|ℬ= {C ⊆ ℬ: Cϵ ℳ}.  

Proof. 

     Assume that Nϵ ℳ|ℬ, then N=M⋂ ℬ, for some Mϵ ℳ and thus Nϵ ℳ. 

Hence, Nϵ{C ⊆ ℬ: Cϵ ℳ}. Therefore, ℳ|ℬ ⊆ {C ⊆ ℬ: Cϵ ℳ}. Let  Dϵ {C ⊆  ℬ :  Cϵ ℳ}. 

Then D ⊆ ℬ  and D ϵ ℳ, hence D = D⋂ ℬ, but Dϵ ℳ, then Dϵ ℳ|ℬ. So, we get {C ⊆  ℬ : 

C ϵ ℳ}⊆ ℳ|ℬ. Consequentially,  ℳ|ℬ={C ⊆ ℬ  : Cϵ ℳ}. 

Corollary 3.7 

      If ℳ  is 𝒫∗– field  on 𝒰  and Φ ≠ ℬ ⊆ 𝒰 such that ℬϵ ℳ.  

Then, ℳ|ℬ ⊆ ℳ. 

Proof. 

      The proof follows Proposition 3.6. 

Definition 3.8 

      If 𝒰 is a universal set and ℐ ⊆ P(𝒰) and Φ ≠ ℬ ⊆ 𝒰, then a restriction of ℐ on ℬ is defined 

as: 

ℐ|ℬ = {N: N=M⋂ ℬ, for some Mϵ ℐ}.  

Proposition 3.9 

     If ℐ ⊆ P(𝒰) and Φ ≠ ℬ ⊆ 𝒰. Assume ℳ is a 𝒫∗– field of 𝒰 that contains ℐ and  ℬϵ ℳ, 

then  𝒫∗(ℐ)|ℬ is a  𝒫∗– field  of ℬ.  

Proof. 

     The proof is done by proposition 2.6 and 3.2  

Theorem 3.10 

     Assume ℐ ⊆ P(𝒰) and  Φ ≠ ℬ ⊆ 𝒰, then 𝒫∗ (ℐ|ℬ) is the smallest 𝒫∗– field on ℬ that 

contain ℐ|ℬ , where 

𝒫∗ (ℐ|ℬ) = ⋂{ℳi|ℬ: ℳi|ℬ is a  𝒫∗– field of ℬ and ℳi|ℬ ⊇ ℐ|ℬ, ∀i ∈ Ι}. 

Proof.  

     In the same way as in proposition 2.4, we can prove that 𝒫∗(ℐ|ℬ) is a 𝒫∗– field on ℬ. To 

prove that 𝒫∗(ℐ|ℬ) ⊇ ℐ|ℬ, assume that ℳi|ℬ is a  𝒫∗– field on ℬ and ℳi|ℬ ⊇ ℐ|ℬ, ∀i ∈ Ι, then 

ℐ|ℬ ⊆ ⋂ ℳi|ℬ i∈Ι ; hence  ℐ|ℬ ⊆ 𝒫∗(ℐ|ℬ). Now, let ℳ∗|ℬ be a 𝒫∗– field on ℬ such that ℳ∗|ℬ ⊇

ℐ|ℬ. Then,  ℳ∗|ℬ ⊇ 𝒫∗(ℐ|ℬ).  

Therefore, 𝒫(ℐ|ℬ) is the smallest  𝒫∗– field on ℬ  containing  ℐ|ℬ.  

Theorem 3.11 

      If  ℐ ⊆ P(𝒰) and  Φ ≠ ℬ ⊆ 𝒰, define a class ℳ by: 

 ℳ ={M ⊆ 𝒰 : M⋂ ℬ  ϵ 𝒫∗(ℐ|ℬ) }. Then  ℳ is a 𝒫∗– field on a set 𝒰. 
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Proof. 

      By Theorem 3.10, we have 𝒫∗(ℐ|ℬ)  as a 𝒫∗– field on ℬ, so Φ ϵ 𝒫∗(ℐ|ℬ).  

Since Φ= Φ ⋂ ℬ, then we get Φϵℳ. 

Assume that M1, M2 ϵ ℳ. Then (Mi⋂ℬ)ϵ 𝒫∗(ℐ|ℬ), for each i=1,2. 

Now, (M1⋂M2)⋂ℬ = ( M1⋂ℬ) ⋂(M2⋂ℬ ). Since 𝒫∗(ℐ|ℬ) } is a 𝒫∗– field on ℬ, then 

( M1⋂ℬ) ⋂(M2⋂ℬ )ϵ𝒫∗(ℐ|ℬ) and hence  (M1⋂M2)⋂ℬϵ𝒫∗(ℐ|ℬ), thus  M1⋂M2ϵ ℳ. 

Let M1, M2 , … ϵ ℳ. Then (Mi⋂ℬ)ϵ 𝒫∗(ℐ|ℬ), for  i=1,2,… 

Since 𝒫∗(ℐ|ℬ) } is 𝒫∗– field on ℬ, then ⋃ (Mi
∞
i=1  ⋂ ℬ)ϵ𝒫∗(ℐ|ℬ). 

Now, (⋃ Mi
∞
i=1 )⋂ℬ = ⋃ (Mi

∞
i=1  ⋂ ℬ)ϵ𝒫∗(ℐ|ℬ), thus ⋃ Mi

∞
i=1 ϵ ℳ. 

Therefore, ℳ  is  𝒫∗– field on a universal set 𝒰. 

Theorem 3.12 

     If 𝒰 is a universal set and  ℐ ⊆ P(𝒰) such that Φ ≠ ℬ ⊆ 𝒰, then 𝒫∗(ℐ|ℬ) = 𝒫∗(ℐ)|ℬ.  

Proof.  

     By proposition 2.6, we have 𝒫∗(ℐ) is 𝒫∗– field on 𝒰. So, we get 𝒫∗(ℐ)|ℬ is  𝑎 𝒫∗– field on 

ℬ by proposition 3.2. Assume𝑡ℎ𝑎𝑡 Nϵℐ|ℬ. Then N = M⋂ ℬ for some Mϵ ℐ.  

But ℐ ⊆ 𝒫∗(ℐ), so we have  Mϵ 𝒫∗(ℐ) and thus  Nϵ 𝒫∗(ℐ)|ℬ.  

Hence ℐ|ℬ ⊆ 𝒫∗(ℐ)|ℬ. Therefore, 𝒫∗(ℐ)|ℬ is a 𝒫∗– field on ℬ that containing ℐ|ℬ.  

By Theorem 3.10, we have 𝒫∗(ℐ|ℬ) is the smallest 𝒫∗– field on ℬ that containing ℐ|ℬ, which 

implies that 𝒫∗(ℐ|ℬ) ⊆ 𝒫∗(ℐ)|ℬ.  

Now, if we define a class ℳ by 

ℳ= {C ⊆ 𝒰 : C⋂ ℬ  ϵ 𝒫∗(ℐ|ℬ) }, then in Theorem 3.11, we have  ℳ as 𝑎 𝒫∗– field on 𝒰. Let 

Cϵ ℐ, then (C ∩  ℬ) ϵℐ|ℬ, but ℐ|ℬ ⊆ 𝒫(ℐ|ℬ) implies that (C ∩ ℬ)ϵ 𝒫∗(ℐ|ℬ), hence Cϵ ℳ  and 

ℐ ⊆ ℳ.  

Now, if we assume that Nϵ 𝒫∗(ℐ)|ℬ, then N= M ∩ ℬ, for some Mϵ 𝒫(ℐ). But  𝒫∗(ℐ) ⊆ ℳ, then  

Mϵ ℳ, hence Nϵ 𝒫∗(ℐ|ℬ). Consequentially,  𝒫∗(ℐ)|ℬ ⊆ 𝒫∗(ℐ|ℬ).  

This completes the proof.  

3. Conclusions 

     We tried to define the concept of measure relative to the 𝒫∗– field ℳ of 𝒰 and also define the 

idea of the restriction of measure on ℳ|ℬ of a set ℬ. Also, we discuss many properties of these 

notions. In this article, the idea of 𝒫∗– field is given to refer to the generalization of each σ–  field 

and σ–ring. Furthermore, some properties of the purposed notion are proven as explained  below: 

1. Let ℳ be a 𝒫∗– field of a set 𝒰 and let ℬ be a nonempty subset of 𝒰. Then, ℳ|ℬ  is a 

𝒫∗– field of a set ℬ.  

2. Assume  𝑡ℎ𝑎𝑡 ℳ is a  𝒫∗– field on 𝒰 and A ⊆ ℬ ⊆ 𝒰. If Aϵ ℳ, then Aϵ ℳ|ℬ.  

3. If ℳ is a 𝒫∗– field and ℬ be a nonempty subset of 𝒰 such that ℬϵ ℳ. Then ℳ|ℬ= 

{A ⊆ ℬ: Aϵ ℳ}. 

4. Suppose that ℳ is a 𝒫∗– field and ℬ ⊆ 𝒰  such that  ℬϵ ℳ. Then ℳ|ℬ ⊆ ℳ. 

5. If  ℐ ⊆ P(𝒰) and Φ ≠ ℬ ⊆ 𝒰 and 𝒫∗(ℐ)|ℬ is a 𝒫∗– field on ℬ. Then,      

𝒫∗(ℐ|ℬ) = 𝒫∗(ℐ)|ℬ.  
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